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* Let us consider to estimate a parameter @, e.g., the

chance of head (tossing a coin), from observed data
X1y XN

* Frequentist: @ is some fixed parameter, no randomness

— We want to estimate it from observations

N
0 = argmax log p(x;|0
ML ge ; g p(x;(0)

— How to quantify your uncertainty?
* confidence level, note that @,,; isaR.V, but 9 is not.
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* Let us consider to estimate a parameter @, e.g., the

chance of head (tossing a coin), from observed data
X1y XN

* Bayesian: @ is a random variable as well!

— We want to estimate it from observations

p(8]D) x p(O Hp X;|0)
— How to quantify your uncertainty?

Posterior distribution! p(H‘D)
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Bayesian vs. Frequentist

* In Bayesian world, every thing is random! (every
variable is a random variable)

e Why is random @ is important?

(1 We can encode our beliefs, previous experience and
desires in the prior p(0)

(dWe can make probabilistic statements about @
(mean, variance, quantiles, etc.).

(1 We can make Bayesian prediction that integrates all

the possible outcomes
PO 1 xw) = [ PO (B)p(Ox. . x) :



Bayesian vs. Frequentist

* |s Bayesian analysis subjective?

— Not necessary: Bayesian provides a convenient way to
incorporate subjective believes (important for Al!) But it
can also uses uninformative priors (this is objective
Bayesian!)

— Frequentist models make assumptions, too!

— Whether using frequent or Bayesian models, always check
the assumptions you make
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Uninformative priors

* In many cases, we have little idea of what form the
distribution should take

* Though conjugate priors are computationally nice,
objective Bayesians instead prefer priors which has
little influence on the posterior distribution. Such a
prior is called an uninformative prior.

* Let the data speak for themselves

16



Uninformative priors

* What priors do you have immediately in mind?
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Uninformative priors

* What priors do you have immediately in mind?

Uniform distribution!
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Uninformative priors

* What priors do you have immediately in mind?

Uniform distribution!

Now that | do not know which parameter is more likely to
be sampled, let us just assume the chances are equal!

19



Uninformative priors

e Uniform distribution

For finite states: p(A) =1/K

For finite interval: P(A) = 1/(b— a)

20



Uninformative priors

e Uniform distribution

What about unbounded domains? A € R
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Uninformative priors

e Uniform distribution

What about unbounded domains? A € R

p(A) o const
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Uninformative priors

e Uniform distribution

What about unbounded domains? A € R

p(A) o const

This is an improper prior, because normalization diverges
We can still use it as long as the posterior is proper
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X| A
Uninformative priors pxIA)

* Problem of uniform distribution: transformation
invariance

p(A) o const

A = n?
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X| A
Uninformative priors pxIA)

* Problem of uniform distribution: transformation

p(A) o const
A = n?
dA
Pn (1) = Pa(A) an = pa(n”)2n o<1
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p(x|A)

Uninformative priors

* Problem of uniform distribution: transformation

invariance

p(A) o const

A = n?

Pn (1) = pr(N)

dA
dn

= pa(n°)2n odn

When we do variable transformations, the prior is no

longer uninformative!
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X| A
Uninformative priors PxIA)

e |et us take translation invariance into account

If the likelihood takes the form

p(z|A) = fz = A)
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X| A
Uninformative priors PxIA)

e |et us take translation invariance into account

If the likelihood takes the form

p(z|A) = fz = A)

\ is location parameter, and the density exhibits shift invariance

A

ZIB\ZQZ‘—FC A= \+rc

p(Z|A) = f(& — \)
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X| A\
Uninformative priors pxIA)

 We want to construct a prior that reflects this shift
invariance (why: more consist with the likelihood,
less influence on the posterior!)
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 We want to construct a prior that reflects this shift

invariance (why: more consist with the likelihood,
less influence on the posterior!)

* How? We choose a prior that assigns equal

probability mass to an arbitrary interval [A, B] as to
the shifted interval [A+c, B+c]
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X| A\
Uninformative priors pxIA)

 We want to construct a prior that reflects this shift

invariance (why: more consist with the likelihood,
less influence on the posterior!)

