AbstractCanonical forms attempt to factor out a non-rigid shape's pose, giving a pose-neutral shape. This opens up the
possibility of using methods originally designed for rigid shape retrieval for the task of non-rigid shape retrieval.
We extend our recent benchmark for testing canonical form algorithms. Our new benchmark is used to evaluate a
greater number of state-of-the-art canonical forms, on five recent non-rigid retrieval datasets, within two different
retrieval frameworks. A total of fifteen different canonical form methods are compared. We find that the
difference in retrieval accuracy between different canonical form methods is small, but varies significantly across
different datasets. We also find that efficiency is the main difference between the methods.
PublicationDavid Pickup, Juncheng Liu, Xianfang Sun, Paul L. Rosin, Ralph R. Martin, Zhiquan Cheng, Zhouhui Lian, Sipin Nie, Longcun Jin, Gil Shamai, Yusuf Sahillioglu, Ladislav Kavan. An Evaluation of Canonical Forms for Non-rigid 3D Shape Retrieval. Graphical Models, 2018.
Links and DownloadsPaper
| | BibTeX
|
AcknowledgementsThis work was supported by EPSRC Research Grant EP/J02211X/1,
National Natural Science Foundation of China Grant 61300135, Hong
Kong Scholars Program Grant XJ2014058, Doctoral Fund of Ministry of
Education of China Grant 20130172120001, Natural Science
Foundation of Guangdong Province Grant S2013040016930, Open
Research Fund of State Key Laboratory Grant I3I03, and TUBITAK
under the project EEEAG-115E471. |