
1

Bayesian Decision Theory

Machine	Learning
Fall	2017

Supervised	Learning:	The	Setup

1

Fall 2019

Instructor: Shandian Zhe
zhe@cs.utah.edu

School of Compputing



Given x, we want to predict t

• Inference step
– Determine either p(t|x) or p(x,t) (from training data)

• Decision Step
– For Given x, determine optimal t
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Let us first consider the classification problem

• t ∈ {C1, …, CK}
• Decision regions Rk: if x falls in , predict Ck

• Decision boundaries/surfaces: boundaries between 
different decision regions
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Minimum misclassification rate
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the rest of the book. Further background, as well as more detailed accounts, can be
found in Berger (1985) and Bather (2000).

Before giving a more detailed analysis, let us first consider informally how we
might expect probabilities to play a role in making decisions. When we obtain the
X-ray image x for a new patient, our goal is to decide which of the two classes to
assign to the image. We are interested in the probabilities of the two classes given
the image, which are given by p(Ck|x). Using Bayes’ theorem, these probabilities
can be expressed in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (1.77)

Note that any of the quantities appearing in Bayes’ theorem can be obtained from
the joint distribution p(x, Ck) by either marginalizing or conditioning with respect to
the appropriate variables. We can now interpret p(Ck) as the prior probability for the
class Ck, and p(Ck|x) as the corresponding posterior probability. Thus p(C1) repre-
sents the probability that a person has cancer, before we take the X-ray measurement.
Similarly, p(C1|x) is the corresponding probability, revised using Bayes’ theorem in
light of the information contained in the X-ray. If our aim is to minimize the chance
of assigning x to the wrong class, then intuitively we would choose the class having
the higher posterior probability. We now show that this intuition is correct, and we
also discuss more general criteria for making decisions.

1.5.1 Minimizing the misclassification rate
Suppose that our goal is simply to make as few misclassifications as possible.

We need a rule that assigns each value of x to one of the available classes. Such a
rule will divide the input space into regions Rk called decision regions, one for each
class, such that all points in Rk are assigned to class Ck. The boundaries between
decision regions are called decision boundaries or decision surfaces. Note that each
decision region need not be contiguous but could comprise some number of disjoint
regions. We shall encounter examples of decision boundaries and decision regions in
later chapters. In order to find the optimal decision rule, consider first of all the case
of two classes, as in the cancer problem for instance. A mistake occurs when an input
vector belonging to class C1 is assigned to class C2 or vice versa. The probability of
this occurring is given by

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=
∫

R1

p(x, C2) dx +
∫

R2

p(x, C1) dx. (1.78)

We are free to choose the decision rule that assigns each point x to one of the two
classes. Clearly to minimize p(mistake) we should arrange that each x is assigned to
whichever class has the smaller value of the integrand in (1.78). Thus, if p(x, C1) >
p(x, C2) for a given value of x, then we should assign that x to class C1. From the
product rule of probability we have p(x, Ck) = p(Ck|x)p(x). Because the factor
p(x) is common to both terms, we can restate this result as saying that the minimum
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Figure 1.24 Schematic illustration of the joint probabilities p(x, Ck) for each of two classes plotted
against x, together with the decision boundary x = bx. Values of x ! bx are classified as
class C2 and hence belong to decision region R2, whereas points x < bx are classified
as C1 and belong to R1. Errors arise from the blue, green, and red regions, so that for
x < bx the errors are due to points from class C2 being misclassified as C1 (represented by
the sum of the red and green regions), and conversely for points in the region x ! bx the
errors are due to points from class C1 being misclassified as C2 (represented by the blue
region). As we vary the location bx of the decision boundary, the combined areas of the
blue and green regions remains constant, whereas the size of the red region varies. The
optimal choice for bx is where the curves for p(x, C1) and p(x, C2) cross, corresponding to
bx = x0, because in this case the red region disappears. This is equivalent to the minimum
misclassification rate decision rule, which assigns each value of x to the class having the
higher posterior probability p(Ck|x).

probability of making a mistake is obtained if each value of x is assigned to the class
for which the posterior probability p(Ck|x) is largest. This result is illustrated for
two classes, and a single input variable x, in Figure 1.24.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫

Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).
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probability of making a mistake is obtained if each value of x is assigned to the class
for which the posterior probability p(Ck|x) is largest. This result is illustrated for
two classes, and a single input variable x, in Figure 1.24.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫

Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).

