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Abstract

The evolution of clothing styles and their migration
across the world is intriguing, yet difficult to describe quan-
titatively. We propose to discover and quantify fashion in-
fluences from catalog and social media photos. We ex-
plore fashion influence along two channels: geolocation
and fashion brands. We introduce an approach that de-
tects which of these entities influence which other entities
in terms of propagating their styles. We then leverage the
discovered influence patterns to inform a novel forecast-
ing model that predicts the future popularity of any given
style within any given city or brand. To demonstrate our
idea, we leverage public large-scale datasets of 7.7M In-
stagram photos from 44 major world cities (where styles
are worn with variable frequency) as well as 41K Ama-
zon product photos (where styles are purchased with vari-
able frequency). Our model learns directly from the im-
age data how styles move between locations and how cer-
tain brands affect each other’s designs in a predictable
way. The discovered influence relationships reveal how both
cities and brands exert and receive fashion influence for an
array of visual styles inferred from the images. Further-
more, the proposed forecasting model achieves state-of-the-
art results for challenging style forecasting tasks. Our re-
sults indicate the advantage of grounding visual style evo-
lution both spatially and temporally, and for the first time,
they quantify the propagation of inter-brand and inter-city
influences. Project page: https://www.cs.utexas.
edu/~ziad/influence_from_photos.html

1. Introduction

‘The influence of Paris, for instance, is now minimal. Yet
a lot is written about Paris fashion.” —Geoffrey Beene

The clothes people wear are a function of personal fac-
tors like comfort, taste, and occasion—but also wider and
more subtle influences from the world around them, like
changing social norms, art, the political climate, celebrities
and style icons, the weather, and the mood of the city in
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which they live. Fashion itself is an evolving phenomenon
because of these changing influences. What gets worn con-
tinues to change, in ways fast, slow, and sometimes cyclical.

Pinpointing the influences in fashion, however, is non-
trivial. To what extent did the runway styles in Paris last
year affect what U.S. consumers wore this year? How
much did the designs by J. Crew influence those created six
months later by Everlane, and vice versa? How long does
it take for certain trends favored in New York City to mi-
grate to Austin, if they do at all? And how did the infamous
cerulean sweater worn by the protagonist in the movie The
Devil Wears Prada make its way into her closet?!

To quantitatively answer such questions would be valu-
able to both social science and the fashion industry, yet it
remains challenging. Clothing sales records or social media
“likes” offer some signal about how tastes are shifting, but
they are indirect and do not reveal the sources of influence.

We contend that images are exactly the right data to an-
swer such questions. Unlike vendors’ non-visual meta-data
or hype from haute couture designers, photos of what peo-
ple are wearing or buying in their daily lives provide a un-
filtered glimpse of current clothing styles “on the ground”.
Our idea is to discover fashion influence patterns in commu-
nity photos (e.g. Instagram) and catalog photos (e.g. Ama-
zon), and leverage those patterns to forecast future style
trends. We explore fashion influence along two channels—
cities and fashion brands—and forecast the popularity of
a given style conditioned on the place in the world it will
be worn or the brand from which it will be purchased.
See Fig. 1. Specifically, we aim to discover which cities in-
fluence which other cities and which brands influence which
other brands in terms of propagating their clothing styles,
and with what time delay.

To this end, we introduce a unified approach to discover
style influences from photos. First, we extract a vocabulary
of visual styles from unlabeled, timestamped photos. We
consider two sources of photos: geolocated social media
photos from around the world, and catalog product photos
from an online retailer. Each style is a mixture of detected

IThe Devil Wears Prada: Cerulean influence https://bit.1ly/
3dBAQSW
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Figure 1. Fashion styles propagate according to certain patterns of influence around the world. Our idea is to learn V(lsual styles from
large-scale (b) social media photos or (d) catalog product images, and then discover style influence relations among (a) major cities
worldwide or (c) fashion brands. Our model leverages these relations to accurately forecast future fashion trends. City icons are attributed

tohttps://bit.ly/2WDyFgB

visual attributes. For example, one style may capture short
floral dresses in bright colors (Fig. 1d). Next, we record the
past trajectories of each style’s popularity, i.e. the frequency
with which it is seen in the photos (or purchased from the
catalog) over time.

To build a predictive model, we identify two key prop-
erties of an influencer—time precedence and novelty—and
use a statistical measure that captures these properties to
calculate the degree of influence between cities or brands as
well as the influences among the various styles themselves.
Next, we introduce a neural forecasting model that exploits
the influence relationships discovered from photos to bet-
ter anticipate future popular styles in any given location or
brand. Finally, we propose a novel coherence loss to train
our model to reconcile the local predictions with the global
trend of a style for consistent forecasts. We demonstrate our
approach on two large-scale datasets: GeoStyle [40], which
is comprised of everyday photos of people with a wide
coverage of geographic locations, and AmazonBrands [42],
which is comprised of catalog photos of clothing. We gauge
popularity for the visual styles using the frequency the var-
ious garments are worn or purchased, respectively.

Our work is the first to model and quantify fashion in-
fluence relations between cities and brands from real-world
images. Our results shed light on the spatio-temporal mi-
gration of fashion trends across the world—revealing which
cities are exerting and receiving more influence on others,
which most affect global trends, which contribute to the
prominence of a given style, and how a city’s degree of
influence has itself changed over time. Our findings hint
at how computer vision can help democratize our under-
standing of fashion influence, sometimes challenging com-
mon perceptions about what parts of the world are driving
fashion (consistent with designer Geoffrey Beene’s quote
above). Furthermore, our results examining influence be-
tween fashion brands exposes the latent effects that one
line of clothing can have on another, as well as brands that

are relatively impervious to the influence of any others. In
addition, we demonstrate that by incorporating influence,
the proposed forecasting model yields state-of-the-art ac-
curacy for predicting the future popularity of styles. Un-
like prior work that learns trends with a monolithic world-
wide model [2] or independent per city models [40], our
influence-based predictions catch the temporal dependen-
cies between when different cities or brands will see a style
climb or dip, producing more accurate forecasts.

