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So far, we have ...

MCMC

Variational inference
Message passing
Laplace’s approx.

Generalized linear models
Graphical models
Bayesian neural networks
Gaussian process

Commonly used Coniugate priors Uninformative
distributions Jugate p priors
Probability space, Exponential Exchangeability, de
RV., expectation, family Finetti's theorem
variance....
Matrix/vector Convex Information

derivative MLE, MAP conjugate theory g




Our next stage

* Discuss several important and widely used
probabilistic models (and framework)

e Discuss efficient posterior inference algorithm
* We will start with generalized linear models



Outline

* Linear models for regression

 Linear models for classification

e Generalized linear models



Linear models for regression

* Linear models with (nonlinear) basis functions
e Overfitting and regularization

e Bayesian linear regression

* Predictive distribution

* Empirical Bayes



Linear models for regression

* Simplest model: linear regression

Y(X, W) =wy + w1z, + ...+ wpxp

X:(.’Jfl,...



Linear models for regression

* Simplest model: linear regression
Y(X, W) =wy + w1z, + ...+ wpxp

X = (.’]31,...,CCD)T

Limitation: only model linear function of the input variables



Linear models for regression

* To allow nonlinear modeling, we in general introduce
nonlinear M basis functions over the input variables

M—1
y(x, W) =wo + »  w;d;(x)
j=1



Linear models for regression

* To allow nonlinear modeling, we in general introduce
nonlinear M basis functions over the input variables

y(x, W) =wo + »  w;d;(x)

"/

¢; :RP — R

Basis function: can be any (nonlinear) over the input variables



Examples of basis functions
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Examples of basis functions

Through nonlinear basis functions, we can model
nonlinear functions while maintaining a linear structure
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Maximum likelihood estimation (MLE)

M—1
y(x, W) =wo+ Y w;e;(x)
j=1

 Assume the observation is the function corrupted by
random Gaussian noise

p(tlx, w,B8) = N(tly(x, w), 87")
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Maximum likelihood estimation (MLE)

* Consider an observed dataset X = {x;,...,xx}
tla 7tN
likelihood
N
p(A1X, w,3) = [ [N (talw" d(xz),57)
n=1
N d(Xn) = [1(%Xn), - - - ¢M(Xn)]—r
np(tiw,8) = > ImN(ta|w"d(xn),67")
N N

= 5 In 3 — E) In(27) — BEp(W)
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Maximum likelihood estimation (MLE)

Vinp(tlw, 3

Mz

{tn — WT¢(Xn)} qb(Xn)T

0= tad(x,)" — W (Z qs(xn)qs(xn)T)

Txa\" ! /T
wyr, = (P Qt
Design matrix
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Maximum likelihood estimation (MLE)

wyr = (87®) @7t

/%(Xl) ¢1(x1)
Po(x2)  P1(X2)

(I)T — ((I)T(I)) —1 o7t Moore-Penrose pseudo-inverse

\¢0(1;<N) ¢1(;(N)

P —1(x1)
dn—1(X2) \

bris(xn) )

N x M
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Overfitting and regularization

* Consider polynomial regression

M
y(x, W) = wo + wi T + wez® + oA wyaM = ijazj

7=0

Question: what is the highest order we can
choose (M)?
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Overfitting and regularization

17



Overfitting and regularization

M=0 M=1 M=6 M=09
wg | 019 082 03I 0.35
Wk 127 7.99 232.37
wi -25.43 -5321.83
wi 17.37  48568.31
wr -231639.30
wi 640042.26
wy -1061800.52
W 1042400.18
wi -557682.99
we 125201.43
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Overfitting and regularization

—©— Training
—O— Test
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Overfitting: how to address it?

M=0 M=1 M=6 M =9
wi | 019 082 03l 0.35
wk 127 7.99 232.37
w3 -25.43 -5321.83
wk 1737 48568.31
wk -231639.30
w? 640042.26
wi -1061800.52
w? 1042400.18
w? -557682.99
wi 125201.43

We should constraint the weights from growing too big;

Weights are encouraged to decay toward O, unless
supported by data!