Question: where shall we set the decision boundary to 
minimize the misclassification rate? Why?



• In general for K classes
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probability of making a mistake is obtained if each value of x is assigned to the class
for which the posterior probability p(Ck|x) is largest. This result is illustrated for
two classes, and a single input variable x, in Figure 1.24.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫

Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).How to find regions that maximize the probability of 
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for which the posterior probability p(Ck|x) is largest. This result is illustrated for
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For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑
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p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).Each x should be assigned the class having the largest 
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for which the posterior probability p(Ck|x) is largest. This result is illustrated for
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For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫

Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).
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Minimum Expected Loss

• In practice, mistakes in predicting different classes 
may lead to different costs
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• Define a cost function, associate the cost of 
classifying k to j with Lkj
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Figure 1.25 An example of a loss matrix with ele-
ments Lkj for the cancer treatment problem. The rows
correspond to the true class, whereas the columns cor-
respond to the assignment of class made by our deci-
sion criterion.

( cancer normal
cancer 0 1000
normal 1 0

)

1.5.2 Minimizing the expected loss
For many applications, our objective will be more complex than simply mini-

mizing the number of misclassifications. Let us consider again the medical diagnosis
problem. We note that, if a patient who does not have cancer is incorrectly diagnosed
as having cancer, the consequences may be some patient distress plus the need for
further investigations. Conversely, if a patient with cancer is diagnosed as healthy,
the result may be premature death due to lack of treatment. Thus the consequences
of these two types of mistake can be dramatically different. It would clearly be better
to make fewer mistakes of the second kind, even if this was at the expense of making
more mistakes of the first kind.

We can formalize such issues through the introduction of a loss function, also
called a cost function, which is a single, overall measure of loss incurred in taking
any of the available decisions or actions. Our goal is then to minimize the total loss
incurred. Note that some authors consider instead a utility function, whose value
they aim to maximize. These are equivalent concepts if we take the utility to be
simply the negative of the loss, and throughout this text we shall use the loss function
convention. Suppose that, for a new value of x, the true class is Ck and that we assign
x to class Cj (where j may or may not be equal to k). In so doing, we incur some
level of loss that we denote by Lkj , which we can view as the k, j element of a loss
matrix. For instance, in our cancer example, we might have a loss matrix of the form
shown in Figure 1.25. This particular loss matrix says that there is no loss incurred
if the correct decision is made, there is a loss of 1 if a healthy patient is diagnosed as
having cancer, whereas there is a loss of 1000 if a patient having cancer is diagnosed
as healthy.

The optimal solution is the one which minimizes the loss function. However,
the loss function depends on the true class, which is unknown. For a given input
vector x, our uncertainty in the true class is expressed through the joint probability
distribution p(x, Ck) and so we seek instead to minimize the average loss, where the
average is computed with respect to this distribution, which is given by

E[L] =
∑

k

∑

j

∫

Rj

Lkjp(x, Ck) dx. (1.80)

Each x can be assigned independently to one of the decision regions Rj . Our goal
is to choose the regions Rj in order to minimize the expected loss (1.80), which
implies that for each x we should minimize

∑
k Lkjp(x, Ck). As before, we can use

the product rule p(x, Ck) = p(Ck|x)p(x) to eliminate the common factor of p(x).
Thus the decision rule that minimizes the expected loss is the one that assigns each

• We want to find the decision regions Rj that 
minimize the expected loss
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Thus the decision rule that minimizes the expected loss is the one that assigns each

• Rule: Assign each x to the class for which
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Figure 1.26 Illustration of the reject option. Inputs
x such that the larger of the two poste-
rior probabilities is less than or equal to
some threshold θ will be rejected.

x

p(C1|x) p(C2|x)

0 .0

1 .0
θ

reject region

new x to the class j for which the quantity
∑

k

Lkjp(Ck|x) (1.81)

is a minimum. This is clearly trivial to do, once we know the posterior class proba-
bilities p(Ck|x).

