
1

Laplace approximation

Machine	Learning
Fall	2017

Supervised	Learning:	The	Setup

1

Fall 2019

Instructor: Shandian Zhe
zhe@cs.utah.edu

School of Computing



Outline

• Laplace approximation 
• Bayesian logistic regression
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Laplace approximation

• Objective: construct a Gaussian distribution to 
approximate the target distribution

• Method: second order Taylor expansion at the 
posterior mode (i.e., MAP estimation)
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Laplace approximation

• Given a joint probability
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p(x) =
Y

i

p
�
xi|pa(xi)

�

q(xj) / exp{Eq(x¬j)[log p(x)]}
xj

q(xj) / exp{E
⇥
log p(xj |pa(xj))

⇤

+
X

xj2pa(xt)

E
⇥
log p(xt|xj , pa(xt)\{xj})

⇤
} (5)

p(✓,D)

p(✓|D)

13

• How to compute (approximate)                ?  
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Let us do MAP estimation first
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Laplace approximation

• We then expand the log joint probability at the
posterior mode
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Why?
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Gaussian!

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

p(x) =
Y

i

p
�
xi|pa(xi)

�

q(xj) / exp{Eq(x¬j)[log p(x)]}
xj

q(xj) / exp{E
⇥
log p(xj |pa(xj))

⇤

+
X

xj2pa(xt)

E
⇥
log p(xt|xj , pa(xt)\{xj})

⇤
} (5)

p(✓,D)

p(✓|D)

✓0 = argmax
✓

log p(✓,D) = argmax
✓

log p(D|✓)

f(✓) , log p(✓,D)

f(✓) ⇡ f(✓0) +rf(✓0)
>(✓ � ✓0)

+
1

2
(✓ � ✓0)

>rrf(✓0)(✓ � ✓0)

rf(✓0) = 0

rrf(✓0) � 0

⇡ f(✓0)�
1

2
(✓ � ✓0)

>A(✓ � ✓0)

A = �rrf(✓0) � 0

p(✓,D) ⇡ p(✓0,D) exp
�
� 1

2
(✓ � ✓0)

>A(✓ � ✓0)
�

p(✓|D) ⇡ N (✓|✓0,A
�1)

13

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

p(x) =
Y

i

p
�
xi|pa(xi)

�

q(xj) / exp{Eq(x¬j)[log p(x)]}
xj

q(xj) / exp{E
⇥
log p(xj |pa(xj))

⇤

+
X

xj2pa(xt)

E
⇥
log p(xt|xj , pa(xt)\{xj})

⇤
} (5)

p(✓,D)

p(✓|D)

✓0 = argmax
✓

log p(✓,D) = argmax
✓

log p(D|✓)

f(✓) , log p(✓,D)

f(✓) ⇡ f(✓0) +rf(✓0)
>(✓ � ✓0)

+
1

2
(✓ � ✓0)

>rrf(✓0)(✓ � ✓0)

rf(✓0) = 0

rrf(✓0) � 0

⇡ f(✓0)�
1

2
(✓ � ✓0)

>A(✓ � ✓0)

A = �rrf(✓0) � 0

p(✓,D) ⇡ p(✓0,D) exp
�
� 1

2
(✓ � ✓0)

>A(✓ � ✓0)
�

p(✓|D) ⇡ N (✓|✓0,A
�1)

13

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

p(x) =
Y

i

p
�
xi|pa(xi)

�

q(xj) / exp{Eq(x¬j)[log p(x)]}
xj

q(xj) / exp{E
⇥
log p(xj |pa(xj))

⇤

+
X

xj2pa(xt)

E
⇥
log p(xt|xj , pa(xt)\{xj})

⇤
} (5)

p(✓,D)

p(✓|D)

✓0 = argmax
✓

log p(✓,D) = argmax
✓

log p(D|✓)

f(✓) , log p(✓,D)

f(✓) ⇡ f(✓0) +rf(✓0)
>(✓ � ✓0)

+
1

2
(✓ � ✓0)

>rrf(✓0)(✓ � ✓0)

rf(✓0) = 0

rrf(✓0) � 0

⇡ f(✓0)�
1

2
(✓ � ✓0)

>A(✓ � ✓0)

A = �rrf(✓0) � 0

p(✓,D) ⇡ p(✓0,D) exp
�
� 1

2
(✓ � ✓0)