2. Related Work

Visual fashion analysis, with its challenging vision prob-
lems and direct impact on our social and financial life,
presents an attractive domain for vision research. In recent
years, many aspects of fashion have been addressed in the
computer vision literature, ranging from learning fashion at-
tributes [5, 6, 9, 10, 38], landmark detection [55, 57], cross-
domain fashion retrieval [36, 26, 13, 34, 60, 31], body shape
and size based fashion suggestions [43, 19, 23, 18], virtual
try-on [54, 37, 11], clothing recommendation [35, 42, 59,
241, inferring social cues from people’s clothes [49, 44, 32],
outfit compatibility [33, 22, 56, 15], visual brand analy-
sis [30, 14], and discovering fashion styles [29, 52, 21, 2].
Our work opens a new avenue for visual fashion under-
standing: modeling influence relations in fashion directly
from images.

Statistics of styles Analyzing styles’ popularity in the past
gives a window on people’s preferences in fashion. Prior
work considers how the frequency of attributes (e.g. flo-
ral, neon) changed over time [53, 20], and how trends in
(non-visual) clothing meta-data changed for the two cities
Manila and Los Angeles [48]. Qualitative studies suggest
how recommendation models can account for past temporal
changes of fashion [17] or what cities exhibit strong style
similarities [27]. However, all this prior work analyzes style
popularity in an “after the fact” manner, and looks only
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qualitatively at past changes in style trends. We propose
to go beyond this historical perspective to forecast future
changes in styles’ popularity, and we provide supporting
quantitative evaluation.

Trend forecasting Most previous methods do not lever-
age visual information, instead focusing on demand fore-
casting of fashion based on sales records of clothing items
(e.g. [46, 28, 51, 3, 45]). Only limited prior work ex-
plores forecasting visual styles into the future [2, 40]. The
FashionForward model [2] uses fashion styles learned from
Amazon product images to train an exponential smoothing
model for forecasting, treating the products’ transaction his-
tory (purchases) as a proxy for style popularity. Similarly,
the GeoStyle project [40] uses a seasonal forecasting model
to predict changes in style trends per city. Both prior models
assume that style trends in different cities are independent
from one another and can be modeled monolithically [2] or
in isolation [40]. In contrast, we introduce a novel model
that accounts for influence patterns discovered across dif-
ferent cities (or brands). Our concept of fashion influence
discovery is new, and our resulting forecasting model out-
performs the state of the art.

Influence modeling To our knowledge, no previous work
tackles influence modeling in the visual fashion domain.
The closest study looks at the correlation among attributes
popular in New York fashion shows and those attributes
seen in street photos, as a surrogate for fashion shows’ im-
pact on people’s clothing; however, no influence or forecast-
ing model is developed [10]. Outside the fashion domain,
models for influence are developed for connecting text in
news articles [47], linking video subshots for summariza-
tion [39], or analyzing intellectual links between major Al
conferences from their papers [8].

In a prior conference paper, we introduced the first influ-
ence model based on visual fashion trends that is grounded
by the style forecasting task [1]. Our previous model cap-
tures influence relations between major cities around the
world, and we showed that it discovers interesting influ-
ence patterns in fashion that go beyond simple correlations.
Building on our earlier findings, this article expands both
the model and experiments. In particular, we extend our
model to go beyond cities’ influences to capture how styles
themselves influence each other. We propose a model that
leverages both cities’ and styles’ influence relations, and we
show it yields higher forecasting accuracy. Furthermore,
we provide an in-depth analysis of the relations discovered
by our model and how the measured influence correlates
with fashion experts and public opinion on what is fash-
ionable. Finally, we generalize our model to capture not
only geographic influences but also influences among fash-
ion brands. We demonstrate that our approach captures how
major fashion brands influence each other with a new set of

experiments on another public dataset, AmazonBrands.

3. Fashion Influence Model

We propose an approach to model influence relations in
fashion based on visual data. We consider two domains of
influence: a) location influence, where we quantify influ-
ence relations between different locations in the world (e.g.
cities) on what people wear in their everyday life; b) brand
influence, where we capture the influence relations between
fashion brands on what clothing items they sell. Both loca-
tions and brands can be seen as equivalent concepts for our
influence modeling since both can be represented with a dis-
tribution over visual fashion styles. For brevity, we refer to
a location or a brand as a fashion unit in the following.

Starting with images of fashion garments, 1) we learn
a visual style model that captures the fine-grained proper-
ties common among the garments (Sec. 3.1); then 2) we
construct style popularity trajectories by leveraging images’
temporal and fashion unit meta information (Sec. 3.2); 3)
we model the influence relations between different units
(Sec. 3.3) and styles (Sec. 3.5). Finally, 4) we introduce
a forecasting model that utilizes the learned influence rela-
tions together with a coherence loss (Sec. 3.4) for consistent
and accurate predictions of future style trends (Sec. 3.6).

3.1. Visual Fashion Styles

Our model captures the fashion influence among differ-
ent fashion units—i.e. either locations or brands. We be-
gin by discovering a set of visual fashion styles from im-
ages of people’s garments. Such images could be of people
in everyday life and from around the world collected from
photo-sharing social media platforms (e.g. a public dataset
of Instagram images) or catalog images of garments from
an online retailer platform (e.g. a public dataset of Amazon
images).

Let X = {x;}" be a set of clothing images. We first
learn a semantic representation that captures the elemen-
tary fashion attributes like colors (e.g. cyan, green), patterns
(e.g. stripes, dots), shape (e.g. vneck, sleeveless) and gar-
ment type (e.g. shirt, sunglasses). Given a fashion attribute
model f,(-) trained on a set of disjoint labeled images, we
can then represent each image in X with a; = f,(;),
where a € RM is a vector of M visual attribute proba-
bilities. We train a convolutional neural network (CNN) for
Jfa ( ’ ) :

Next, we learn a set of fashion styles S = {S*}¥ that
capture distinctive attribute combinations. Hence, given an
image of a new garment x;, the style model f;(-) can pre-
dict the probabilities of that garment to be from each of the
learned styles s; = fs(a;). For example, the model f(-)
can be realized using a Gaussian mixture model with K
components (see Sec. 4.2 for details on f; and f,). The
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Figure 2. Style trajectories. First, we learn a set of fashion styles
from images (left). The images have meta information in terms
of either timestamps and geolocations from social media (center
top), or purchase time and brand labels from commercial catalog
data (center bottom). Then based on the images’ meta information,
we measure the popularity of a style at a given city or for a given
brand and a time period (e.g. week) to build up its style popularity
trajectory (right).

number of styles K is selected following [2, 40] to capture
coherent visual appearance of a mid-level granularity.”

Fig. 2 (left) shows a set of fashion styles discovered by
our style model from Instagram (S* and S?) or Amazon
product (S% and S*) images. Each style is a distribution
over the visual attributes, capturing a particular “look” that
recurs within the data. For example, in Fig.2, S? cor-
responds to a black and white spotted and sleeveless top
whereas S* represents short dresses with uniform color and
a v-neck.