1.5.3 The reject option
We have seen that classification errors arise from the regions of input space

where the largest of the posterior probabilities p(Ck|x) is significantly less than unity,
or equivalently where the joint distributions p(x, Ck) have comparable values. These
are the regions where we are relatively uncertain about class membership. In some
applications, it will be appropriate to avoid making decisions on the difficult cases
in anticipation of a lower error rate on those examples for which a classification de-
cision is made. This is known as the reject option. For example, in our hypothetical
medical illustration, it may be appropriate to use an automatic system to classify
those X-ray images for which there is little doubt as to the correct class, while leav-
ing a human expert to classify the more ambiguous cases. We can achieve this by
introducing a threshold θ and rejecting those inputs x for which the largest of the
posterior probabilities p(Ck|x) is less than or equal to θ. This is illustrated for the
case of two classes, and a single continuous input variable x, in Figure 1.26. Note
that setting θ = 1 will ensure that all examples are rejected, whereas if there are K
classes then setting θ < 1/K will ensure that no examples are rejected. Thus the
fraction of examples that get rejected is controlled by the value of θ.

We can easily extend the reject criterion to minimize the expected loss, when
a loss matrix is given, taking account of the loss incurred when a reject decision is
made.Exercise 1.24

1.5.4 Inference and decision
We have broken the classification problem down into two separate stages, the

inference stage in which we use training data to learn a model for p(Ck|x), and the

is a minimum
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Reject option
• When the largest posterior probability is still too small 
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We have broken the classification problem down into two separate stages, the

inference stage in which we use training data to learn a model for p(Ck|x), and the

a-



Decision for continuous variables

• Inference step
– Determine p(x,t)

• Decision step
– For any given x, make optimal prediction y(x) for t
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Decision for continuous variables

• Inference step
– Determine p(x,t)

• Decision step
– For any given x, make optimal prediction y(x) for t
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independent, so that

p(xI,xB|Ck) = p(xI|Ck)p(xB|Ck). (1.84)

This is an example of conditional independence property, because the indepen-Section 8.2
dence holds when the distribution is conditioned on the class Ck. The posterior
probability, given both the X-ray and blood data, is then given by

p(Ck|xI,xB) ∝ p(xI,xB|Ck)p(Ck)
∝ p(xI|Ck)p(xB|Ck)p(Ck)

∝ p(Ck|xI)p(Ck|xB)
p(Ck)

(1.85)

Thus we need the class prior probabilities p(Ck), which we can easily estimate
from the fractions of data points in each class, and then we need to normalize
the resulting posterior probabilities so they sum to one. The particular condi-
tional independence assumption (1.84) is an example of the naive Bayes model.Section 8.2.2
Note that the joint marginal distribution p(xI,xB) will typically not factorize
under this model. We shall see in later chapters how to construct models for
combining data that do not require the conditional independence assumption
(1.84).

1.5.5 Loss functions for regression
So far, we have discussed decision theory in the context of classification prob-

lems. We now turn to the case of regression problems, such as the curve fitting
example discussed earlier. The decision stage consists of choosing a specific esti-Section 1.1
mate y(x) of the value of t for each input x. Suppose that in doing so, we incur a
loss L(t, y(x)). The average, or expected, loss is then given by

E[L] =
∫∫

L(t, y(x))p(x, t) dxdt. (1.86)

A common choice of loss function in regression problems is the squared loss given
by L(t, y(x)) = {y(x) − t}2. In this case, the expected loss can be written

E[L] =
∫∫

{y(x) − t}2p(x, t) dxdt. (1.87)

Our goal is to choose y(x) so as to minimize E[L]. If we assume a completely
flexible function y(x), we can do this formally using the calculus of variations toAppendix D
give

δE[L]
δy(x)

= 2
∫

{y(x) − t}p(x, t) dt = 0 . (1.88)

Solving for y(x), and using the sum and product rules of probability, we obtain

y(x) =

∫
tp(x, t) dt

p(x)
=

∫
tp(t|x) dt = Et[t|x] (1.89)

Loss function

ok



The squared loss functionThe Squared Loss Function

Minimize

15

€



The squared loss functionThe Squared Loss Function

Minimize

16

The Squared Loss Function

Minimize

⇐



What you need to know

• What is the decision? What is the difference 
between the decision and inference?

• How to find optimal decision regions for
classification?

• How to find optimal decisions for continuous 
variables? 
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