| Date |
Chapter |
Video |
Topic |
Assignment |
| Mon 1.05 |
|
|
Class Overview |
|
| Wed 1.07 |
Ch 1 - 1.2 |
|
Probability Review : Sample Space, Random Variables, Independence |
Quiz 0 |
| Mon 1.12
| Ch 1.3 - 1.6 |
|
Probability Review :
PDFs, CDFs, Expectation, Variance, Joint and Marginal Distributions(colab) |
HW1 out |
| Wed 1.14 |
Ch 1.7 |
|
Bayes' Rule:
MLEs and Log-likelihoods |
|
| Mon 1.19 |
|
|
MLK DAY |
|
| Wed 1.21 |
Ch 1.8 |
|
Bayes Rule :
Bayesian Reasoning |
Quiz 1 |
| Mon 1.26 |
Ch 2.1 - 2.2 |
|
Convergence :
Central Limit Theorem and Estimation (colab) |
|
| Wed 1.28 |
Ch 2.3 |
|
Convergence :
PAC Algorithms and Concentration of Measure |
HW 1 due |
| Mon 2.02 |
Ch 3.1 - 3.2 |
|
Linear Algebra Review :
Vectors, Matrices, Multiplication and Scaling |
HW 2 out |
| Wed 2.04 |
Ch 3.3 - 3.5 |
|
Linear Algebra Review :
Norms, Linear Independence, Rank and numpy (colab) |
Quiz 2 |
| Mon 2.09 |
Ch 3.6 - 3.8 |
|
Linear Algebra Review :
Inverse, Orthogonality |
|
| Wed 2.11 |
Ch 5.1 |
|
Linear Regression :
explanatory & dependent variables (colab) |
HW 2 due |
| Mon 2.16 |
|
|
PRESIDENTS DAY |
HW 3 out |
| Wed 2.18 |
Ch 5.2-5.3 |
|
Linear Regression :
multiple regression (colab), polynomial regression (colab) |
Quiz 3 |
| Mon 2.23 |
Ch 5.4 |
|
Linear Regression :
overfitting and cross-validation + double descent (colab) |
|
| Wed 2.25 |
Ch 6.1 - 6.2 |
|
Gradient Descent :
functions, minimum, maximum, convexity & gradients |
HW 3 due |
| Mon 3.02 |
Ch 6.3 |
|
Gradient Descent :
algorithmic & convergence (colab) |
HW 4 out |
| Wed 3.04 |
Ch 6.4 |
|
Gradient Descent :
fitting models to data and stochastic gradient descent |
Quiz 4 |
| Mon 3.09 |
|
|
SPRING BREAK |
|
| Wed 3.11 |
|
|
SPRING BREAK |
|
| Mon 3.16 |
Ch 7.1 - 7.2 |
|
Dimensionality Reduction :
project onto a basis |
|
| Wed 3.18 |
Ch 7.2 - 7.3 |
|
Dimensionality Reduction :
SVD and rank-k approximation (colab) |
HW 4 due |
| Mon 3.23 |
Ch 7.4 |
|
Dimensionality Reduction :
eigndecomposition and power method (colab) |
HW 5 out |
| Wed 3.25 |
Ch 7.5 - 7.6 |
|
Dimensionality Reduction :
PCA, centering (colab), and MDS (colab) |
Quiz 5 |
| Mon 3.30 |
Ch 8.1 |
|
Clustering :
Voronoi Diagrams + Assignment-based Clustering |
|
| Wed 4.01 |
Ch 8.3 |
|
Clustering :
k-means (colab) |
HW 5 due |
| Mon 4.06 |
Ch 8.4, 8.7 |
|
Clustering :
EM, Mixture of Gaussians, Mean-Shift |
HW 6 out |
| Wed 4.08 |
Ch 9.1 |
|
Classification :
Linear prediction |
Quiz 6 |
| Mon 4.13 |
Ch 9.2 |
|
Classification :
Perceptron Algorithm |
|
| Wed 4.15 |
Ch 9.3 |
|
Classification :
Kernels and SVMs |
HW 6 due |
| Mon 4.20 |
Ch 9.4 - 9.5 |
|
Classification :
Neural Nets, Decision Trees, etc |
|
| Mon 4.27 |
|
|
FINAL EXAM 3:30pm - 5:30pm |
(practice) |