3.2. Style Trajectories

We measure the popularity of a fashion style S? in the
context of a certain fashion unit U7 through the frequency
of the style in the photos associated with that unit. Specifi-
cally, let () be a set of transactions (e.g. social media posts,
purchases) such that each ¢ € @ is a tuple of an image of
fashion garment or outfit x, a time stamp ¢, and a fashion
unit id U. When we model city-city influences, the latter
is the city; when we model brand-brand influences, it is the
brand. We construct a temporal trajectory y* for each pair
of style and unit (S?, U7):

. 1 .
vl =—— > p(S'|zn), (1)

J
Lo ¥

where Utj is the set of images from fashion unit U7 in the
time window ¢, p(S*|z},) is the probability of style S* given
image xj based on our style model fs(-), and y,” is the
popularity of style S in unit U7 during time t. The time
step ¢ can have different temporal resolutions (e.g. weeks,

2Prior work [2] analyzes the impact of K on forecasting: as K in-
creases the styles become less coherent and the noise in the trajectories
increases since these styles have less supportive samples across time.
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Figure 3. Influence modeling. We propose to ground influ-
ence among fashion units with trend forecasting. An influencer
city (e.g. Milan) has unique cues to accurately predict the future
changes of a style trend (purple curve) for the influenced city (e.g.
Paris). In contrast, forecasting without regard to influence can fal-
ter in the presence of complex trends (red curve). We leverage this
insight both for inter-city influences as well as inter-brand influ-
ences.

months) depending on the sought granularity of the trajec-
tory. Finally, by getting all values for¢ = 1, ..., 7T we build
the trajectory y%/.

Fig. 2 shows how these trajectories are constructed from
social media posts and purchase logs via the large-scale
datasets used in our experiments (detailed in Sec. 4.1). As
depicted in the top panel, given the timestamps and geoloca-
tions of the photos, we quantize these properties to a mean-
ingful temporal resolution (e.g. weeks) and locations (e.g.
cities). We then measure the popularity of each style in a
city as in Eq. 1, which captures the frequency with which
people in city j are seen wearing the style ¢ over time in
the social media photos. Similarly, when modeling fashion
brands, we obtain style trajectories representing the popu-
larity of style ¢ over time for brand j in terms of the world-
wide purchase rate of garments shown in the brand’s catalog
photos (Fig. 2 (bottom)).

Next, we describe our influence model that analyzes
these trajectories to discover the influence patterns among
the various fashion units.

3.3. Fashion Unit Influence Modeling

We propose to ground fashion influence through style
popularity forecasting. This enables us to quantitatively
evaluate influence using learned computational models
based on real world data.

We say fashion unit U? influences unit U7 in a given
fashion style S™ if our ability to accurately forecast the pop-
ularity of S™ in U7 significantly improves when taking into
consideration the past popularity trend of S™ in U?, in addi-
tion to its past popularity trend in U7. In other words, past
observations in " , provide us with new insight on the fu-
ture changes in y;'/, ., that are not available in ;" ,.

Fig. 3 demonstrates our idea for the case where the fash-
ion units are cities. We see that the style trend in Milan
foreshadows the changes in Paris with a time lag of h. By
taking into consideration this influence relation, we can ac-
curately predict the future changes in Paris (purple curve).



On the other hand, modeling the style popularity for Paris
in isolation leads to significant forecasting error (red curve)
since previous observations of style changes for this partic-
ular style in Paris (i.e. in the absence of the influencer) do
not provide any cues for the sudden increase in the style’s
popularity.

We identify two main properties that an influencer U*
should possess: 1) time precedence, that is the influencer
unit’s changes happen before the observed impact on the
influenced unit and 2) novelty, that is the influencer unit has
novel past information not observed in the history of the
influenced unit.

A naive approach to capture such relations is to use a
multivariate model to learn to predict y; by feeding it all
available information from the other units. However, this
approach does not satisfy the second property for an influ-
encer since it does not constrain the influencer to have novel
information that is not present in the influenced entity. In-
stead, we capture our fashion influence relations using the
Granger causality test [12]. The test determines that a time
series y' Granger causes a time series y? if, while taking
into account the past values of 42, the past values of 1 ,
still have statistically significant impact on predicting y? 1
The test proceeds by modeling y? with an autoregressor of
order d:

d
Ui =0+ > Okyik + o, )
k=1
where oy is an error term and ¢ contains the regression
coefficients. Then the autoregressor of y? is extended with
lagged values of ' such that:

d q
vi=dot Y okvin+ Y b +on, ()

k=1 l=m

where the third term on the righthand side is a regressor on
the lags from y'. If these extended lags from y' do add
significant explanatory power to y7, i.e. the forecast accu-
racy of 32 is significantly better (p < 0.05) according to
a regression metric (mean squared error), then 3! Granger
causes 4°.

We estimate the influence relations across all units’ tra-
jectories for each fashion style S®. In experiments we con-
sider lags ranging from 1 to 8 temporal steps, meaning up
to two months. In this way, we establish the influence re-
lations among units and at which lag this influence occurs.
Note that an influence relationship discovered for two cities
or two brands indicates that their trends are linked in some
predictable way. In particular, a Granger causality tie be-
tween two units does not mean that the influenced unit nec-
essarily repeats the shape of the influencer’s trajectory at a
later time, only that the style trajectory for one unit can be
more accurately forecasted by knowing the past trajectory
of the other.
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Figure 4. Influence coherent forecaster. Our model captures in-
fluence relations between fashion units for a given fashion style
(orange connections) and uses them to predict future changes in
the style popularity for each unit. Additionally, our model regular-
izes the forecasts to be coherent with the global trend of the style
observed across all units.

3.4. Coherent Style Forecaster

After we estimate the influence relations across the fash-
ion units, we build a forecaster for each trajectory y*/ such
that:

37;11 = fumt(L(yij), I(yfj)l9)7 4

where I(y!7) is the set of lags from the influencer of 3
relative to time step ¢ as determined in the previous sec-
tion, and L(y;”) are the lags from 3%/ s own style popular-
ity trajectory. We model f(-) using a multilayer percep-
tron (MLP) and estimate the parameters # by minimizing
the mean squared error loss:

Lforecust = Z(ylil - f(L(y;])’ I(?JZ])|9))27 (5)

t

where y;” , is the ground truth value of 5/ at time ¢ + 1.

