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* Let us consider to estimate a parameter @, e.g., the

chance of head (tossing a coin), from observed data
X1y XN

* Frequentist: @ is some fixed parameter, no randomness

— We want to estimate it from observations

N
0 = argmax log p(x;|0
ML ge ; g p(x;(0)

— How to quantify your uncertainty?
* confidence level, note that @,,; isaR.V, but 9 is not.
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Bayesian vs. Frequentist

* Let us consider to estimate a parameter @, e.g., the

chance of head (tossing a coin), from observed data
X1y XN

* Bayesian: @ is a random variable as well!

— We want to estimate it from observations

p(8]D) x p(O Hp X;|0)
— How to quantify your uncertainty?

Posterior distribution! p(H‘D)
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Bayesian vs. Frequentist

* In Bayesian world, every thing is random! (every
variable is a random variable)

e Why is random @ is important?

(1 We can encode our beliefs, previous experience and
desires in the prior p(0)

(dWe can make probabilistic statements about @
(mean, variance, quantiles, etc.).

(1 We can make Bayesian prediction that integrates all

the possible outcomes
PO 1 xw) = [ PO (B)p(Ox. . x) :



Bayesian vs. Frequentist

* |s Bayesian analysis subjective?

— Not necessary: Bayesian provides a convenient way to
incorporate subjective believes (important for Al!) But it
can also uses uninformative priors (this is objective
Bayesian!)

— Frequentist models make assumptions, too!

— Whether using frequent or Bayesian models, always check
the assumptions you make
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Uninformative priors

* In many cases, we have little idea of what form the
distribution should take

* Though conjugate priors are computationally nice,
objective Bayesians instead prefer priors which has
little influence on the posterior distribution. Such a
prior is called an uninformative prior.

* Let the data speak for themselves

16



Uninformative priors

* What priors do you have immediately in mind?
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* What priors do you have immediately in mind?

Uniform distribution!
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Uninformative priors

* What priors do you have immediately in mind?

Uniform distribution!

Now that | do not know which parameter is more likely to
be sampled, let us just assume the chances are equal!
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Uninformative priors

e Uniform distribution

For finite states: p(A) =1/K

For finite interval: P(A) = 1/(b— a)

20



Uninformative priors

e Uniform distribution

What about unbounded domains? A € R
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Uninformative priors

e Uniform distribution

What about unbounded domains? A € R

p(A) o const
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Uninformative priors

e Uniform distribution

What about unbounded domains? A € R

p(A) o const

This is an improper prior, because normalization diverges
We can still use it as long as the posterior is proper
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X| A
Uninformative priors pxIA)

* Problem of uniform distribution: transformation
invariance

p(A) o const

A = n?
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X | A
Uninformative priors P(x|A

* Problem of uniform distribution: transformation

p(\) o< const
K: ’)72 y)/—\/j
dA
Pp(1) = pa(A) el A(17)2n o< n
Y — o
L) - D_E

) = 5‘) .



p(x|A)

Uninformative priors

* Problem of uniform distribution: transformation

invariance

p(A) o const

A = n?

Pn (1) = pr(N)

dA
dn

= pa(n°)2n odn

When we do variable transformations, the prior is no

longer uninformative!
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X| A\
Uninformative priors pxIA)

e |et us take translation invariance into account

If the likelihoad takes the form

p(zlA) = fla N
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X| A
Uninformative priors PxIA)

e |et us take translation invariance into account

If the likelihood takes the form

p(rA) = f(z — M)

\ is location parameter, and the density exhibits shift invariance

P

A

ZIB\ZQZ‘—FC A= \+rc

A

p(Z|A) = f(& — \)

—
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X| A\
Uninformative priors pxIA)

 We want to construct a prior that reflects this shift
invariance (why: more consist with the likelihood,
less influence on the posterior!)
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X| A\
Uninformative priors pxIA)

 We want to construct a prior that reflects this shift

invariance (why: more consist with the likelihood,
less influence on the posterior!)

* How? We choose a prior that assigns egual

probability mass to an arbitrary interval [A, B] as to
the shifted interval [A+c, B+c]
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X| A\
Uninformative priors pxIA)

 We want to construct a prior that reflects this shift

invariance (why: more consist with the likelihood,
less influence on the posterior!)