* How? We choose a prior that assigns equal

probability mass to an arbitrary interval [A, B] as to
the shifted interval [A+c, B+c]

/ ’ p(A\)d)\ = / o p(A\)dA

A A-tc

31



p(A) = p(A +c)

!

p(A) o const



Uninformative priors

Example: for a Gaussian likelihood

p(z|p) = N(z|p,0%) = Ty OXP (- 5=
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Uninformative priors

Example: for a Gaussian likelihood

plali) = Nalp.0?) = ———exp (= 5300 = )

N\

shift invariance density
Conjugate prior

1 1

p(pla, v?) = N(ule, v*) = oo P (= 52—
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Uninformative priors

Example: for a Gaussian likelihood

1 1
z|n) = N (x|, 0%) = exp ( — —5(x — p)?
plel) = Nl 0%) = —— exp (= 5 5(z — )
shift invariance density
Conjugate prior
1 1
p(,u\oz, UQ) — N(/L|C¥, UQ) — 9 eXp ( o 2_?}2(:u o a>2)

A

v — 0o mmmmmmm)  p(p) o< const
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Uninformative priors

Example: for a Gaussian likelihood

plali) = Nalp.0?) = ———exp (= 5300 = )

N\

shift invariance density

Conjugate prior
1

2TV

1

eXp ( — 272(# — CV)2)

p(pla, v*) = N(pla,v*) =

A

v — 0o mmmmmmm)  p(p) o< const

Limit of the conjugate prior 36




Uninformative priors

e Let us take translation invariance into account
If the likelihood takes the form

p(xlo) = lf (E) o > (0 fnormalizes regularly
o) )
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Uninformative priors

e Let us take translation invariance into account
If the likelihood takes the form

1 T
p(x‘a) = —f (—) o > (0 fnormalizes regularly
o o
O is scale parameter, and the density exhibits scale invariance

T = cx o = Cco

PN 1 EU\ Verify it by yourself
p(:l:‘(f) — Zf <:>
o) o)
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Uninformative priors

 We want to construct a prior that reflects this scale
invariance (why: more consist with the likelihood,
less influence on the posterior!)
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Uninformative priors

 We want to construct a prior that reflects this scale
invariance (why: more consist with the likelihood,
less influence on the posterior!)

 How, consider an arbitrary interval [A, B], the prior

should assign equal mass over an arbitrary scaled
interval [A/c, B/c]

Cpordo= [ po)ydo
A Ale

40



Uninformative priors




Uninformative priors

Example: for a Gaussian likelihood

p(zlo) = N(zlp,0%) = \/LQ_WéeXp(_ %[CE;MF)

Uninformative prior ,
A=1/o

p(o) x1/oc smmmm) p(A) o< 1/A

Conjugate prior
p(Na,b) = Gam(\a,b) oc A ! exp(—b)

a=0,b=0 mm=== p(\)ocl/\
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Uninformative Priors

e Jeffreys priors

77(0) o |1(0)|2

Fisher information [((9) = —[Ky [

d*log p(X|0)

df?

|
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Uninformative Priors

e Jeffreys priors

Fisher information

77(0) o |1(0)|2

d*log p(X|0)

16) = E\[

Expectation w.rt  p(X|6)

df?

|
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Uninformative Priors

e Jeffreys priors

77(0) o |1(0)|2

Fisher information I(@) = —[Ky [

\

Expectation w.rt  p(X|6)

d? log p(X‘@) Note, for vector case, it
d6? becomes the Hessian

45



Jeffreys priors - example

Binomial likelihood

X ~ Bin(n,0),0<60 <1

plalt) = (" )or(1 -0y

- X
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Jeffreys priors - example

Binomial likelihood

X ~ Bin(n,0),0<60 <1

plalo) = (" )or(1 -0y

Let’s construct a Jeffreys prior over §

n

XL
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Jeffreys priors - example

Binomial likelihood

X ~ Bin(n,0),0<60 <1

plalo) = (" )or(1 -0y

Let’s construct a Jeffreys prior over §

n
X

logp(x|0) = xlogh 4+ (n — x)log(1 — 6)

d r nNn—2

il _ T _
75 oePld) = 5 = 7

d? €T n—ax

el | - 7
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Jeffreys priors - example

d? €T n—ox

—1 0

j Elx] = nb

16) — —E, [dz 10352@\9)]

_n_9+ n — nb
62 (1 —0)?

n




Jeffreys priors - example

Binomial likelihood

(0)

1.0

2.0

1.5

0.5

0.0

plalt) = (

X ~ Bin(n,0),0<60 <1

n
X

/

B Beta(1/2, 1/2)
B Beta(1,1)