Our forecast model in its previous form does not impose
any constraints on the forecasted values in relation to each
other. However, while we are forecasting the style popular-
ity for each individual unit given the influence from the oth-
ers, the forecasted popularities (yi', yi2 . .. yi™) are still for
a common fashion style S? that by itself exhibits a world-
wide trend across all locations or brands.

We propose to reconcile the base forecasts produced at
each location through a coherence loss that captures the
global trend. For all forecasts §j,,, for a fashion style S°
and across all units U? € U, we constrain the distribution
mean of the predicted values to match the distribution mean
of the ground truth values:

1 ) L
Ecoherence = ﬁ (Z y;il - Z y;il) (6)
k k

The coherence loss, in addition to capturing the global
trend of S%, helps in combating noise at the trajectory level
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Figure 5. Our influence-based model forecasts a style popularity
by jointly modeling two types of influence: unit (orange) and style
(green) influences.

of each unit through regularizing the mean distribution of all
forecasts. The model is trained with the combined forecast
and coherence losses:

L= Eforecast + )\‘Ccoherenc& (7)

Fig. 4 illustrates our model. For a style S¢, we model
its popularity trajectory for each fashion unit with a neural
network of two layers and sigmoid non-linearity. The input
of the network is defined by the lags from its own trajectory
(shown in black) and any other influential lags from other
units discovered by the previous step (Sec. 3.3), which are
shown in orange. Furthermore, the output of all local fore-
casters is further regularized to be coherent with the overall
observed trend of S* using our coherence loss.

3.5. Style Influence Modeling

We have so far modeled how fashion units (cities or
fashion brands) influence each other for a given fashion
style. However, another type of influence to consider is
how fashion styles impact each other’s popularity. For ex-
ample, a spike in popularity of solid purple v-necks could
foreshadow a spike in v-necks with more complicated tex-
tures and colors, or an upward tick in more conservative
styles may foreshadow a downward trend in less conserva-
tive styles. To capture these links within our model, we rep-
resent how a style S? influences another style S7 in a unit
U™ in a similar manner as in Sec. 3.3 by simply swapping
styles and units.

3.6. Influence-based Forecasting

Our final model forecasts the popularity of a style based
on both types of influence:

91 = afsyie(L(y), 1(y)|0s) +
(1 _a)funzt(L(yzj)7I(yzj)|0u), (8)

where fstyie and fynge are instances of our influence-based
coherent forecaster (Eq. 4) that capture style and unit influ-
ence relations, respectively. Fig. 5 shows our joint model of
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Figure 6. Model overview. For each style trajectory, our model
captures the influence of other fashion units and styles on the input
trajectories using the Unit and Style Influence modules. Then we
use an a-weighted layer to combine the predictions of these mod-
ules and forecast the future trend of the styles. This figure unifies

the model components depicted in Figures 4 and 5.

both types of influence relations. Each fs;ye and fyns is
trained for its respective loss in Eq. 7. The hyperparame-
ter « is learned over the validation data to weight each type
of influence contribution to the final forecast. We model
theses influence relations using Eq. 8 for each of the trajec-
tories in our data with respect to all fashion units and styles,
as shown in the model overview in Fig. 6.

4. Evaluation

In the following experiments, we demonstrate our
model’s ability to forecast fashion styles’ popularity
changes by utilizing discovered influence relations. Fur-
thermore, we analyze the influence patterns revealed by our
model between major cities and brands, how they influence
global fashion trends, and their influence dynamics trends
through time.

4.1. Datasets

We evaluate our approach on two datasets:

GeoStyle [40] This dataset, collected by researchers at
Cornell University, extends the StreetStyle dataset [41]. It
is based on public Instagram photos showing people from
44 major cities from around the world. Since a photo may
contain multiple persons and a cluttered background, the
images are first preprocessed with a person detector to ex-
tract the regions of interest (see [41] for details). In total,
the dataset has 7.7 million images that span a time period
from July 2013 until May 2016.

AmazonBrands This dataset is derived from the data col-
lected by researchers at the University of California [42]
from the Amazon website which contains images of gar-
ments along with their transaction history (purchases). We
use the dresses subset [2] which has 41 K images. We con-
sider a list of the most famous fashion brands and match
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(a) GeoStyle

their names with the textual description associated with
each sample in order to label each garment with its re-
spective brand. Finally, we select the top 10 most frequent
brands and their corresponding 4K images and 21K trans-
actions to use in our experiments. The samples span a time
period from March 2012 until July 2014. For this dataset,
no person detection is needed since the catalog photos have
white backgrounds with the fashion item centered. We use
both datasets for research purposes only.

These two datasets provide us with different perspectives
on people’s preferences in fashion. While in GeoStyle we
estimate a style’s popularity based on its frequency in social
media posts (i.e. what you wear is what you like), in Ama-
zonBrands the popularity is estimated based on purchase
frequency (i.e. what you buy is what you like).

However, both datasets, like any Internet photo dataset,
have certain biases based on their respective data sources
and sampling methods. These biases may affect the type
of styles considered and their measured popularity. For ex-
ample, images in GeoStyle are usually of young people in
major cities since younger generations are more likely to
upload photos to Instagram and from places with easy ac-
cess to high Internet bandwidth [41]. On the other hand,
while fashionability may be the main drive to select a given
dress in AmazonBrands, other factors like price and brand
loyalty could contribute to one’s decision to buy as well.
Nonetheless, the GeoStyle dataset is the largest public fash-
ion dataset with the most temporal and geographic cover-
age, providing a unique glimpse on people’s fashion pref-
erences in daily life around the globe. Similarly, the Ama-
zonBrands data gives us a unique insight on the influence
dynamics among major fashion brands.

4.2. Fashion Styles

A style is a combination of certain attributes describing
materials, colors, cut, and other factors, such as V-neck, red,

(b) AmazonBrands
Figure 7. Examples of the learned fashion styles from GeoStyle (a) and AmazonBrands (b) datasets. For each dataset, each row shows
two example styles, with five sample images for each.

formal dress. Hence, we adopt an attribute-based represen-
tation of images for style learning.

For GeoStyle we use attribute predictions from [40] to
represent each photo with A/ = 46 fashion attributes (e.g.
colors, patterns and garment types). The attribute predictor
is a multi-task CNN (GoogLeNet [50]) with separate heads
to predict separate attributes. This yields an M -dimensional
vector of attribute probabilities per image. Based on these,
we learn K = 50 fashion styles using a M-dimensional
Gaussian mixture model: each style is a mode in the data
capturing a distribution of attributes. Then, we get the style
probabilities of a garment by calculating the posterior prob-
ability of each mode in the mixture with respect to the in-
ferred attributes’ probabilities from the photo.

