Date | Topic (+ Notes) | Video | Link | Assignment (latex) | Project |
---|---|---|---|---|---|
Mon 1.06 | Class Overview | vid | |||
Wed 1.08 | Statistics Principles (S) | vid | M4D 2.2-2.3 | MMDS 1.2 | FoDS 12.4 | ||
Mon 1.13 | Similarity : Jaccard + k-Grams (S) | vid | M4D 4.3-4.4 | MMDS 3.1 + 3.2 | FoDS 7.3 | ||
Wed 1.15 | Similarity : Min Hashing (S) | VID | M4D 4.6.6 | MMDS 3.3 | Statistical Principles | |
Mon 1.20 | |||||
Wed 1.22 | Similarity : LSH (S) | vid | M4D 4.6 | MMDS 3.4 | Proposal | |
Mon 1.27 | Similarity : Distances (S) | vid | M4D 4 - 4.3 | MMDS 3.5 + 7.1 | FoDS 8.1 | ||
Wed 1.29 | Similarity : Word Embed + ANN vs. LSH (S) | vid | M4D 4.4 | [Ethics Read] | MMDS 3.7 + 7.1.3 | Document Hash | |
Mon 2.03 | Clustering : Hierarchical (S) | vid | M4D 8.5, 8.2 | MMDS 7.2 | FoDS 7.7 | ||
Wed 2.05 | Clustering : K-Means (S) | vid | M4D 8-8.3 | MMDS 7.3 | FoDS 7.2-3 | LSH | |
Mon 2.10 | Clustering : Spectral (S) | vid | M4D 10.3 | MMDS 10.4 | FoDS 7.5 | ||
Wed 2.12 | Streaming : Model and Misra-Greis (S) | vid | M4D 11.1 - 11.2.2 | FoDS 6.2.3 | MMDS 6+4.3 | BF Analysis | Data Collection Report | |
Mon 2.17 | |||||
Wed 2.19 | Streaming : Count-Min Sketch, Count Sketch. and Apriori (S) | vid | M4D 11.2.3-4 | FoDS 6.2.3 | MMDS 6+4.3 | BF Analysis | Clustering | |
Mon 2.24 | Regression : Basics in 2-dimensions (S) | vid | M4D 5-5.3 | ESL 3.2 and 3.4 | ||
Wed 2.26 | Regression : Lasso + MP + Comp. Sensing (S) | vid | M4D 5.5 | FoDS 10.2 | Tropp + Gilbert | Frequent | |
Mon 3.02 | Regression : Cross-Validation and p-values (S) | vid | [Ethics Read] | M4D 5.5 | ESL 3.8 | ||
Wed 3.04 | |||||
Mon 3.09 | |||||
Wed 3.11 | |||||
Mon 3.16 | Dim Reduce : SVD + PCA (S) | vid | M4D 7-7.3, 7.5 | FoDS 4 | Intermediate Report | |
Wed 3.18 | Dim Reduce : more PCA, and Random Projections (S) | vid | M4D 7.10 | FoDS 2.9 | ||
Mon 3.23 | Dim Reduce : Matrix Sketching (S) | vid | M4D 11.3 | MMDS 9.4 | FoDS 2.7 + 7.2.2 | arXiv | ||
Wed 3.25 | Dim Reduce : Metric Learning (S) | vid | M4D 7.6-7.8 | LDA | Regression | |
Mon 3.30 | Noise : Noise in Data (S) | vid | M4D 8.6 | MMDS 9.1 | Tutorial | ||
Wed 4.01 | Noise : Privacy (S) | vid | McSherry | Dwork | Dim Reduce | |
Mon 4.06 | Graph Analysis : Markov Chains (S) | vid | M4D 10.1 | MMDS 10.1 + 5.1 | FoDS 5 | Weckesser | ||
Wed 4.08 | Graph Analysis : PageRank (S) | vid | M4D 10.2 | MMDS 5.1 + 5.4 | ||
Mon 4.13 | Graph Analysis : MapReduce (S) | vid | MMDS 2 | | Final Report | |
Wed 4.15 | Graph Analysis : Communities (S) | vid | M4D 10.4 | MMDS 10.2 + 5.5 | FoDS 8.8 + 3.4 | Poster Outline | |
Mon 4.20 | |||||
Wed 4.22 | Graphs | ||||
Fri 4.24 | Poster Day !!! (3:30-5:30pm) | Poster Presentation |