* How? We choose a prior that assigns equal

probability mass to an arbitrary interval [A, B] as to
the shifted interval [A+c, B+c]

/ ” p(A\)d)\ = / o p(A\)dA

A — A-tc
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Uninformative priors

Example: for a Gaussian likelihood

p(x|,u) :N(x’:uaa2) — \/%O' CxXp ( B ﬁ
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Uninformative priors

Example: for a Gaussian likelihood

1 1
p(x|p) = N($’M>U2) = N exXp ( — ﬁ(x — ,UJ)Q)
ﬁM) DL MM*O\M shift invariance density
Conjugate prior T —

plla?) = N(ul,?) = —— exp (= 5 (n = a)?)
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Uninformative priors

Example: for a Gaussian likelihood

1 1
z|n) = N (x|, 0%) = exp ( — —5(x — p)?
p(el) = Nalp,o?) = —=— exp (= 55w — )?)
shift invariance density
Conjugate prior
1 1
p(ula,v*) = N(ula, v?) = —=exp (= 55 (1 — a)*)

A

v? —> 00 =) p(p) o< const
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Uninformative priors

Example: for a Gaussian likelihood

plali) = Nalp.0?) = ———exp (= 5300 = )

N\

shift invariance density

Conjugate prior
1

2TV

1

eXp ( — 272(# — CV)2)

p(pla, v*) = N(pla,v*) =

A

rl_imit of the conjugate p@ 36




Uninformative priors

e |et us take translation invariance into account

If the likelihood takes the form

__/ﬂ’\

p(x|o) :(%f (z) o > 0 fnormalizes regularly
- Y o
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Uninformative priors

e |et us take translation invariance into account

If the likelihood takes the form

p(xlo) = lf (z) o > (0 fnormalizes regularly
v v O O
g is s_c_cﬁ parameter, and the density exhibits scale invariance
3

/\ 2 — A~ AN L
@ cr=cx @ = O

/R(\x) QLL\ 1 T Verify it by yourself
> |’ SIS\

P p(xlo) ==f | =

o) o)

Loyt s
1005 - ) - T T »



Uninformative priors

 We want to construct a prior that reflects this scale
invariance (why: more consist with the likelihood,
less influence on the posterior!)
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Uninformative priors

 We want to construct a prior that reflects this scale
invariance (why: more consist with the likelihood,
less influence on the posterior!)

 How, consider an arbitrary interval [A, B], the prior
LA, B

should assign equal mass over an arbitrary scaled
. y _—
interval [A/c, B/c] >0

Cpordo= [ po)ydo
A Ale

=

40



Uninformative priors
= (-6 3 Al =C




Uninformative priors

Example: for a Gaussian likelihood =7
p(zlo) = N(z|p,0°) = \/%—Wé exp

Uninformative prior

(

7 fc<]

- S8

2 o

p(0) 10 sy p(N) o 1/A

s —

0
Conjugate prior T

Lo/

p(Na,b) = Gam(\|a, b) oc A ! exp(—b)

(

r

a=0,b=0 I——) LQ(@
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Uninformative Priors

e Jeffreys priors

Fisher information [((9) = —[Ky [

43



Uninformative Priors

e Jeffreys priors

Fisher information

77(0) o |1(0)|2

d*log p(X|0)

1(0) = —E, [

\

Expectation w.rt  p(X|6)

df?

|
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Uninformative Priors

e Jeffreys priors

77(0) o |1(0)|2

Fisher information I(@) = —[Ky

Expectation w.r.t

d? log p(X‘@) Note, for vector case, it
d6? becomes the Hessian
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Jeffreys priors - example

Binomial likelihood

X ~ Bin(n,0),0<60 <1

]?(xye) — (Z’) 0" (1— )"~

——_
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Jeffreys priors - example

Binomial likelihood

X ~ Bin(n,0),0<60 <1

plalo) = (" )or(1 -0y

Let’s construct a Jeffreys prior over §

n

XL
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Jeffreys priors - example