For AmazonBrands we train a ResNet-18 model [16] to
predict M = 1000 fashion attributes learned from the Deep-
Fashion dataset [38]. We learn fashion styles from these
attributes using a non-negative tensor factorization (NMF)
style model similar to [2]. That is, given a tensor repre-
senting the samples in the dataset by their attributes, we
factorize it into two matrices using a set of learned latent
variables. Each of these latent variables represents a fash-
ion style. The NMF model uses a probabilistic formula-
tion [25] and each discovered style captures a distribution of
attributes in a similar fashion to the previous GMM model.
We find that for the high-dimensional attribute representa-
tion in AmazonBrands, NMF produces more coherent and
diverse visual styles compared to the GMM model, which
seemed to collapse on a few attribute dimensions for this
data. We learn K = 20 styles, which was sufficient to cover
the diverse styles in this dataset since AmazonBrands is fo-
cused on one kind of garment—dresses.

Fig. 7 shows examples of the fashion styles learned by
our style models from the GeoStyle and AmazonBrands
datasets. We notice that in GeoStyle (Fig. 7a) some of the
learned fashion styles may reflect a season-related type of



garment (e.g. the yellow jacket and scarf style), or a local
traditional or cultural clothing (e.g. upper left row). How-
ever, many of the learned styles are common across differ-
ent countries and cultures. Differently, the styles learned
in AmazonBrands (Fig. 7b) do not suggest any clear sea-
sonal variations. They capture a coherent visual represen-
tation that can be described with signature attributes like
the slim-fit leopard dresses (upper right row) or the casual
long-sleeved short dresses (lower left row). In both datasets,
since each style is a mixture of attributes, it captures a re-
curring configuration of properties, rather than one isolated
property (e.g. leopard-print plus tight fit; blazer paired with
V-neck t-shirt). Thus styles offer a coarser representation
than individual clothing items, and they emerge bottom-up
from the data.

4.3. Style Trends Forecasting

We evaluate how well our model produces accurate fore-
casts by leveraging the influence patterns, and we compare
it to several baselines and existing methods that model tra-
jectories in isolation [2, 40].

4.3.1 Trajectories and data splits

For GeoStyle, we infer the popularity trajectory of each
style in each city based on its frequency in the images. Ad-
ditionally, to quantify the impact of possible seasonal yearly
trends in fashion styles, we also consider forecasting the de-
seasonalized style trajectories. To do so, we subtract the
yearly seasonal lag from the trajectories. The deseasonal-
ized test is interesting because it requires methods to capture
the more subtle visual trends not simply associated with the
location’s weather and annual events. For AmazonBrands,
we build the temporal trajectory of each style and brand
based on its transaction frequency.

For both datasets, we use a temporal resolution of weeks.
We adopt the long-term forecasting data split from [40].
That is, we allocate the last 26 weeks of each trajectory for
testing, the previous 4 for validation, and the rest for train-
ing.

4.3.2 Implementation details

We set A = 1 for the coherence loss weight (see Eq. 7)
and optimize our neural influence model using Adam for
stochastic gradient descent with a learning rate of 10~2 and
I, weight regularization of 1078, We select the best model
and a € [0,1] from Eq. 8 that controls the contributions
of unit and style influences based on the performance on a
disjoint validation split.

We compare all models using the forecast accuracy cap-
tured with the mean absolute error MAE = % Sy o —
y¢|, which measures the absolute difference between the

forecasted ¢, and ground truth y, values, and the mean ab-
solute percentage error MAPE = L1370 |%| x 100,
which measures the forecast error scaled by the ground truth
values, following prior work [2, 40]. The models are evalu-
ated on forecasting a long time horizon of 26 temporal steps,
meaning six months forward in time.

4.3.3 Baselines and existing methods
We arrange the baselines into three main groups:

Naive models: these models rely on basic statistical prop-
erties of the trajectory to produce a forecast. We consider
five variants of these baselines:

e Gaussian: this model fits a Gaussian distribution based
on the mean and standard deviation of the trajectory
and forecasts by sampling from the distribution.

e Seasonal: this model forecasts the next step to be sim-
ilar to the observed value one season before y;y1 =
Yt—season- We set a yearly season of 52 weeks.

e Mean: it forecasts the next step to be equal to the mean
observed values y;+1 = mean(y1, ..., Y).

e Last: it uses the value at the last temporal step to fore-
cast the next y;4+1 = ¥.-

e Drift: it forecasts the next steps along the line that fits
the first and last observations.

Per-Trajectory models: These models fit a separate para-
metric model trained on the history “lags” of each of the tra-
jectories [7], without accounting for relationships between
the units (locations or brands) or styles.

e AR: a standard autoregression model.

o ARIMA: a standard autoregressive integrated moving
average model.

e FashionForward [2]: an exponential decay model
which forecasts based on a learned weighted average
of the historical values.

e GeoModel [40]: a parametric seasonal forecaster
which models a trajectory with a sinusoidal model and
drift components.

To our knowledge, the two existing methods [2, 40] rep-
resent the only prior approaches for style forecasting from
images. Further, unlike our approach, all of these models
consider the popularity trajectories of the styles in isolation,
i.e. they do not take into consideration possible interactions
among the units or styles.

Across-Trajectories models: The next set of baselines
does model dependencies between the units or styles. To



Table 1. Forecast errors of fashion style trajectories on the GeoStyle and the AmazonBrands datasets.

GeoStyle AmazonBrands

Seasonal Deseasonalized
Model MAE MAPE MAE MAPE MAE MAPE
Naive
Gaussian 0.1301 33.23 0.1222 26.08 0.1268 35.33
Seasonal 0.0925 22.64 0.1500 33.39 0.1329 36.48
Mean 0.0908 23.57 0.0847 18.97 0.0964 26.29
Last 0.0893 22.20 0.1053 23.08 0.1134 31.41
Drift 0.0956 23.65 0.1163 25.32 0.1207 33.53
Per-Trajectory Models
AR 0.0846 21.88 0.0846 18.95 0.0934 25.61
ARIMA 0.0919 23.70 0.1033 22.70 0.1095 30.77
FashionForward [2] 0.0779 19.76 0.0848 18.94 0.0930 25.56
GeoModel [40] 0.0715 17.86 0.0916 20.31 0.1028 28.41
Across-Trajectories Models
VAR - All Units 0.0771 19.25 0.0929 20.41 0.0955 26.12
VAR - All Styles 0.0752 19.15 0.0939 20.78 0.0949 26.00
Influence-based (ours) 0.0688 17.13 0.0814 18.10 0.0914 24.86

Table 2. Ablation study of our model on the GeoStyle deseasonal-
ized style trajectories.