>A(✓ � ✓0)
�

p(✓|D) ⇡ N (✓|✓0,A
�1)

A = �rr log p(✓,D)|✓=✓0

13

-

-

E-Een



Laplace approximation

8

4.4. The Laplace Approximation 215
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Figure 4.14 Illustration of the Laplace approximation applied to the distribution p(z) ∝ exp(−z2/2)σ(20z + 4)
where σ(z) is the logistic sigmoid function defined by σ(z) = (1 + e−z)−1. The left plot shows the normalized
distribution p(z) in yellow, together with the Laplace approximation centred on the mode z0 of p(z) in red. The
right plot shows the negative logarithms of the corresponding curves.

We can extend the Laplace method to approximate a distribution p(z) = f(z)/Z
defined over an M -dimensional space z. At a stationary point z0 the gradient ∇f(z)
will vanish. Expanding around this stationary point we have

ln f(z) " ln f(z0) −
1
2
(z − z0)TA(z − z0) (4.131)

where the M × M Hessian matrix A is defined by

A = − ∇∇ ln f(z)|z=z0
(4.132)

and ∇ is the gradient operator. Taking the exponential of both sides we obtain

f(z) " f(z0) exp
{
−1

2
(z − z0)TA(z − z0)

}
. (4.133)

The distribution q(z) is proportional to f(z) and the appropriate normalization coef-
ficient can be found by inspection, using the standard result (2.43) for a normalized
multivariate Gaussian, giving

q(z) =
|A|1/2

(2π)M/2
exp

{
−1

2
(z − z0)TA(z − z0)

}
= N (z|z0,A−1) (4.134)

where |A| denotes the determinant of A. This Gaussian distribution will be well
defined provided its precision matrix, given by A, is positive definite, which implies
that the stationary point z0 must be a local maximum, not a minimum or a saddle
point.

In order to apply the Laplace approximation we first need to find the mode z0,
and then evaluate the Hessian matrix at that mode. In practice a mode will typi-
cally be found by running some form of numerical optimization algorithm (Bishop
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Outline

• Laplace approximation 
• Bayesian logistic regression
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Bayesian Logistic regression

• Given a dataset              , where                   ,     
and                  , the likelihood function is given by            

10

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN )T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)
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where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.
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where θMAP is the value of θ at the mode of the posterior distribution, and A is the
Hessian matrix of second derivatives of the negative log posterior

A = −∇∇ ln p(D|θMAP)p(θMAP) = −∇∇ ln p(θMAP|D). (4.138)

The first term on the right hand side of (4.137) represents the log likelihood evalu-
ated using the optimized parameters, while the remaining three terms comprise the
‘Occam factor’ which penalizes model complexity.

If we assume that the Gaussian prior distribution over parameters is broad, and
that the Hessian has full rank, then we can approximate (4.137) very roughly usingExercise 4.23

ln p(D) # ln p(D|θMAP) − 1
2
M lnN (4.139)

where N is the number of data points, M is the number of parameters in θ and
we have omitted additive constants. This is known as the Bayesian Information
Criterion (BIC) or the Schwarz criterion (Schwarz, 1978). Note that, compared to
AIC given by (1.73), this penalizes model complexity more heavily.

Complexity measures such as AIC and BIC have the virtue of being easy to
evaluate, but can also give misleading results. In particular, the assumption that the
Hessian matrix has full rank is often not valid since many of the parameters are not
‘well-determined’. We can use the result (4.137) to obtain a more accurate estimateSection 3.5.3
of the model evidence starting from the Laplace approximation, as we illustrate in
the context of neural networks in Section 5.7.

4.5. Bayesian Logistic Regression

We now turn to a Bayesian treatment of logistic regression. Exact Bayesian infer-
ence for logistic regression is intractable. In particular, evaluation of the posterior
distribution would require normalization of the product of a prior distribution and a
likelihood function that itself comprises a product of logistic sigmoid functions, one
for every data point. Evaluation of the predictive distribution is similarly intractable.
Here we consider the application of the Laplace approximation to the problem of
Bayesian logistic regression (Spiegelhalter and Lauritzen, 1990; MacKay, 1992b).

4.5.1 Laplace approximation
Recall from Section 4.4 that the Laplace approximation is obtained by finding

the mode of the posterior distribution and then fitting a Gaussian centred at that
mode. This requires evaluation of the second derivatives of the log posterior, which
is equivalent to finding the Hessian matrix.

