Switch-a-View: View Selection Learned from Unlabeled In-the-wild Videos
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Toss the rice and
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Training: Learn human view choices from large-scale in-the-wild videos Inference: Select the best view sequence for a multi-view video

Figure 1. Given a multi-view narrated how-to video, can we select the sequence of camera viewpoints that best show the activity—automating
the camerawork that is today done with manual editing? While direct supervision for this task is impractical, our SWITCH-A-VIEW approach
shows how to learn typical viewpoint choice patterns from large-scale unlabeled in-the-wild instructional videos (left), then translate those

patterns to novel multi-view videos (right), yielding an informative how-to that hops between the most useful ego/exo viewpoints.

Abstract

We introduce SWITCH-A-VIEW, a model that learns to auto-
matically select the viewpoint to display at each timepoint
when creating a how-to video. The key insight of our ap-
proach is how to train such a model from unlabeled—but
human-edited—video samples. We pose a pretext task that
pseudo-labels segments in the training videos for their pri-
mary viewpoint (egocentric or exocentric), and then discov-
ers the patterns between the visual and spoken content in a
how-to video on the one hand and its view-switch moments
on the other hand. Armed with this predictor, our model can
be applied to new multi-view videos to orchestrate which
viewpoint should be displayed when. We demonstrate our
idea on a variety of real-world videos from HowTol100M and
Ego-Exo4D, and rigorously validate its advantages.

1. Introduction

Video is an amazing medium for communication, and today’s
widely used Internet platforms make it easy to create and
share content broadly. Instructional or “how-to" video is
particularly compelling in this setting: YouTube, TikTok,
and similar sites have democratized the ability to share our
talents with others, by both showing and telling how to

perform some special skill. From how to plant a garden, how
to make yogurt, how to fold origami, or how to give a dog
a haircut, there is no shortage of how-to nuggets produced
and consumed by users of many ages and backgrounds.

Creating an effective how-to video, however, is not trivial.
From potentially hours of footage from multiple cameras
capturing all aspects of the instructional activity, a creator
needs to edit down to the essential steps of their demonstra-
tion and decide on the camera viewpoint (view) for each
temporal segment that best reveals what they want to show.
For example, when showing how to cut the dog’s hair, the
instructor might first appear standing beside the dog—the
camera more distant—then the camera may zoom close up
to her using scissors and describing how to trim near the
ear, then zoom back out while she shows progress across
the dog’s body. How-to videos often exhibit this sequen-
tial mix of "exocentric” and "egocentric-like" viewpoints to
effectively recap the procedure with clear visuals.

The status quo is to either orchestrate camerawork live
while filming, or do post-recording editing among the mul-
tiple available cameras—both of which are labor intensive.
Work in automatic cinematography [7, 15, 16, 22, 49, 56],
though inspiring, relies on heuristics or domain-specific mod-
els that are not equipped to address automatic editing of
video demonstrations. How could we train an “Al how-to



cameraman”, which, given a stream of two or more simulta-
neous camera views, could hop between them intelligently?

Supervising this learning task presents a problem. There
are vast amounts of positive examples of well-edited how-to
videos, but those edited results hide the “negatives”—the
viewpoints that were not chosen for inclusion in the final
video at any given time point. Those are left on the cutting
room floor. This makes it unclear how to translate the editing
patterns in in-the-wild edited video to new data.

To tackle this learning challenge, we design a pretext
task for learning human view preferences from varying-view
instructional videos on the Web. Varying-view means that
the source training videos display an arbitrary number of
view switches over the course of the video (e.g., from ego
to exo and back as in our example above), and contain only
one viewpoint at any time. We introduce a model called
SWITCH-A-VIEW that learns from such data; it uses past
frames in concert with the how-to narrations spoken by the
demonstrator, which are widely available in instructional
videos, to learn a binary classifier indicating whether the
viewpoint is going to switch or not at the current time step.
Then, we deploy this pretext-trained model in multi-view,
narrated video settings with limited best view labels, and
decide how to orchestrate the view selection of such videos
over time. In this way, our approach captures the view-
switch patterns from widely diverse unlabeled in-the-wild
videos, then translates those trends to automatically direct
the camerawork in new instances. See Fig. 1.