Model MAE MAPE
Ours (full model) 0.0814 18.10
Style Influence Only 0.0825 18.32
City Influence Only 0.0824 18.29
w/o Influence 0.0859 19.24
w/o Influence & Coherence 0.0942 20.62

represent this group, we use the VAR model [7], which fits a
parametric model trained on the trajectories of a style across
all units (VAR - All Units) or the trajectories from one unit
and across all styles (VAR - All Styles). Such models as-
sume a full and simultaneous interaction between all units
or styles.

4.3.4 Forecasting results

Table | shows the performance of all models when forecast-
ing the styles’ future popularity. The proposed model out-
performs all the naive, per-trajectory, and across-trajectories
models, attaining the lowest forecast errors. This shows
the value of discovering influence for the quantitative fore-
casting task. We notice that the styles’ popularity trajec-
tories in GeoStyle do have a strong seasonal component:
seasonal models (like GeoModel [40] and Seasonal) do
well compared to non-seasonal ones (like AR and Dirift),
but still underperform our approach. This ranking changes
on the deseasonalized test of GeoStyle and on Amazon-
Brands, where models like FashionForward [2] and AR
outperform the seasonal ones. Our model outperforms all
competitors on both types of trajectories, which demon-
strates the benefits of accounting for influence. More-

over, we compare our model’s predictions to the best “non-
influence” per-trajectory or across-trajectories competitors
on both datasets using a two-sided t-test with the null hy-
pothesis that the expected forecast error is identical. We
found that our model’s improvements are statistically sig-
nificant with p < 0.05.

The ablation studies in Table 2 show the impact of each
component of our model. We evaluate our approach us-
ing only style-based (Sec. 3.5) or city-based (Sec. 3.3) in-
fluence modeling, as well as two additional versions—one
without any influence modeling, i.e. it assumes a full inter-
action pattern among all cities, and a second version that is
not trained for coherent forecasts (Sec. 3.4). We see that the
joint modeling of the two types of influence leads to better
performance. Furthermore, we notice a larger drop in ac-
curacy when the model does not account for influence and
coherence, which shows the importance of these concepts
for accurate predictions of popularity changes in the future.

Next, we analyze the learned o from Eq. 8 for our influ-
ence models from both datasets. Interestingly, on GeoStyle
and for the seasonal and deseasonalized splits, our model
assigns equal importance for both city and style influence
a = 0.5; however, on AmazonBrands the model assigns
higher weight for style influence « = 0.6 compared to
brand influence which is weighted with 0.4. As we will
see later in influence relations analysis (Sec. 4.4) this can be
attributed to the wide spread of the monopoly type of rela-
tions between brands and styles (see Fig. 11) which leads to
a more limited direct pairwise interactions between brands
compared to what we observe among cities. This is an in-
teresting quantitative finding that agrees with an intuition
that styles “spread” very organically between different parts
of the world as people adopt new trends seen elsewhere,
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Figure 8. Style influence relations discovered by our model among European (a), Asian (b) and American (c) cities. The number of chords
coming out of a node (i.e. a city) is relative to the influence weight of that city on the receiver. Chords are colored according to the source
node color, i.e. the influencer. Our model discovers various types of influence relations from multi-city (e.g. Paris and New York City) and
single-city (e.g. Jakarta) influencers to cities that are mainly influence receivers (e.g. Istanbul and Beijing) or influence focal points that

exert and receive influence from multiple cities (e.g. Vancouver).

whereas distinct corporate brands may be more resistant to
such intermingling.

4.4. Influence Relations

The results thus far confirm that our method’s discov-
ered influence patterns are meaningful, as seen by their pos-
itive quantitative impact on forecasting accuracy. Next, we
analyze them qualitatively to understand more about what
was learned. We consider influence interactions along two
axes: 1) a local one that looks at pairwise influence rela-
tions among the cities and the brands; and 2) a global one
which examines how cities and brands influence the world’s
fashion trends.

1) Unit — Unit influence For each visual style, our model
estimates the influence relation between units and at which
temporal lag, yielding a tensor B € RIVIXIVIXIS| gych that
ij is the influence lag of U? on U’ for style S*. By av-
eraging these relations across all visual styles, we get an
estimate of the overall influence relation between all units
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weighted by the temporal length, i.e. long term influencers
are given more weight than instantaneous ones. We visual-
ize the influence relations using a directed graph where each
node represents a unit, and we create a weighted edge from
unit U? to U7 if U" is found to be influencing U7.

Fig. 8 shows an example of the influence pattern for fash-
ion styles discovered by our model among major European
(Fig. 8a), Asian (Fig. 8b), and American (Fig. 8c) cities,
where the number of connections between two cities is rel-
ative to the weight of the influence relation. Our model dis-
covers interesting patterns. For example, there are a few
fashion hubs like Paris and Berlin which exert influence on
multiple cities while at the same time being influenced by
few (one or two) cities. Paris influences four cities in Eu-
rope while being influenced by Milan only (Fig. 8a). Other
cities like Vancouver have exerted and received influence
relations with multiple cities (Fig. 8f). Cities like Jakarta
have a one-to-one influence relation with Manila (Fig. 8e).
On the other end of the spectrum, we find cities like Istanbul
(Fig. 8d) and Beijing (Fig. 8b) that mainly receive influence
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Figure 9. Style influence relations discovered by our model among fashion brands (a). The number of chords coming out of a node (i.e.
a brand) is relative to the influence weight of that brand on the receiver. Chords are colored according to the source node color, i.e. the
influencer. While some brands have limited influence interactions (e.g. Calvin Klein), others show tendency towards mainly receiving (e.g.
Jessica Howard) or exerting (e.g. Jones New York) influence. Fashion brands like Ever Pretty have diverse and more balanced influence

relations with the rest.

from multiple sources while influencing few.

