##### 1.18.4Board to Graph🔗ℹ

As far as the build-bfs-table function goes, all of the information specific to Chat Noir is encoded in the neighbors function. It accepts a world and returns a function that computes the neighbors of the boundary and of nodes. This section describes how it is implemented.





The neighbors functions accepts a world and then returns a function that computes the neighbors of a posn and of the 'boundary.

For example, (make-posn 1 0) has four neighbors:

 (test ((neighbors (empty-world 7)) (make-posn 1 0)) (list 'boundary (make-posn 2 0) (make-posn 0 1) (make-posn 1 1)))

and (make-posn 0 1) has four neighbors:

 (test ((neighbors (empty-world 7)) (make-posn 0 1)) (list 'boundary (make-posn 1 0) (make-posn 1 1) (make-posn 0 2) (make-posn 1 2)))

as you can see in the earlier pictures of the 7x7 empty board. Also, there are 6 neighbors of the boundary in the 3x3 board:

 (test ((neighbors (empty-world 3)) 'boundary) (list (make-posn 0 1) (make-posn 1 0) (make-posn 1 2) (make-posn 2 0) (make-posn 2 1) (make-posn 2 2)))

This is the neighbors function. After it accepts the world, it builds a list of the blocked cells in the world and a list of the cells that are on the boundary (and not blocked). Then it returns a function that is specialized to those values.

 (define/contract (neighbors w) (-> world? (-> (or/c 'boundary posn?) (listof (or/c 'boundary posn?)))) (define blocked (map cell-p (filter (λ (c) (or (cell-blocked? c) (equal? (cell-p c) (world-mouse-posn w)))) (world-board w)))) (define boundary-cells (filter (λ (p) (and (not (member p blocked)) (on-boundary? p (world-size w)))) (map cell-p (world-board w)))) (λ (p) (neighbors-blocked/boundary blocked boundary-cells (world-size w) p)))

The neighbors-blocked/boundary function is given next. If p is blocked, it returns the empty list. If it is on the boundary, the function simply returns boundary-cells. Otherwise, neighbors-blocked/boundary calls adjacent to compute the posns that are adjacent to p, filtering out the blocked posns and binds that to adjacent-posns. It then filters out the posns that would be outside of the board. If those two lists are the same, then p is not on the boundary, so we just return in-bounds. If the lists are different, then we know that p must have been on the boundary, so we add 'boundary to the result list.

 (define/contract (neighbors-blocked/boundary blocked boundary-cells size p) (-> (listof posn?) (listof posn?) natural-number/c (or/c 'boundary posn?) (listof (or/c 'boundary posn?))) (cond [(member p blocked) '()] [(equal? p 'boundary) boundary-cells] [else (define x (posn-x p)) (define adjacent-posns (filter (λ (x) (not (member x blocked))) (adjacent p))) (define in-bounds (filter (λ (x) (in-bounds? x size)) adjacent-posns)) (cond [(equal? in-bounds adjacent-posns) in-bounds] [else (cons 'boundary in-bounds)])]))

There are the three functions that build the basic graph structure from a board as used by neighbors.

The first function is adjacent. It consumes a posn and returns six posns that indicate what the neighbors are, without consideration of the size of the board (or the missing corner pieces).

For example, these are the posns that are adjacent to (make-posn 0 1); note that the first and the third are not on the board and do not show up in neighbors function example above.

 (test (adjacent (make-posn 0 1)) (list (make-posn 0 0) (make-posn 1 0) (make-posn -1 1) (make-posn 1 1) (make-posn 0 2) (make-posn 1 2)))

The adjacent function has two main cases; first when the y coordinate of the posn is even and second when it is odd. In each case, it is just a matter of looking at the board and calculating coordinate offsets.

 (define/contract (adjacent p) (-> posn? (and/c (listof posn?) (λ (l) (= 6 (length l))))) (define x (posn-x p)) (define y (posn-y p)) (cond [(even? y) (list (make-posn (- x 1) (- y 1)) (make-posn x (- y 1)) (make-posn (- x 1) y) (make-posn (+ x 1) y) (make-posn (- x 1) (+ y 1)) (make-posn x (+ y 1)))] [else (list (make-posn x (- y 1)) (make-posn (+ x 1) (- y 1)) (make-posn (- x 1) y) (make-posn (+ x 1) y) (make-posn x (+ y 1)) (make-posn (+ x 1) (+ y 1)))]))

The on-boundary? function returns #t when the posn would be on the boundary of a board of size board-size. Note that this function does not have to special case the missing posns from the corners.

 (define/contract (on-boundary? p board-size) (-> posn? natural-number/c boolean?) (or (= (posn-x p) 0) (= (posn-y p) 0) (= (posn-x p) (- board-size 1)) (= (posn-y p) (- board-size 1))))

The in-bounds? function returns #t when the posn is actually on the board, meaning that the coordinates of the posn are within the board’s size, and that the posn is not one of the two corners that have been removed.

 (define/contract (in-bounds? p board-size) (-> posn? natural-number/c boolean?) (and (<= 0 (posn-x p) (- board-size 1)) (<= 0 (posn-y p) (- board-size 1)) (not (equal? p (make-posn 0 0))) (not (equal? p (make-posn 0 (- board-size 1))))))