Gaussian Process for Regression

Fall 2019

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing

THE
U UNIVERSITY
OF UTAH



http://cs.Utah.edu

Outline

* GP regression
* Training and prediction
 Connection to Bayesian neural networks



Outline

* GP regression
* Training and prediction
 Connection to Bayesian neural networks



Gaussian process priors

* Goal: how to assign a prior over functions?
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Gaussian process priors

We know how to place a prior over several random
variables

p(Z) — p(21, Coey Zm)

But how to construct a prior to sample functions?



GP regression

We can view function as a big table

0 X1 f(x4)
ol X f(x,)
-2 X3 f(x3)

0 0.5 1
input, x

We view each output as a random variable
We want to place a prior over all the function outputs!
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GP regression

We can view function as a big table

0 X1 f(x4)
ol X f(x,)
-2 X3 f(x3)

0 0.5 1
input, x

Note that the possible inputs of a function are usually
infinite and uncountable, so rigorously speaking, we
should not use integers to index the input



GP regression

 That means, we need to assign the prior over the

collection of all the function outputs (infinite,
uncountable)

 |s it doable? Yes

* Such a prior is called a random process

{f(x):x € R%}



Two Ways to View a Random Process

e A random process can be viewed as a function X (¢,w) of two variables,
time ¢t € 7 and the outcome of the underlying random experiment w € )

For fixed ¢, X (¢,w) is a random variable over (2

o For fixed w, X (t,w) is a deterministic function of ¢, called a sample function

Can be
generalized to
any continuous
input

X(t7 wl) ‘

N N/ -
X(t, wa) | | |
—~_ [ =,
D S—
X(t7w3) 1 :

Source: Stanford Statistics Slides
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GP prior

 What process do we use to sample function outputs?

[f(x):x € R}

We use Gaussian process

A random process such that every finite collection
of these random variables follow a multivariate
Gaussian distribution.
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GP prior

Given any finite set of inputs X = [x1,...,XxN]

The corresponding function values f = [f(x1),..., f(xn)]'

follows a multivariate Gaussian distribution

p(f) — N(f|0, 2)

2 — k‘(}(7 X) Kernel matrix of the inputs

C k(x1,x1)  k(x1,x2) ... k(x1,xy) ]
k(xo,%x1) k(x2,%x2) ... k(x2,xn)

 k(xy,x1) k(xy,xX2) ... k(xn,xn)



GP prior

e Kernel function measures the similarity of two inputs

e.g., RBF

1
k(xj,%x;) = eXP(—;HXz' —x,%)

It essentially implies that the
closer the inputs, the more
correlated the function outputs.
It describes the function
smoothness in the probabilistic
context

05
input, x
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GP prior

e Kernel function measures the similarity of two inputs

1
Sy RBF k(Xj, Xj) — exp(—;”xi — Xj||2)

There are numerous ways to
define your kernel function.
Different kernel functions
defines different ways to
measure the similarity!

0 0.5 1
input, x 13



GP regression

* |In practice, we will never need to sample the whole
function, because the training data are always finite.

e Given the training data,
X=[x1,.-,XN] ¥Y=1Y1,---,YN

How to construct our probabilistic model to sample the
data?

]T
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GP regression

e Given the training data,
X:[Xl,...,XN] y:[yl,...,yN

How to construct our probabilistic model to sample the
data?

* We first sample the function values at the inputs

]T

f = [f(x1),..., f(xy)]' from the multivariate Gaussian
prior (this is a finite projection of the GP prior)

f ~N(f]0,k(X, X))
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GP regression

e Given the training data,
X:[Xl,...,XN] y:[yl,...,yN

How to construct our probabilistic model to sample the
data?

* Given the function values f, we sample the observed
outputs.

]T

yl|f ~ p(y|f)

For regression task (continuous output), we usually use Gaussian likelihood,

Observation are corrupted

p(yyf) — N(Y‘f, 0'2]:) by some Gaussian white

noise 16



GP regression

@ : noise variance and kernel
parameters

* The joint probability
p(y, f1X,0) = N(yIf, c° )V (£]0, k(X, X))
 We can marginalize out latent function values

p(y|X,0) = N (y|0, k(X,X) + ¢°I)
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GP regression: kernel

 Requirement on kernel function: for any finite

number of inputs X = (x1,...,XN]

must be semi-positive definite!

o k(x1,x1)  k(x1,x2) ... k(x1,xy) ]
k(xo,%x1) k(x2,%x2) ... k(x2,xn)
C k(xn,x1) k(xy,X2) ... kXn,xXn)

Mercer’s condition
(discrete version)
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GP regression: kernel examples

* Linear kernel: k(x, z) = x'z
* Polynomial kernel of degree d: k(x, z) = (x"z)¢

* Polynomial kernel up to degree d: k(x, z) = (x'z + c)?
(c>0)

e RBF Kny(x, z):exp(_llx—zH?)