We train and evaluate our approach on HowTo100M [34],
an extensive repository of real-world how-to videos, and
further show generalization to multi-view Ego-Exo4D [18]
videos. Our findings confirm that human judges exhibit
substantial agreement on what constitutes a “best view" in
a how-to video, establishing that it is possible to rigorously
evaluate this task. Furthermore, our results show SWITCH-
A-VIEW outperforms the state-of-the-art in multi-view video
view selection [32] as well as proprietary VLMs like Gemini
2.5 Pro and GPT-40 [12, 23] and other baselines.

2. Related work

Automatic cinematography. In automatic cinematogra-
phy, systems automate the process of creating an effective
video presentation given a video scene, such as controlling
camera movements, angles, and transitions. Prior work
targets classroom environments [16, 21, 56], group activ-
ities [2], or (pseudo-)panoramic recordings [6, 7, 9, 15, 49,
50, 55]. Different from all of the above, we tackle view
selection in multi-view instructional scenarios. Moreover,
we seek a lighter-weight supervision solution: whereas prior
work uses supervised discriminative methods requiring large-
scale best view labels [7, 22, 49] or bootstraps view selector
training using large-scale multi-view videos annotated with
view-agnostic narrations [32], we aim to learn view selection

from readily available in-the-wild unlabeled instructional
videos. Furthermore, our model is multimodal, integrating
both the video content as well as its transcribed speech.

View selection in active perception. More distant from
our problem, work in active perception and robotics con-
siders how agents can intelligently select their visual input
stream. This includes next-best-view selection, where an
embodied agent learns to actively place a camera for recog-
nition [1, 8, 13, 24, 40] or segmentation [44, 45]. Whereas
the objective in such work is to spend less time or compute
for an agent to see sufficient content, our goal is instead to
choose the sequence of informative camera views for human
consumption, from among the available viewpoints.

Weak supervision from Web data. Large-scale instruc-
tional data from the Web has been shown to provide weak
supervision for understanding instructional activities, by
aligning frames [33] and narrations [29, 33] with their step
descriptions from instructional Web articles (e.g., Wiki-
How), or through modeling the temporal order and inter-
dependence of steps [3, 58, 59]. Unlike any of these meth-
ods, we tackle a distinct problem of weakly supervised view-
switch detection in instructional videos, with the end goal of
using the detector for view selection.

Video summarization. Temporal video summarization [4,
20, 35, 37, 42] entails creating a short but informative
summary of a long video by subsampling keyframes or
clips from it. While early methods are largely unsuper-
vised [25, 30, 38, 47], more recent works derive supervi-
sion from manual labels [17, 19, 27, 41, 48, 57]. Limited
work explores summarization in the context of multiple input
videos [10, 14, 37, 43]. Video summarization and viewpoint
selection are two entirely distinct tasks. Video summariza-
tion aims to downsample the video in time to the essential
parts, whereas our task essentially requires downsampling
the video in space to isolate the most informative viewpoint.