Because we seek a Gaussian representation for the posterior distribution, it is
natural to begin with a Gaussian prior, which we write in the general form

p(w) = N (w|m0,S0) (4.140)
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where m0 and S0 are fixed hyperparameters. The posterior distribution over w is
given by

p(w|t) ∝ p(w)p(t|w) (4.141)

where t = (t1, . . . , tN )T. Taking the log of both sides, and substituting for the prior
distribution using (4.140), and for the likelihood function using (4.89), we obtain

ln p(w|t) = −1
2
(w − m0)TS−1

0 (w − m0)

+
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} + const (4.142)

where yn = σ(wTφn). To obtain a Gaussian approximation to the posterior dis-
tribution, we first maximize the posterior distribution to give the MAP (maximum
posterior) solution wMAP, which defines the mean of the Gaussian. The covariance
is then given by the inverse of the matrix of second derivatives of the negative log
likelihood, which takes the form

SN = −∇∇ ln p(w|t) = S−1
0 +

N∑

n=1

yn(1 − yn)φnφT
n . (4.143)

The Gaussian approximation to the posterior distribution therefore takes the form

q(w) = N (w|wMAP,SN ). (4.144)

Having obtained a Gaussian approximation to the posterior distribution, there
remains the task of marginalizing with respect to this distribution in order to make
predictions.

4.5.2 Predictive distribution
The predictive distribution for class C1, given a new feature vector φ(x), is

obtained by marginalizing with respect to the posterior distribution p(w|t), which is
itself approximated by a Gaussian distribution q(w) so that

p(C1|φ, t) =
∫

p(C1|φ,w)p(w|t) dw $
∫

σ(wTφ)q(w) dw (4.145)

with the corresponding probability for class C2 given by p(C2|φ, t) = 1−p(C1|φ, t).
To evaluate the predictive distribution, we first note that the function σ(wTφ) de-
pends on w only through its projection onto φ. Denoting a = wTφ, we have

σ(wTφ) =
∫

δ(a − wTφ)σ(a) da (4.146)

where δ(·) is the Dirac delta function. From this we obtain
∫

σ(wTφ)q(w) dw =
∫

σ(a)p(a) da (4.147)
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where m0 and S0 are fixed hyperparameters. The posterior distribution over w is
given by

p(w|t) ∝ p(w)p(t|w) (4.141)

where t = (t1, . . . , tN )T. Taking the log of both sides, and substituting for the prior
distribution using (4.140), and for the likelihood function using (4.89), we obtain

ln p(w|t) = −1
2
(w − m0)TS−1

0 (w − m0)

+
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} + const (4.142)

where yn = σ(wTφn). To obtain a Gaussian approximation to the posterior dis-
tribution, we first maximize the posterior distribution to give the MAP (maximum
posterior) solution wMAP, which defines the mean of the Gaussian. The covariance
is then given by the inverse of the matrix of second derivatives of the negative log
likelihood, which takes the form

SN = −∇∇ ln p(w|t) = S−1
0 +

N∑

n=1

yn(1 − yn)φnφT
n . (4.143)

The Gaussian approximation to the posterior distribution therefore takes the form

q(w) = N (w|wMAP,SN ). (4.144)

Having obtained a Gaussian approximation to the posterior distribution, there
remains the task of marginalizing with respect to this distribution in order to make
predictions.

4.5.2 Predictive distribution
The predictive distribution for class C1, given a new feature vector φ(x), is

obtained by marginalizing with respect to the posterior distribution p(w|t), which is
itself approximated by a Gaussian distribution q(w) so that

p(C1|φ, t) =
∫

p(C1|φ,w)p(w|t) dw $
∫

σ(wTφ)q(w) dw (4.145)

with the corresponding probability for class C2 given by p(C2|φ, t) = 1−p(C1|φ, t).
To evaluate the predictive distribution, we first note that the function σ(wTφ) de-
pends on w only through its projection onto φ. Denoting a = wTφ, we have

σ(wTφ) =
∫

δ(a − wTφ)σ(a) da (4.146)

where δ(·) is the Dirac delta function. From this we obtain
∫

σ(wTφ)q(w) dw =
∫

σ(a)p(a) da (4.147)
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basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)
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What you need to know

• The general idea of Laplace’s Approximation
• Being able to implement it
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