C

* Periodic kernel afexp( 7 sin? (”x;x/»

e Matern kernel
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GP regression: kernel examples

e Each kernel function corresponds to a (possibly)
high-dimensional, nonlinear feature mapping

w : Rk — Rd often times: {d > K

d = oo

k(x1,%2) = ¢(x1) ' ¥(x2)

Kernel function a cheap way to compute inner-
product of high-dimensional feature vectors!
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GP regression: linear model view

e Given the training data,

X:[Xl,...,XN] y:[y17°°°7yN]T

We first sample an (infinite dimensional) weight vector

w ~ N (w|0,I)

Yn ™~ N(yn’WT¢(Xn), 021)

ﬂ Marginalize out w

p(yl|X,0) = N (y|0,k(X,X) + ¢’I) Why?
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Outline

* Training and prediction
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Training and prediction

@ : noise variance and kernel

/ \pa rameters

p(y. X, 0) = N(y|f, s*T)N(£]0, k(X, X))

We can perform EM algorithm to jointly estimate the posterior of f
and hyper-parameters

However, in practice, we often do type Il MILE
p(y|X,0) = N(y]0,k(X,X) + ¢°1)

max log V' (y|0, (X, X) 4 o°T)
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Training and prediction
* How to make a prediction? conditional Gaussian!
EARIERIRI R H)
y y 0 || k(X,x*) kX, X)+0o°1
We can easily compute p(f(X*) b’)

N(f(x*)](c(x*, X) (k(X, X)—|—02I)_13Jf,lk(x*, x*)—k(x*, X) (k(X, X)+0I) 1 k(X, x*J))

i T
Predictive mean Predictive variance
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Outline

 Connection to Bayesian neural networks

26



Connection to BNNSs

e A famous conclusion discovered by Radford M. Neal (1994)

* Consider an NN with only one hidden layer
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Connection to BNNSs

e A famous conclusion discovered by Radford M. Neal (1994)

* Consider an NN with only one hidden layer

activation function: tanh, sigmoid, ....
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Connection to BNNSs

We assign the same prior each u; bounded variance

w2

We assign the same prior each v; with 0 mean and a variance 7_—

activation function: tanh, sigmoid, ....
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Connection to BNNSs

We assign the same prior each u; bounded variance 5
W

We assign the same prior each v; with 0 mean and a variance 7_—

Then we can prove that when 717 — OQ, f(X) follows a GP prior

activation function: tanh, sigmoid, ....
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Proof sketch

activation function: tanh, sigmoid, ....

We assign the same prior each u; bounded variance

U.JQ

We assign the same prior each v; with 0 mean and a variance

-

{vVmuihi(x),...,vVmu,hy,(x)} are [ID with 0 mean and constant variance (to m)

1 m
f(x)=vm- - Y " V/mujhj(x)  Scaled average of IID variables
i=1

kFrom Central Limit theorem, f(x) follows a Gaussian distribution when m — o0 )/{




Proof sketch

activation function: tanh, sigmoid, ....

We assign the same prior each u; bounded variance

w2

We assign the same prior each v; with 0 mean and a variance

-

~

From Central Limit theorem, f(x) follows a Gaussian distribution when m — o0

The result can be generated for an arbitrary set of inputs {x1,...,Xn}

k[f(fm),---,f(Xn)]T follows a multivariate Gaussian distribution when m — 00 . /




Proof sketch

activation function: tanh, sigmoid, ....

We assign the same prior each u; bounded variance

U.JQ

We assign the same prior each v; with 0 mean and a variance

4 O

From Central Limit theorem, f(x) follows a Gaussian distribution when m — o0

The result can be generated for an arbitrary set of inputs {x1,...,Xn}

K That means f() follows a GP prior 33 /




Connection to BNNSs

* Can be extended to deep NNs (Lee et. al. 2017)

Lee, Jaehoon, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. "Deep neural networks as Gaussian Processes." arXiv preprint arXiv:1711.00165
(2017).
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Summary

* GP regression is a very powerful nonparametric
model for function estimation

* Does not assume function forms
* Two views of GP priors

* Close-form predictive distribution
* Profound connections to BNNs
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