Regularized least square

< N\

ED (w) — )\EW (W) Regularization strength

1 EN: i 2

2 ”:1{tn ) VQ §WTW
1 N T /2)\ T
9 E ,{tn — W ¢(Xn)} + §W W
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Regularized least square

 Set gradientto O

w=(\+oT®) ot

wy = (87®) &7t
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Go back to polynomial regression again

A

N

1

— Z{tn —wip(x,) P+ cwlw

2 2

n=1
InA\=-00 InA=-18 InA=0

wy 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
wy | -231639.30 -3.89 -0.03
ok 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wr | 1042400.18 -45.95 -0.00
wi | -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01
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Go back to polynomial regression again

1t In\=0 1
(@)
t
(@)
(@)
| 7 o _O ]
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More general regularizer

1 A\ o
T 2
52:1{75%_“’ ¢ (xn)} +§Z:1‘wj‘q
n= J]=

When q = 2, we go back to our quadratic regularizer

When g =1, itis known as lasso: a classical sparse
regression approach; it turns out using lasso can
lead many weights to O

In general, the smaller q leads to sparser models
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Bayesian linear regression

* We assign a prior over the weights, which
corresponds to a regularizer

p(w) = N (w|myg, So)

p(tlw,X) = N(t|@w, 57 1)

/

p(W‘t) _ N(W’mN, SN) my = Sy (So_lmo —I—ﬁ(I)Tt)
Sy = S;'+pe'®.
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Bayesian linear regression

* Take a simple choice

p(wle) = N(w|0,a™'T)

p(wlt) = N(w[my, Sy)

= (Sn®'t
Sy = al+p3®'®.

=
2
|




likelihood prior/posterior data space

Y
0
See how the
posterior changes 4
-1 0 wo | -1 0 T |
|
Yy
15t point 0
-1
|
. y
2" point
0 O,
-1
-1 0w | -1 0 g | -1 0 z 1
|
20t point

-1 0 o |



Bayesian linear regression

e Gaussian prior corresponds to quadratic
regularization; Laplace prior lasso

* In general

p(W|a) = [g (%)Uq F(ll/q)] exp (% ; qu>

Laplace’s prior

q=1,
g = 2, Gaussian
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Predictive distribution

 We want to integrate all values of w into prediction
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Predictive distribution

Learn a sinusoidal function with 9 Gaussian basis functions
31



v(x,w) using samples from the posterior p(w|t)

32



Bayesian model comparison

e Suppose we want to compare a set of models {M,, ...,

M.}

 The data is generated by one model, which we are
not sure. We express this uncertainty by p(M,)

* Given the training data D, we wish to evaluate

p(M;|D) o< p(M;)p(D|M;)

Model evidence

33



Bayesian model comparison

* Bayes factor  p(D|M;)/p(DIM;)

 Model averaging

p(tlx, D) = > plt|x, My, D)p(M;[D)

1=1

* Model selection: choose the most probable model
along to make prediction
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Crude evidence approximation

* Assume the posterior is centered around its mode
and flat prior p(w) = 1/Awpior

Aprostelrior

A

35



Crude evidence approximation

* Assume the posterior is centered around its mode
and flat prior p(w) = 1/Awpior

Aprostelrior

A/wprior

36



Evidence penalizes over-complex models

Inp(D) =~ In p(D|wyap) + In (

Given M parameters and assume the same ratio

Inp(D) ~ Inp(D|wyap) + M In (

The larger M, the more complex the model, the better fit of the
data (1°t term), the smaller the second term
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Evidence penalizes over-complex models

 Maximizing evidence naturally leads to a trade-off
between data fitting and model complexity

p(D) M,

38



Evidence approximation & empirical Bayes

* Approximating the predictive distribution by

maximizing the evidence [p(W!a) = N(wl[0,a™'T) J
pltlw, X) = N(t|Bw, 51

p(tlt) = /// (t|w, B)p(w|t, a ﬁj (a, B|t) dw dad 3

p(it) ~ p(t1t @, ) = / plilw, Bp(wlt @, 3) dw

where the hyperparameters «, 3 are obtained by
maximizing the evidence p(t|a, 3) .

This is known as Empirical Bayes or type || maximum
likelihood
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Model evidence and cross-validation

e Consider the degree of polynomial regression

—©— Training
—©— Test

Root-mean-square error Model evidence

40



Outline

Linear models for regression

Linear models for classification
— Logistic regression

— Probit regression

— Multi-class regression

— Ordinal regression

General linear models

41



Logistic regression

* Let us first consider binary classification problem: C,,
C;

p(Cil9) = y(¢) = o (W' )

o(a) =1/(1 +exp(—a))  Logistic sigmoid
function

p(Cal@p) = 1 — p(Ci|0)

42



Logistic regression

* Interesting property of sigmoid function

43



Logistic regression

* Given a dataset {®..in}, where t. € {0,1}, ¢, = ¢(xn)

and n=1,..., N, the likelihood function is given by

N
t‘W Hyn {1_yn}1 t

44



Logistic regression

E(w) = —Inp(tjw) = Z{t Iy, + (1 —t,) In(1 —1,,)}
N
VE(W) — (yn — tn)¢n

n=1



Iterative reweighted least squares

* Newton-Raphson scheme

W(new) _ W(old) o H_1VE(W)