3. Approach

Our goal is to train a model to predict the “best view se-
quence” for multi-camera instructional videos — the se-
quence of camera viewpoints (views) that a human would
most likely select to demonstrate an instructional activity
(e.g., a close-up view of ingredients in a cooking video, mov-
ing to a wide-shot view when the chef speaks and gestures).
To tackle this, we train a model for the proxy task of detect-
ing “view switches” in varying-view instructional videos,
which we then bootstrap to form a view selection model.
First, we formally define our pretext task (Sec. 3.1). Next,
we describe how to source pseudo-labels for our pretext task
by automatically classifying views in varying-view videos
(Sec. 3.2). We then describe our method and how to train
it to predict view-switches (Sec. 3.3). Finally, we describe
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Figure 2. Given varying-view instructional videos—videos composed of a sequence of views chosen by human(s) to accurately show the
instructional activity at all times— our goal is to train a view-switch detector D that can predict if the view should switch or not, at any
time in a new video. Our hypothesis is that such a detector, when trained on large-scale and in-the-wild videos, can capture human view
preferences and facilitate learning best view selection in multi-view settings with limited labels. However, such in-the-wild videos lack view
labels. To train nevertheless, we propose an approach comprising (a) a view pseudo-labeler (left) that given a varying-view instructional
video I, automatically classifies views in it and generates a pseudo-label set V1, and (b) a view-switch detector D (right) that given the
pseudo-labels V7! and any time ¢ in I, learns to predict the next view. The prediction is conditioned on the past frames, past narrations, and
the next narration, where narrations are naturally occurring spoken content from the how-to demonstrator.

how our view-switch detector can bootstrap learning a view
selection model (Sec. 3.4 and 3.5) with limited labels.

3.1. View-switch detection as a pretext task

We introduce our pretext task: view-switch detection in
varying-view instructional videos. Consider a varying-view
instructional video I, where the view changes back and
forth over time between a close-up / egocentric-like (ego)
view, and a wide shot / exocentric-like (exo) view.! This
results in a sequence of varying views V. The instructional
video also contains a sequence of narrations N, where each
narration N; has a start and end time, (b;, e;), and provides
commentary transcribed to text. These narrations are free-
form spoken language from the demonstrator, which capture
their actions (“hammer the nail in there") as well as side
comments (“sometimes I use my sander instead", “thanks
for watching!").

We formulate the view-switch detection task as a two-
class view prediction problem, where at any time ¢ in the
video, the model must detect if the view should be of type
ego or exo, to best showcase the activity over the next A
seconds. More specifically, we require a model D that pre-
dicts the human-preferred view V(; ;1 o) given the past video,
narrations and views, as well as the next narration. Formally,

D(F.q, Ny Vit N a) = Vit als

where Fj.; is the past frames, N|,; is the past narrations
gnq Vg 1s the past views. A.]V(/.t’t+4] is the next narration,
if it overlaps with the prediction interval, and an empty
string otherwise. Importantly, this formulation provides a
path from the next-view prediction task to the view-switch

'We adopt this ego/exo view taxonomy given their importance and
prevalence in instructional video datasets [18, 34, 51].

task: since the most recent past view is observed, estimating
the desired next view—and comparing it with the latest past
view—is equivalent to predicting whether the view switched.

While past narrations provide high-level cues about past
activity steps, past frames offer more fine-grained informa-
tion about the steps and how they were viewed. They to-
gether form the past context that can help anticipate the next
view. The next narration is essential to disambiguate be-
tween various potential actions that the demonstrator may
do next, and the language directly hints at the appropriate
views (e.g., the person says “next, let’s take a closer look at
..." suggesting an ego view). Thus, combining these inputs
will offer valuable cues to our detector.”

Critically, we aim to train this detector on large-scale, in-
the-wild instructional videos [34, 51]. We show that training
for this pretext task can enable view selection models for
multi-camera settings, with limited supervision. In short,
representations developed to detect when to “switch view”
can be repurposed with minimal modification to select the
“best view” to switch to, since they contain rich knowledge
of human-selected view-switch patterns in a large variety of
in-the-wild scenarios. Next, we show how to source pseudo-
labels to train such models.

3.2. Sourcing “view-switch” pseudo-labels

Instructional videos [34, 51] are an ideal source of varying-
view data, however they do not come paired with information
about what camera viewpoint is chosen for each segment.
We therefore design a strategy to automatically identify and
pseudo-label their underlying view sequences. We do this in
two stages (Fig. 2 left).