Fig. 9 shows the influence relations discovered by our
model among fashion brands from the AmazonBrand
dataset. We see here similar patterns as those discov-
ered for cities, where we can identify fashion hubs like
Jones New York (Fig. 9d); influence receivers like Calvin

Klein (Fig. 9b); and influence focal points like Ever Pretty
(Fig. 9e).

2) Unit — Global influence Alternatively, we can analyze
the influence relation between a unit and the global trend
for a specific style. This helps us better understand who
are the main influencers on the global stage for each of the
styles. We capture this relation by modeling the interaction
of a unit’s popularity trajectory on the global one (i.e. the
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observed trend of the collective popularity of the same style
across the world).

Fig. 10 shows a set of Asian (Fig. 10a) and American
(Fig. 10b) cities and their influence on global fashion styles.
We see that for some of the fashion styles, like S*, S° and
S7, a couple of cities maintain a monopoly of influence on
them, whereas others, like S3, S2 and S?, are influenced al-
most uniformly by multiple cities. Our influence model also
reveals the influence strength (measured by the temporal
lag) of these cities relative to their peers at the world stage.
See for example the strong influence of Seoul, Bangkok,
Chicago and Mexico City compared to the delicate one of

Manila, Jakarta and Sao Paulo, as represented by the width
displayed for their respective influence relation to the global
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trends.

Fig. 11 show the fashion brands and their influence on
global fashion styles for dresses. Interestingly, we see here
that the influence monopoly pattern is more prominent than
in the GeoStyle dataset. This is expected since fashion
brands usually try to develop their own signature styles,
hence they are more focused on a subset of styles where
they can maintain an impact on their market share. More-
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over, this view can provide us with unique information on
the fashion industry. While a brand like Calvin Klein has
little pairwise influence interaction with others (Fig. 9b), it
maintains an influence monopoly at the global scale on a
larger and diverse set of styles than the rest. We can also
identify main brand competitors and on which styles. For
example, Ever Pretty & Calvin Klein are the main competi-
tors on style S9, and Jones New York and Anne Klein on
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Figure 12.

style S14. Other styles like 52 and S7 exhibit a dispersed
influence pattern with no clear main influencer.

4.5. Influence Ranking

We rank all cities in the GeoStyle dataset according to
their accumulated influence power on their peers. That is,
we assign an influence score for each city according to the
sum of weighted influence relations exerted by that city on
the rest. Similarly, we also calculate the sum of received in-
fluence as well as the difference in both as the net influence
score.

Fig. 12a shows these three influence scores for all cities
across the world, sorted by the net score. The ranking re-
veals that some cities, like London and Seattle, act like focal
points for fashion styles, i.e. they receive and exert a high
volume of influence simultaneously. Others, like Seoul and
Osaka, have a high net influence, which could indicate hav-
ing some unique fashion styles not influenced by external
players. We see in Fig. 12c a similar pattern among the
fashion brands ranking, however at a lower scale compared
to what is observed among the cities. While the most influ-
ential cities may interact with up to 20 cities, an influential
brand interacts with around 1.6 other brands on average.

Furthermore, breaking down the exerted influence score
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Left: Global ranking of major (a) cities and (c) brands according to their fashion influence on their peers. The fashion units
are sorted by their ner influence score (green). The fashion units with no bars indicate that they do not have influential relations with above
average weight. Right: The exerted influence score is split into influence score per individual style for each (b) city and (d) brand (sorted
by style influence similarity).

for each city to per-style influence scores, we see in Fig. 12
(right) that we can identify and group influencers into
“teams” based on their common set of styles where they ex-
ert their influence. For example, Chicago, Vancouver, and
Toronto constitute a team since they seem to be influenc-
ing similar sets of visual styles (Fig. 12b). Likewise, Jones
New York and Sakkas, and Calvin Klein and Jessica Howard
share comparable style influence profiles (Fig. 12d).

Fig. 13 provides a global view of fashion influence on the
world map. It shows the exerted influence score of each city
represented by its circle size and color. We notice that most
of the influential cities (among the 44 world cities present
in the GeoStyle dataset) lay in the northern hemisphere and
specifically in its upper part. Furthermore, we aggregate
the influence score inferred by our model by country. We
see that while some individual Asian and American coun-
tries have high fashion influence scores (e.g. Japan, South
Korea, and Canada), most of the influential fashion cities
and countries are located in Europe which leads in terms
of global fashion influence according to these social media
images.
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Figure 13. Fashion influence scores as inferred by our model from everyday images of people around the world at the city level.

4.6. Visual Influence vs. People’s Perception of
Fashionability

Our work is the first to quantify fashion influence rela-
tions directly from large-scale visual data. We stress that the
trends visible in the photos are exactly what our model mea-
sures; there is no separate “ground truth” against which to
score the influence measurements. However, to gain more
insight into what visual fashion influence captures, we next
explore how the patterns we have discovered align (or not)
with existing metrics for related properties that are derived
from means other than images. In particular, we analyze
the alignment between a) how our model ranks cities by
their influence and b) how fashion experts rank cities by
their fashionability. “Fashionability” means the extent to
which a unit (city) exhibits the popular clothing styles. This
is a distinct property from influence, which means the ex-
tent to which a unit affects another unit’s styles—here, in
the Granger causality sense tied to forecastability. Nonethe-
less, they are linked concepts and their degree of alignment
can help us understand how well the image-driven trends
our model discovers agrees with the manually-made con-
clusions of fashion experts and enthusiasts.>

We consider two types of fashionability ranking:

1. Expert ranking: this ranking is based on fashion jour-
nalists’ assessment and takes into account factors like
how many fashion shows, luxury brands head quarters,
and fashion schools are located in each city. For this
type, we consider a ranking from Zalando, a fashion
online retailer based in Europe, for the most elegant
cities in the world [58]. While this ranking also consid-
ers ‘urban factors’ such as cleanliness and architecture,
here we only consider the ranking produced based on

3We focus this analysis on cities, as we are not aware of similar re-
sources that succinctly record the perceived fashionability of brands.
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the ‘fashion factors’ like the ones mentioned earlier.

2. Public ranking: this ranking is based on people’s per-
ception on which cities are more fashionable. For this
type, we consider a ranking generated by the Inter-
net Fashion Map project [4] that ranks each city based
on how often people discuss that city in social media
(e.g. Twitter, Facebook) in the context of fashion using
language-based statistics.

