Bayesian Decision Theory

Fall 2019

Instructor: Shandian Zhe zhe@cs.utah.edu
School of Compputing

Given x, we want to predict t

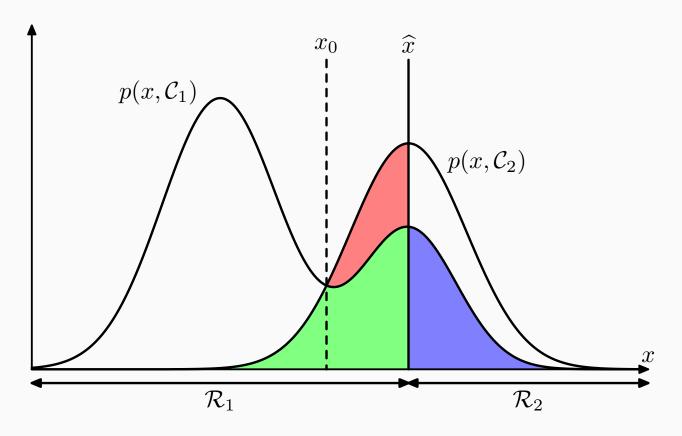
Cancer Stock price Weather

- Inference step
 - Determine either p(t|x) or p(x,t) (from training data)

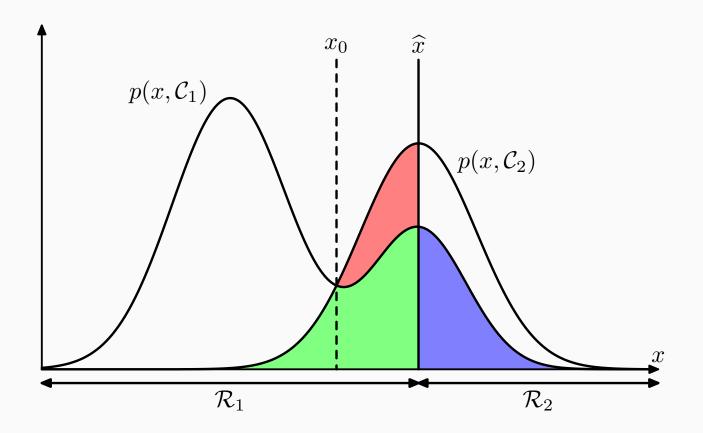
- Decision Step
 - For Given x, determine optimal t

Let us first consider the classification problem

- $t \in \{C_1, ..., C_K\}$
- Decision regions R_k: if x falls in , predict C_k
- Decision boundaries/surfaces: boundaries between different decision regions



$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1)$$
$$= \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{\mathcal{R}_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}.$$



Question: where shall we set the decision boundary to minimize the misclassification rate? Why?

In general for K classes

$$p(\text{correct}) = \sum_{k=1}^{K} p(\mathbf{x} \in \mathcal{R}_k, \mathcal{C}_k)$$
$$= \sum_{k=1}^{K} \int_{\mathcal{R}_k} p(\mathbf{x}, \mathcal{C}_k) d\mathbf{x}$$
$$p(\mathcal{C}_k | \mathbf{x}) p(\mathbf{x})$$

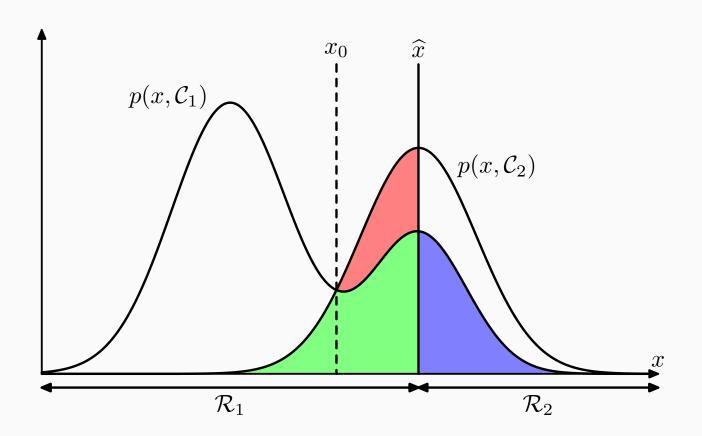
How to find regions that maximize the probability of correctness?

In general for K classes

$$p(\text{correct}) = \sum_{k=1}^{K} p(\mathbf{x} \in \mathcal{R}_k, \mathcal{C}_k)$$
$$= \sum_{k=1}^{K} \int_{\mathcal{R}_k} p(\mathbf{x}, \mathcal{C}_k) d\mathbf{x}$$
$$p(\mathcal{C}_k | \mathbf{x}) p(\mathbf{x})$$

Each x should be assigned the class having the largest posterior probability $p(C_k|x)$

Look back



Minimum Expected Loss

 In practice, mistakes in predicting different classes may lead to different costs

Example: classify medical images as 'cancer' or 'normal'

Minimum Expected Loss

• Define a cost function, associate the cost of classifying k to j with L_{kj}

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$

• We want to find the decision regions R_j that minimize the expected loss

Minimum Expected Loss

• Define a cost function, associate the cost of classifying k to j with L_{kj}

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}.$$

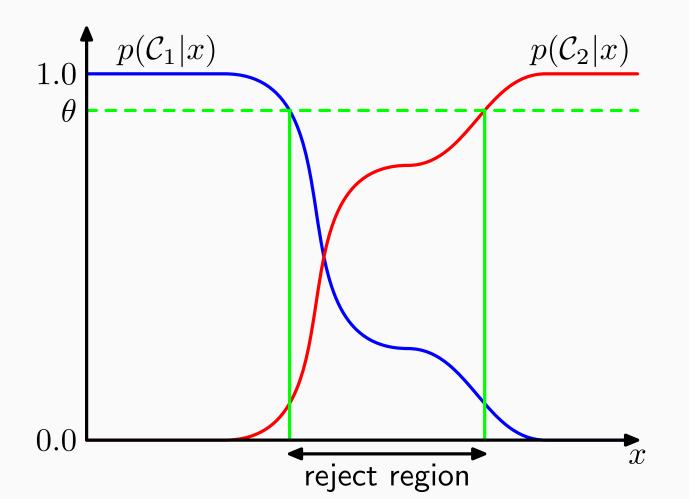
Rule: Assign each x to the class for which

$$\sum_{k} L_{kj} p(\mathcal{C}_k | \mathbf{x})$$

is a minimum

Reject option

When the largest posterior probability is still too small



Decision for continuous variables

- Inference step
 - Determine $p(\mathbf{x},t)$
- Decision step
 - For any given x, make optimal prediction y(x) for t

Decision for continuous variables

- Inference step
 - Determine $p(\mathbf{x},t)$
- Decision step
 - For any given x, make optimal prediction y(x) for t

Loss function

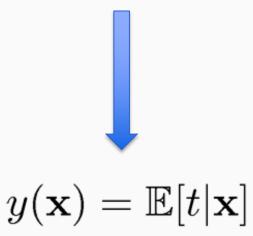
$$\mathbb{E}[L] = \iint L(t, y(\mathbf{x})) p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

The squared loss function

Minimize
$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

The squared loss function

Minimize
$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$



What you need to know

- What is the decision? What is the difference between the decision and inference?
- How to find optimal decision regions for classification?
- How to find optimal decisions for continuous variables?