2Note that next-step narrations are also available at inference time, when
we have multi-view video content and a full narration track, and we aim to
perform view selection.



First, given a video I, we use an off-the-shelf scene detec-
tor (PySceneDetect [5]) to compute scene boundaries. Using
this, we split the video into a sequence of contiguous shots.
Next, we classify each frame in the video using a pre-trained
ego vs. exo view classifier, and then aggregate the class pre-
dictions into a shot-level pseudo-label. Specifically, given a
shot from 1, we first split it into a sequence of fixed-length
clips. Next, we feed each clip to the view classifier that
produces the probability that the clip is from an ego vs. exo
view. We then compute the pseudo-label for the whole shot
by averaging the view probabilities across all its clips. We
repeat these steps for all shots, and assign each frame in
the same pseudo-label as the shot it lies in, to finally obtain a
pseudo-label set 1728 Combining the classifier with the scene
detector reduces the overall noise in the pseudo-labels due to
classification failures at scene boundaries. We use a learned
model [28] for ego-exo view classification, trained on the
Charades-Ego [46] dataset. See Supp. for details.

3.3. View-switch detector design

Given a video I and any time ¢ in it, our view-switch detector
D must successfully predict the view for the future time
interval (¢, t 4+ A]. It must do so using the frames, narrations
and views from the past, and also the next narration, if it
overlaps with the prediction interval (c.f. Sec. 3.1). See
Fig. 2 right. In the following, we provide details on how our
method extracts features from each input and then aggregates
them for making a view prediction.

Frame encoding. We begin by using a frame encoder £
to embed the past frames F[.;; and produce a visual feature
sequence f, where each frame F; has a feature f;. We further
enhance each feature f; by using a viewpoint encoder £V
to embed the corresponding view V" into a view feature
and adding it to f;. We also encode frame F;’s temporal
position relative to the start time of the most recent narration
using a temporal encoder £7 and add the encoding to the
enhanced frame feature. Producing a feature per frame and
augmenting it with view and temporal information helps
us create a fine-grained, and view- and temporally-aware
representation predictive of the next view.

Narration encoding. Next, we encode each past narration
from N4, and the next narration N(’t’HA] by using an LLM
encoder. This generates a text feature sequence n for the past
narrations and a single text feature n’ for the next narration.

Similar to our encoding of past frames, we also make
the features for past narrations view-aware. To do so, we
first produce a per-view count of the frames that lie in the
interval of each past narration N;. We then estimate the
dominant viewpoint for the narration—called narration view,
henceforth—Dby setting it to the most frequent view per the
per-view frame count. Next, we use our view encoder £ 4
to embed the narration view into a view feature. Finally, we

update the narration feature n; by adding it with the view
feature.

Moreover, for both past and next narrations, we provide
their temporal information to our model so that it can infer
the alignment between the frames and the narrations, and use
it to improve its cross-modal reasoning. To this end, we first
normalize the start and end time pair for each past narration
N, and next narration N’ to be relative to the start time of
the first past narration. We then compute the mean time of
each pair. These means convey the temporal locations of
the narrations relative to each other. Next, we encode each
relative mean with the temporal encoder £7 and obtain a
temporal feature. Finally, we update the narration features,
n and n’, by adding them with their temporal features.

Feature aggregation and view classification. To aggre-
gate the visual and narration features, we first add modality
features to the frame features f, and narration features, n
and n/, respectively. These are modality-specific learnable
embeddings that help distinguish between the visual and text
modalities, and successfully do cross-modal reasoning.

