CS 6190 Probabilistic Modeling, Fall 2019 - Lectures

[Home] [Information] [Topics] [Lectures] [Projects]

Lecture Schedule

The lecture slides will be released right before the class.

 



Date Topic Reading Materials Assignment
Tue 8.20 Class Overview: Probabilistic Machine Leanring Definition, Course Topics [Video]
Thu 8.22 Class Overview: Course website, Convex Functions[Annotated][Video]
Tue 8.27 Probability: Probability Space, Mean, Variance, CDF, PDF, Joint Dist., Condition Dist. [Annotated][Video]
HW0 released on Mon (Due 09/09)
Thu 8.29 Probability distributions: MLE, MAP, Binomial, Multinomial, Beta, Dirichlet, Gausisan, Student t [Video]
PRML Ch2.1-2.3
Tue 9.03 Information theory: Entropy, Differential Entropy, KL diveregence, multual information; [Annotated]Conjugate priors:Beta  [Video]
PRML Ch1.6, Ch2.4
Thu 9.05 Conjugate priors:Beta, Gamma, Dirichlet, Wishart, exponential family and properties [Annotated]  [Video]
PRML Ch1.6, Ch2.4
Tue 9.10 Noninformative priors:Bayesian Philosophy, uniform, translation invaraince[Annotated]  [Video]
PRML Ch2.4.3 , Jordan's slides[1][2]
HW1 released on Mon (Due 09/23)
Thu 9.12 Noninformative priors:Jeffery's prior, exchangeability, De Finetti's theorem [Annotated]  [Video]
PRML Ch2.4.3 , Jordan's slides[1][2]
Tue 9.17 Bayesian Decision Theorem:Decision Region, Minimum Classification Rate  [Annotated-1] Generalized Linear Models:Linear Regression, Regularizer  [Annotated-2]  [Video]
PRML Ch1.5, Ch1.1, Ch3
Thu 9.19 Generalized Linear Models:Design matrix, MLE, Bayesian Linear Regression, Regularization, Predictive Distribution, Evidence Maximization, Empirical Bayes, Type II MLE [Video]
PRML Ch3
Tue 9.24 Generalized Linear Models:Logistic regression, multi-class, probit regression, ordinal regression, generalized linear models [Video]
PRML Ch4
HW2 Released on Mon (Due 10/14)
Thu 9.26 Probabilistic Graphical Models:Bayesian Networks, Conditional Indepdence, D-separation [Annotated]  [Video]
PRML Ch8
Tue 10.01 Probabilistic Graphical Models:Markov Blanket, Markov Random Fields, Moralization [Annotated] Inference: Forward and Backward messages [Annotated]  [Video]
PRML Ch8
Thu 10.03 Probabilistic Graphical Model Inference:factor-graphs, sum-product [Annotated] [Video]
PRML Ch8
Tue 10.08
FALL BREAK
Thu 10.10
FALL BREAK
Tue 10.15 Probabilistic Graphical Model Inference: Max-Product, Max-Sum  [Annotated] [Video]
PRML Ch8
HW3 Released (Due 10/28)
Thu 10.17 Detailed Examples of Max-Sum [Annotated], Approximate Inference Laplace's Approximation: General Ideas [Annotated]   [Video]
PRML Ch4.4, 4.5
Tue 10.22 Laplace Approximation: Bayesian Logistc Regression  [Annotated] Variational Inference: Gaussian Mixture Model and EM Algorithm  [Annotated] [Video]
PRML Ch4.4, 4.5,Ch9
Thu 10.24 Variational Inference: Global Variational Inference  [Annotated] [Video]
PRML Ch10.1, 10.3, 10.4
Tue 10.29 Variational Inference: Local Variational Inference, variational logistic regression  [Annotated] [notes-sigmoid]
PRML Ch10.5, 10.6
Thu 10.31 Variational Inference: Variational Message Passing Latent Dirichlet Allocation:Model, Variational Inference [Video]
PRML Ch10.4, Blei's paper
HW4 Released (Due 11/21)
Tue 11.05 Linear Algebra and Matrix Derivative Review [Video]
Thu 11.07 Markov Chain Monte Carlo Sampling: Markov Chains, Invariant/Stationary Dist., Transition Kernel, Ergodicity, Detailed Balance, Metroplis-Hasting Algorihthm [Annotated][Video]
PRML Ch11.2
Tue 11.12 Markov Chain Monte Carlo Sampling: Gibbs Sampling, Matrix Factorization, Proof of Correctness [Annotated][Video]
PRML Ch11.3
Thu 11.14 TensorFlow: Tutorial [Sample Code][Video]
Tue 11.19 Hybird Monte Carlo Sampling: Hamiltonian System, Reversability, Conservation, Volume Preservation, Leapfrog, Correctness [Annotated][Video]
Neal's intro, Fang Youhan's thesis Ch2
Thu 11.21 Bayesian Neural Networks: Neural Networks, Back Propagation, Bayesian NNs, Reparameterization trick [Video]
BBB paper
HW5 Released (Due 12/8)
Tue 11.25 Bayesian Neural Networks: Reparameterization trick, Bayes by BP, Auto-Encoding Variational Bayes, GANs [Video]
AEVB, GAN
Thu 11.27
THANKSGIVING
Tue 12.03 Bayesian Neural Networks: GANs, Mini-Max Optimization Gaussian process regression: GP Prior, Random Process, Kernel Function, Linear Model View[Annotated][Video]
PRML Ch6.4
Thu 12.05 Gaussian process regression: connection to Bayesian NN  Final Review
PRML Ch6.4