We use the Spearman rank correlation coefficient to
compare our exerted and received influence-based ranking
from the GeoStyle dataset to these expert and public fash-
ionability rankings. Interestingly, we find that our exerted
influence ranking is strongly aligned with public perception
of fashionablity when compared to expert opinion, 0.87 to
0.31 respectively. This is consistent with the data source for
our model: our model discovers influence relations based on
images of people’s clothing from everyday activities, which
makes it better aligned with public opinions in social me-
dia. In contrast, the expert opinions are explicitly scoring
cities based on high-end fashion shows and fashion from
magazines. Moreover, we find that the received influence
ranking has no correlation with fashionability, scoring only
0.05 for both expert and public ranking. This shows that
for both the experts and the public, a fashion trend setter
(i.e. with high exerted influence score) is perceived as more
fashionable compared to an influence receiver.

4.7. Visual Influence Correlations with Cities’ Prop-
erties

Next we analyze the correlations of influence relations
discovered by our model with known real-world properties
of the cities. While the influences discovered in the photos
need not align with these properties—the data-driven influ-
ences stand on their own— it is nonetheless interesting to
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Figure 14. Dynamics analysis of exerted fashion influence at multiple time steps (with a three month interval) reveals the cities’ (a), the
brands’ (b) and the styles’ (c) temporal changes in influence strength.

Table 3. Correlations of the discovered influence patterns with
meta information about the cities.

Fashion Influence

Meta Info. Direction World Rank
GDP 0.037 0.373
Temperature -0.319 -0.616
Latitude -0.348 0.596
Population 0.038 -0.193
Distance -0.165 n/a
Num. Samples -0.148 0.086

understand what external factors may contribute to fashion
influence. Correlating against other properties simply helps
unpack what the trends do or do not relate to.

We collect information about the annual gross domes-
tic product (GDP), the geolocation, the population size, and
the yearly average temperature for each of the cities. We
calculate the correlations of these properties with the influ-
ence information discovered by our model at two levels: 1)
influence world ranking (i.e. does a high influence rank cor-
relate with the population size of the city? do cities with
warm weather have a high influence score?), and 2) rela-
tion direction (i.e. does influence flow from high to low
GDP cities? do cities influence those that are geographi-
cally close to them?).

World rank In Table 3 (second column) we correlate the
discovered influence ranking of all the cities with the rank-
ing derived from each of the meta properties using the
Spearman coefficient. The correlation uncovers some cu-
rious cases. We see a weaker but positive correlation with
GDP, i.e. a higher GDP could be a faint indicator of a higher
fashion influence. There is an above average correlation be-
tween the city influence rank and its latitude; many of the in-
fluential fashion cities are on the northern hemisphere. This
reinforces our previous observation from Sec. 4.5 that most
influential cities are ofter of higher latitude. Finally, we ob-
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serve a negative correlation with average temperature; in-
fluential fashion cities are often colder.

Relation direction Table 3 (first column) shows the corre-
lation of the influence directions discovered by our model
with differences in each of the meta properties between the
influencer and the influenced city. Specifically, for each
city and meta property P; (e.g. GDP), first we measure the
differences between that city and the rest in regards to P;,
then we correlate these differences with the influence ex-
erted by that city. Interestingly, none show high correlation
with fashion influence directions. The relation type cannot
be reliably estimated based on the differences in GDP (e.g.
high GDP cities do not always influence lower GDP ones),
population (e.g. cities with high population do not neces-
sarily influence others with lower population or vice versa),
nor distance (e.g. influence does not correlate well with how
far one city is from its influencer). A weak and negative cor-
relation is found with temperature and latitude differences,
showing that cities with similar temperature or at similar
latitudes (i.e. similar seasonal variations) tend to influence
each other slightly more. These results suggest our model
discovers complex fashion influence relations that are hard
to infer from generic properties of the constituent players.

As a sanity check, we also explore the correlation of the
number of image samples collected from each city in the
GeoStyle dataset with the two types of influence informa-
tion (Table 3 last row). We find that there is no strong cor-
relation between the learned influences and the number of
images available in the data for each city (i.e. influential
cities are not those with a higher number of samples in the
dataset).

4.8. Influence Dynamics

Finally, we study the changes in the influence rank of
fashion units and styles through time. We carry out our in-
fluence modeling based on the style trajectories of the var-



ious units and styles as before, but at multiple sequential
time steps. Then we collect the overall influence score of
each unit or style at each step.

Fig. 14a shows the change in the influence score for a
subset of five cities spanning different continents. We no-
tice that cities show various dynamic behaviors across time.
While some cities like London and Rio maintain a steady
influence score through time (at different levels), others like
Austin and Johannesburg demonstrate a positive trend and
are gaining more influence in the fashion domain over time
but at varying speeds. Other cities like 7Tianjin exhibit a
mild decline in their fashion influence. Similarly, the dy-
namic influence analysis of fashion brands in Fig. 14b re-
veals that some fashion brands are gaining increased influ-
ence through time like Sakkas and Ever Pretty while others
like G2 Fashion Square and Calvin Klein are gradually los-
ing some of their exerted influence.

Finally, in Fig. 14c we analyze the influence changes de-
tected by our model for a subset of visual styles from the
AmazonBrands dataset. Interestingly, we find that some of
the styles like S' and 52 show almost opposite trends in
their influence, which may indicate a possible competition
of these styles on a similar sector of customers that swing
between these styles. We also see a general decline in influ-
ence for styles like S* and S®, which could indicate a broad
shift in the market away from similar fashion styles.

5. Conclusion and Future Work

We introduced a model to quantify influence of visual
fashion trends, capturing the spatio-temporal propagation of
styles around the world and between major fashion brands.
Our approach integrates both fashion unit and style influ-
ence relations along with coherence regularizers to predict
the future popularity of a style. Our influence-based model
outperforms state-of-the-art in forecasting methods and our
analysis of the discovered influences sheds light on intrigu-
ing patterns among cities and brands. Our findings suggest
potential applications in social science and the fashion in-
dustry, where computer vision can unlock trends that are
otherwise hard to capture.

We focused on this work on learning pairwise influence
relations among various fashion units and styles; however,
influence may exist at higher degrees of complexity. Dis-
covering chains of influence among multiple units may pro-
vide us with a more comprehensive view of the influence
cycle and propagation, and it could help in building more
compact influence-based forecasters. Furthermore, model-
ing fashion influence at a finer granularity, such as individ-
ual people, could be an interesting future direction for our
work. Influencers on social media platforms are highly vis-
ible and interesting to users and marketers alike. Quantify-
ing the impact of these individual influencers on their social
network and their visual style trends offers a challenging
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scientific problem with impact on real-world applications.
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