We also introduce a [CLS] token in our model, and embed
it with an encoder £ to produce a feature c, so that the
output of our feature aggregator, which corresponds to the
[CLS] token, can be used to estimate the next view. Next, we
feed the frame features f, the past narration features n, the
next narration feature n’, and the [CLS]-token feature c into
a feature aggregator 4. A4 comprises a transformer [53] en-
coder that performs self-attention on all features and extracts
multi-modal cues that are predictive of the next view. Finally,
we take the output feature of A, which corresponds to the
[CLS] token, and pass it to a view classification head H to
get an estimate \A/(t,tJr ) of the next view V{; ; 4 }. Formally,

V(t,t+A] = H(A(f,n, n/,C)[jCLS]), (D

where jcrs is the feature index for the [CLS] token.

3.4. Repurposing switch detection for view selection

Recall that in view selection, given a multi-view instructional
video I and any time ¢ in it, the goal is to predict the view
that is preferred by humans for showing the activity in an
interval [t, t+A]. We introduce a view selector S for tackling
this task. S is a modification of our view-switch detector
D, such that .S additionally has access to the frames from
the simultaneously captured ego and exo views during the
prediction interval [¢, ¢ + A].

To this end, we first use our frame encoder £F' to embed
the ego frames F[f': 1+ ) and exo frames F[f 144 into visual
features f& and fX, respectively. Next, we append f¢
and fX to the input sequence of our feature aggregator A.
Finally, we treat .A’s output feature for its [CLS] token input,
as a representation of the best view for [t, ¢ 4+ A], and feed it



to the detector’s view classification head H to get an estimate
\"/[t7t+A] of the best view V[; ;4 A].

To learn view selection we initialize S with our detector’s
parameters, trained on the view-switch detection task, and
finetune it using a small set of samples labeled for view selec-
tion. This design enables us to effectively use the knowledge
from pretraining and learn view selection with limited labels.

Next, we provide details for training and finetuning.

3.5. Model training objective

We train our view-switch detector D with a view classifica-
tion loss £P. We set £P to

LY = Lee(Virras Vierra))s 2)

where ‘A/(nH_A] is our estimated view (c.f. Sec. 3.3) and
f/(t,H A] is the pseudo-label from our view pseudo-labeler
(c.f. Sec. 3.2).

To train our view selector S, we obtain a small
training set of best view labels, B, such that B =
{Vits.ti+a) -+ > Vitw tw+4] }» and W is the label count in
B. For each best view label V}; ;. 1a] € B, and the cor-
responding view estimate I"/[tw tw+AJ» PET Our view selector
S (c.f. Sec. 3.4), we set our view selection loss £° to a
cross-entropy loss, such that

L% = LVt tuta) Vitw tw+a])- A3)

Once trained, our framework can accurately choose the
preferred view in novel multi-view videos.

4. Datasets and annotations

Datasets. We use two datasets in our experiments.
HT100M [34] is a large-scale dataset of narrated, in-the-
wild instructional videos. These videos are view-varying in
nature, and the views can be broadly categorized as ego or
exo. This, along with the diversity and realism of HT100M,
makes it ideal for our view-switch detection task. Ego-
Exo04D [18] contains multi-view videos, where each video is
captured with five time-synced cameras—one is an ego cam-
era worn by a human performing an instructional activity,
and the other four are stationary exo cameras placed around
the scene. Moreover, the narrate-and-act (N&A) subset of
Ego-Ex04D has videos of humans narrating and performing
an activity, where the narrations are free-form and match in
style with HT100M, making it compatible with our task of
view selection with limited labels.

Training data. To train the view-switch detector, we use
3,416 hours of HT100M videos spanning a diverse set of
activities (cooking, DIY, household, etc.) and pseudo-label
shots from these videos (c.f. Sec. 3.2). See Supp. for details.

Evaluation data. For evaluation, we use both HT100M
and Ego-Exo4D [18], where the view-switch detection eval-
uation on Ego-Exo4D is zero-shot. While the training sets
are automatically generated and pseudo-labeled, we ensure
a gold-standard fest set free of noise by manually annotating
videos for our tasks. To this end, we recruit trained annota-
tors to manually annotate the view types for HT100M and
the human-preferred views for Ego-Exo04D, as follows.