I
0.0

|
0.2

|
0.4

I
0.6

| !
0.8 1.0

)9%’(1 — )

Data takes least effect
g =1
2

Data takes greatest effect

0 =0 orl

Prior is consistent with the
data effect!
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Jeffreys priors — translation invariance
G T

* Let us consider a general translation ¢ :(hl(ﬁ)
What is the Jeffreys prior over ¢ ? F/[y/f(‘@ l op l
L) x(9) o [1(9)

"
Use Chain rule
J
d?1 X
16) - —E[ o '¢>\
B d2 log p (X6 cflogp X@ d*6

N do? LLJCWQ ]

51







Jeffreys priors — translation invariance

dlog p (X|0)
We know E[ 10 ]:0 Why? APO{@)
— Y
T S,
Q = %;L%XW)CZX
Y ETUTED
dé X10)
V@,/p(XW)dX: 1 ﬁ /dp(X|6’§9( 1
_ /_”de )| K10 dx
y T e
=S e _—
DLL‘TV | _ E[dlogp(X\H)]
v ) do
po - Jpxlo)

- P(Xla) 40
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Jeffreys priors — translation invariance

o) = - [ZUglee) () ey
\A— J "—’ﬁ, L
1(9) O

-~ do
- b
KA
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Jeffreys priors — translation invariance

do
VI($) = \/1(9)‘@
Now, we can see

When we directly construct Jeffreys prior

7TJ(¢) X I(¢) » The same!

T
When we derive the prior via variable transfofmation

w2(0) o \1(h1(0) | 35| = VIO [0
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Jeffreys priors — translation invariance

* Now we can show, for a Gaussian likelihood
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Jeffreys prior

* Usually not conjugate

— If you choose Jeffreys prior over 4, O_for a Gaussian
likelihood

The posterior of ¢ will be a student t distribution

° Works we.II for smgle parameter, but not for models
with multidimensional parameters (e.g., poor
convergence properties, not very reasonable

estimates)

56



Reference priors

e formalize what exactly we mean by an
“ : . = ”, . . 5
uninformative prlqr . a [_unctIQn that maximizes
some measure of distance or divergence between the
posterjor and prior, as data observations are made.

* A commonly used divergence is KL divergence

KL Ib0) = [ o010 1og ;?;i)de

I~
£

57



Reference priors

* We choose the prior that maximizes the expected KL
divergence between the posterior and the prior

@ / p(?) / (9]t) log p((ee‘?dedt
/ | pe-108 <e>p<)>d9d |G

|5,

p*(0) = argmax [(©,T)  Mutualinformation

p(@) —_—
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Outline

* Exchangeability, de Finetti's theorem
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Bayesian vs. Frequentist

* Given a distribution p(z|f) governed by 6
— —

* Frequentist: | believe 6 _is objective constant, | need

to estimate it from IID samples z1,...,2n
—_— A

o Bayesian: | believe d is some latent random variable — it

was first sampled from a prior distribution p(6) , then
given 6, we sample the observations z1,...,Zn

60



Bayesian vs. Frequentist

* Bayesian: | believe 0 is some latent random variable — it
was first sampled from a prior distribution p(8) , then
given 6, we sample the observations z1,...,zn

* Although it sounds a philosophical choice, can
we justify Bayesian modeling with some
mathematical evidence?

61



Exchangeability

* Most statistical analysis are based on |ID
observations z1,...,onN

N
p( X1 =21,...,. Xy =2N) = Hp(Xn = T,)
n=1

N

* While the assumption is convenient, it may not be

reasonable in many problems: weather conditions,
stock prices, precipitation, disease rate, ...

* Exchangeability is a much weaker assumption
- ™
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Exchangeability

3| 2

2 m Kg)

* Finite exchangeability: Given N random variab
and arbitrary permutation «(1),...,7(V)

d
X1, XN 2 X))o Xm(n)

\

"

VZ1,...,ZN inthe domain
=
p(X4 :g,...,X_N:xN) = p(X1 ::EEQ),...,XN: (N))

2
|) 7’se.g. (X1 =1 X2_2 X3—3) ( 27X2:37X3:]‘>
—p(X1—3 X2—1 X3—2):
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Exchangeability — infinite sequence

* An infinite sequence of random variables {X;}:2; is
exchangeable if Vn =1,2,...