Binomial likelihood

X ~ Bin(n,0),0<60 <1

n

plalo) = (" Jor1 - o=

XL

—

Let’s construct a Jeffreys prior over §

St
logp(x|0) = xlogh + (n — x)log(l — 0) + (ot

d r nNn—2

n—=x

_E (j;logp( 9) ]‘eg/f




\(l/xl/"

;N

Jeffreys priors - example X =B
d? T n—ax
62 log p(x|0) = T2 T (1—6)2
=NV
Elz] = nf 2l
e K&%(%la,b)
16) = —E, [d2 102;52@\9)] ot 9 B
nd n—nb ?l;ﬂ

K )



Jeffreys priors - example

X ~ Bin(n,0),0<60 <1

Binomial likelihood
n

p(x]6) = (x) 6" (1 — )"~

o ]
N Data takes least effect
1
% - g=2)
% e 4 Data takes greatest effect
0 _
© m Beta(1/2, 1/2)) =
o | Wl Beta(1,7) Prior is consistent with th
© | | | | | | data effect!
0.0 0.2 0.4 0.6 0.8 1.0 =

0 50



Jeffreys priors — translation invariance

* Let us consider a general translation ¢ = h (0)

What is the Jeffreys prior over ¢ ?

77(¢) o |1(4)]

Use Chain rule

(d°log p (X
I(¢) = —E Ogdf;g |¢)]
_ E_dzlogp(XIH) d9\* | dlogp(X|0) d°0
o 62 (d¢> YT ap
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Jeffreys priors — translation invariance

dlogp (X|0)]
We know E[ 10 ]_O Why?
0 = % p(X10)dX
_ /dp(X|9)p(X\9)dX
dg  p(X]0)
v@,/p(X|9)dX:1 —) e 1)
- / do p<X|9)]p( )
_ / dlogge(X\Q)]p(X’H)dX

. [alogge(xw)]
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Jeffreys priors — translation invariance

L(¢) = -E

d?logp (X16) [ d6 2+ dlogp (X16) d%6
462 dg¢ 0 dg¢?

L J L J
I
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Jeffreys priors — translation invariance

do
VI($) = \/1(9)‘@
Now, we can see

When we directly construct Jeffreys prior

7TJ(¢) X I(¢) » The same!

When we derive the prior via variable transfofmation

w2(0) o \1(h1(0) | 35| = VIO [0
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Jeffreys priors — translation invariance

e Now we can show, for a Gaussian likelihood

1 1
p(z|p, o) = N(x|u, 02) = 5o eXp ( - QT‘Q@ — M)Q)
my(p) o<1
Leave it as your
1 exercise

WJ(U)O(;
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Jeffreys prior

* Usually not conjugate

— If you choose Jeffreys prior over [, 0 for a Gaussian
likelihood

The posterior of 1 will be a student t distribution

* Works well for single parameter, but not for models
with multidimensional parameters (e.g., poor
convergence properties, not very reasonable
estimates)

56



Reference priors

e formalize what exactly we mean by an
“uninformative prior”: a function that maximizes
some measure of distance or divergence between the
posterior and prior, as data observations are made.

* A commonly used divergence is KL divergence

KLGEDIO) = [ p(6]t)log p}f?g) 0

57



Reference priors

* We choose the prior that maximizes the expected KL
divergence between the posterior and the prior

1©.7) = [ plt) [ p(ol1og "X P ava

// Hilog Ht))ded

p*(0) = argmax [(©,T)  Mutualinformation
p(6)
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Outline

* Exchangeability, de Finetti's theorem
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Bayesian vs. Frequentist

* Given a distribution p(z|6) governed by 6

* Frequentist: | believe ¢ is objective constant, | need
to estimate it IID samples z1,..., 2N

* Bayesian: | believe 0 is some latent random variable — it

was first sampled from a prior distribution p(8) , then
given 6, we sample the observations z1,...,Zn

60



Bayesian vs. Frequentist

* Bayesian: | believe 0 is some latent random variable — it
was first sampled from a prior distribution p(8) , then
given 6, we sample the observations z1,...,zn

* Although it sounds a philosophical choice, can
we justify Bayesian modeling with some
mathematical proof?