Hessian matrix

46



Iterative reweighted least squares

* First consider linear model for regression

1 N

B(w) =5 Y {ta —w' ,}?

n=1

N
VE(w) = ) (W', —tn)¢, =2 dw — &7t

n=1

47



Iterative reweighted least squares

N
Zw b, —tn)p, = ®Tdw — Tt

H=VVE(w qu br
W(new) _ W(Old) . (@T@)—l {@T@W(Old) . @Tt}
= (@'®) et

The same as least square solution!

One step solves it! Why?

48



Iterative reweighted least squares

* Logistic regression

N x N diagonal matrix R, = yn(l — yn) Yn — U(WT¢n)

49



Iterative reweighted least squares

W(new) _ W(Old) L (@TR@)_léT(y . t)
= (2'R®)"'{@'ReWCY — 3T (y-1t)}
= (®'R®)'®'Rz

z=3wloY R}y —1t)
Iterative updates |
I

Updated responses

Weight matrix R dependson W

50



Multiclass logistic regression

* Suppose we have K classes, C;, ..., Cy

exp(ag) T
p(Ck|®) = yr(p) = ar = Wi @
Zj exp(a;)
K groups of parameters {Wk} This is often referred to as softmax
Yk

ZIR T —
8aj Y ( kj ?JJ)

51



Multiclass logistic regression

e likelihood

??‘

N K
p(Tiwy,...,wie) = [ [] p(Celepn)" HHyzk

n=1 k=1 n=1 k=1

T: N x K observation matrix, each row is one-hot vector
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Multiclass logistic regression

* We can use Newton-Raphson updates as well

M=

ijE(le'“vWK): (ynj_tnj)¢n

n=1

N
kaijE(W17 <. 7WK) — = Z ynk(lkj - ynJ)qbngbZ
n=1
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Probit regression

* An alternative model for binary classification

p(Ci|p) = y(¢) = P(w' ¢)

Y(a) = /a/\/'(ml(), 1)dx
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Probit function vs. logistic function

0.8} —Probit |-

—Logistic

0.6

0.4

0.2




Probit regression

* Equivalent latent variable model

Given a=w'o

(sample the label t from p(t|a) = ¢(a)t(1 _ w(a))lﬂ

|

/Sample a latent variable z from
z ~N(zla, 1)

Sample the label t from a step distribution

p(tlz) =1t=0)I(z<0)+I(t=1)I(z > 0)

~
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Ordinal regression

* Consider to predict K classes with ordering
relationship, C; < C, <...< Cy, e.g., rank, disease
progression, ...

* Using multi-class logistic regression is not
appropriate

57



Ordinal regression

* Consider multi-class Probit regression
Partition real domain into ordered regions
-4007 bl]) (b17 b2]7 RN (bK—17 bK]7 (bK7 OO)
Given a=w' ¢

Sample a latent variable z from 2z ~ N (z|a, 1)

Check which region z falls in, e.g., [bx,br11)

Output the corresponding label: k

58



Generalized linear models

e Let us consider the exponential family

p(tln) = exp (nt — g(n))

Consider the expectation

dg(n)
) =y =4
This is a mapping n = ¥ (y)

From expectation to natural parameters
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Generalized linear models

* |In our linear model, we define

y=f(w'o(x))

* Ifwechoose f=14~1 n=1(y)

|

n=y (W' d(x) =w'$(x)

f+ is called link function (link expectation to natural paras)
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Generalized linear models

e Given training data (x1,%1),..., (Xn,tN)

E(w) =) logp(tn|n)
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Generalized linear models

N 4 g D)
OE(w) _ 3y O, _ 09 O | Bitaln,) =y = 4
OwW OwW on,, Ow "
n=1 ! M =W ()
N
n— / \
Feature vector prediction error

This is consistent with linear regression and
logistic regression
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Generalized linear models

e Let us do exercises: what are the link functions and
gradients of the log likelihoods?
— Logistic regression

— Poisson regression
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What you should know

 What is design matrix?
 How to obtain MLE for linear regression?

 How to obtain posterior and predictive distribution
for linear regression?

 What is the empirical Bayes and type || MLE?
* Newton-Rapson method for logistic regression

 What is probit regression? What is the equivalent
model? How to conduct multi-class classification?

 What is generalized linear model? What is link
function? What is the general form of the gradient?
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