){1, N, €% l Xﬂ(l), ...,Xﬂ(n), Ve S(n),

=,

where S(») are all possible permutations over the first n
variables

64



Exchangeability

e Essentially assume the symmetry of the density

(X1 =x1,...,. XN =2n) = p(X1 = 2r1)s. -, XN = Tr(n))

1D a E exchangeability

Xl = Ta‘v":\/ >( = 0“’3) - ‘7( rX(’:”Lry) X» :‘—YCW\])
P\X\: Y‘"‘“)V‘D) \’7(”{1,'—-0*'7) )




Exchangeability - one specific example

* Polya’s Urn

— Given an urn with By black and W, white balls, draw balls
—— ~—~—— —_—
with the following procedure
* (1) Draw a ball at random from the urn and note its color
e (2) If the ball is black then X, = 1; otherwise X, =0
C— - -
e (3)i=i+1

* (4) Place a balls of the same color in the urn

+ (5) Goto (1) a~|)

66



Exchangeability - one specific example

e Polya’s Urn

— Given an urn with By black and W, white balls, draw balls
with the following procedure

(1) Draw a ball at random from the urn and note its color

(2) If the ball is black then X; = 1; otherwise X, =0

* (3)i=i+1 g | Bo BoﬂP")
* (4) Place a balls of the same color in the urnpy [ Wo| Wy 1 (&~
* (5) Goto (1
"y v\,() 1)
Y\\\ no
(1101 = BO X B()—|—CL—1 > WO % B0+2a—2
P Y = Bt Wo “ Bot Wota—1  Bot Wot2a—2 Byt Wot3a_3
o
b Bo+a—1 Bo +2a — 2
p(1,0,1,1) = =" i 0 +a 0 +2a

X X X
By + Wy Bo+Wyg+a—-1 Bo + Wy + 2a — 2 By +Wy+3a—-3

The sequence {X;, i>=1} is exchangeable but not IID
67



De Finetti’s theorem

(de Finetti 1931) A binary sequence {X;}2,is exclw_—gag_@ble@
there exists a distribution function F on [0, 1] such that for all n,

——
——— —

b1
dF(e)

1
p(x1,...,Xn :/ Ot (1 — 0)=L dF (0),
(a0s-70) = [ 001 0)=% dF(0),

where p(xi, ..., xn) = P(X1 = xi, /)éq and t, = 37 x;.

~

p(0)dd 1. Thereis a latent random variable 6
—M=—> ). |t hasa priordistribution "~

O~ plo)
HG7 o8




De Finetti’s theorem

It further holds that F Is the distribution function of the limiting
frequency:

@@ oo—nll_[w;OZX/n P(Y < y) = F(y)

and the Bernoulli distribution is obtained by conditioning with
Y =0:

P(Xl =Xx1,...,X; :Xn| Y = (9) = (9t”(1 —@n_t".

(e
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De Finetti’s theorem — the underlying
sampling process

* If our binary observations {X;}:°, are exchangeable, it
implies a hierarchical sampling process:

0 ~ p(0)
Conditional independent 4

Xl,XQ, 5o ¢ |9 Y Hp(XZIH)
1=1

This justifies Bayesian modeling --- prior distribution
objectively exists!
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Exchangeability

* Very widely used assumption in Bayesian modeling
e More flexible than IID, but is also restrictive

——————

* Some classical/popular models

Blei, David M., Andrew Y. Ng, and Michael |. Jordan. "Latent
~dicichlet aIIoEtion." Journal of machine Learning research V
3.Jan (2003): 993-1022.

Airoldi, Edoardo M., et al. "Mixed membership stochastic
blockmodels." Journal of machine learning research 9.Sep

(2008): 1981-2014

v

Lloyd, J., Orbanz, P.,, Ghahramani, Z., & Roy, D. M. (2012). Random
function priors for exchangeable arrays with applications to graphs
and relational data. In Advances in Neural Information Processing
Systems (pp. 998-1006).
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What you need to know

* Bayesian vs. Frequentist

* What is uninformative prior

 What are shift invariance, scale invariance in
likelihood? How to derive the corresponding
—
uninformative prior?

 What is Jeffery’s prior? Arbitrary translation
Invariance

* Exchangeability
* De-Finette theorem (how does it justify Bayesian )s
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