61



Exchangeability

* Most statistical analysis are based on |ID
observations z1,...,onN

N
p( X1 =21,...,. Xy =2N) = Hp(Xn = T,)
n=1

* While the assumption is convenient, it may not be

reasonable in many problems: weather conditions,
stock prices, precipitation, disease rate, ...

* Exchangeability is a much weaker assumption

62



Exchangeability

* Finite exchangeability: Given N random variables,
and arbitrary permutation «(1),...,7(N)

d
X1, XN 2 X, o Xn(a)

"

\VliUla .+« s LN inthe domain

p(Xl :xlwﬂaXN :CUN) :p(Xl :xw(l)w")XN — xﬂ'(N))

e.g. (Xl—l X2—2 X3—3) ( 2,X2=3,X3=1>
—p(X1—3 X2—1X3—2):

63



Exchangeability — infinite sequence

* An infinite sequence of random variables {X;}:2; is
exchangeable if Yn =1,2,...

X1, ..., Xp l Xﬂ(l), ...,Xﬂ(n), Ve S(n),

where S(») are all possible permutations over the first n
variables

64



Exchangeability

e Essentially assume the symmetry of the density

p(Xl — xla'“aXN — CE]\f) :p(Xl — xﬂ'(l)?“'?‘XN — C5‘77(]\7))

d

11D a E exchangeability

65



Exchangeability - one specific example

e Polya’s Urn

— Given an urn with By black and W, whit balls, draw balls
with the following procedure
* (1) Draw a ball at random from the urn and note its color
e (2) If the ball is black then X; = 1; otherwise X, =0
e (3)i=i+1
* (4) Place a balls of the same color in the urn
* (5) Goto (1)
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Exchangeability - one specific example

e Polya’s Urn

— Given an urn with By black and W, whit balls, draw balls
with the following procedure
* (1) Draw a ball at random from the urn and note its color
(2) If the ball is black then X, = 1; otherwise X, =0
(3)i=i+1
(4) Place a balls of the same color in the urn
(5) Goto (1)

By By +a Wo By + 2a
P(1,1,0,1) = = X X X
By + Wy By + Wy +a By + Wy + 2a By + Wy + 3a
B Wi B By +2
P(1,0,1,1) = = 0 0 0T a 0+ 20

X X X
By + Wy Bo+ Wy +a By + Wy + 2a By + Wy + 3a

The sequence {X;, i>=1} is exchangeable but not IID
67



De Finetti’s theorem

(de Finetti 1931) A binary sequence { X}, is exchangeable iff
there exists a distribution function F on [0, 1] such that for all n,

1
p(xl,...,x,,):/ 0t (1 — 0)" " dF(0),
0

where p(xi,...,xp) = P(X1 = x1,...,.% = xp) and t, = > .| X;.

p(0)dd 1. Thereis a latent random variable 6
2. It has a prior distribution

68



De Finetti’s theorem

It further holds that F is the distribution function of the limiting
frequency:

Y = X, = lim ZX;/n, P(Y <y)=F(y)

and the Bernoulli distribution is obtained by conditioning with
Y =0:

P(X1 =Xx1,...,X; :Xn| Y = (9) = Ht”(]. — Q)n_t”.
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De Finetti’s theorem — the underlying
sampling process

* If our binary observations {X;}:°, are exchangeable, it
implies a hierarchical sampling process:

0 ~ p(0)
Conditional independent 4

Xl,XQ, 5o ¢ |9 Y Hp(XZIH)
1=1

This justifies Bayesian modeling --- prior distribution
objectively exists!
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Exchangeability

* Very widely used assumption in Bayesian modeling
e More flexible than IID, but is also restrictive

* Some classical/popular models

Blei, David M., Andrew Y. Ng, and Michael |. Jordan. "Latent
dirichlet allocation." Journal of machine Learning research
3.Jan (2003): 993-1022.

Airoldi, Edoardo M., et al. "Mixed membership stochastic
blockmodels." Journal of machine learning research 9.Sep

(2008): 1981-2014

Lloyd, J., Orbanz, P.,, Ghahramani, Z., & Roy, D. M. (2012). Random
function priors for exchangeable arrays with applications to graphs
and relational data. In Advances in Neural Information Processing
Systems (pp. 998-1006).
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