For HT100M, we identify 975 hours of videos that do not
overlap with our train videos above. We segment 4,487 fixed-
length clips, each with length set to the prediction interval
A (c.f. Sec. 3.1). Next, we ask trained annotators to label
these clips as either ego or exo. See Supp. for full annotation
instructions and more details.

For Ego-Ex04D, we create a test set containing 2.7 hours
of N&A videos spanning six activity categories (cooking,
bike repair, rock climbing, dancing, soccer, basketball). For
each video, we use its “best-exo-view" annotation from Ego-
Exo04D to generate an ego-exo view pair comprising the
single ego and the best exo view. As before, we create A
length clips from each view. We then couple the pair with
its closest atomic activity description (time-stamped man-
ual descriptions of the camera wearer’s activity [18]) and
ask our annotators to label the view between the two that
best demonstrates the activity described in the narration (see
Supp. Fig. 3). Importantly, this means that annotators specif-
ically select the “best" view as the one that most clearly
illustrates the current actions of the camera wearer, consis-
tent with our how-to video view selection goal.

Annotator agreement on best view. To ensure annotation
quality for both datasets, in addition to providing detailed
annotation guidelines and concrete examples (available in
Supp.), we require annotators to take qualifiers with strin-
gent passing criteria and we solicit 9 annotators’ responses
for each instance. We accept an annotation only if the inter-
annotator agreement is at least 78%, meaning at least 7 out
of 9 annotators agree. This resulted in a Cohen’s kappa coef-
ficient [11] of 0.65 for HT100M and 0.70 for Ego-Exo4D—
both of which constitute “substantial” agreement [26]. This
solid agreement assures the quality of our test set; despite
there being some room for subjectivity in deciding the best
view for a how-to, this data shows human judges are indeed
able to substantially agree.

This results in a final total of 3,151 and 5,049 test in-
stances (fixed-length clip-narration pairs from above), sam-
pled from 3,677 HT100M and 33 Ego-Exo04D test videos,
respectively. In Supp. we filter with even higher agreement
thresholds, yielding even more selective (but smaller) test
sets; trends for our method vs. baselines remain consistent.

Data for view selection with limited labels. We train and
evaluate our view selector on a small dataset comprising
Ego-Exo04D [18] videos. For our training data, we follow



HowTol100M [34] Ego-Exo4D [18]
Model Accuracy AUC AP | Accuracy AUC AP
All-ego/exo 50.0 50.0 50.0 50.0 50.0 50.0
Random 52.0 52.0 51.0 49.3 49.3 49.7
Last-frame 42.3 423 534 50.0 50.0 50.0
First-person pronoun detector 47.8 47.8 464 50.3 503 50.1
Retrieval [54]-F 534 534 532 52.6 52.6 53.6
Retrieval [54]-N 52.1 52.1 51.8 52.0 52.0 50.6
Retrieval [54]-N' 52.6 52.6 529 52.1 52.1 526
SWITCH-A-VIEW (Ours) 594 63.8 60.5 51.2 564 554

Table 1. View-switch detection results. Evaluation on Ego-
Exo4D [18] is zero-shot. All values are in %, and higher is better.

our annotation protocol for evaluating view-switch detection
on Ego-Exo04D, and collect view annotations for a total of
3.5 hours of training videos. This results in a total of 6,634
train instances. For evaluation, we use our test set from
view-switch detection. This reuse is possible since a label
indicates both the type (ego/exo) of the desired next view for
view-switch detection as well as the desired current view for
view selection. Train and test videos for this task are disjoint.
See Supp. for details.

5. Experiments

Implementation. We set the durations of past frames to
8 seconds—corresponding to 0.23 and 2.31 switch(es) per
second for HT100M and Ego-Exo04D, respectively—and
past narrations to 32 seconds, and the prediction interval to
A = 2 seconds. We set the sample count for view selec-
tion to W = 5000. We evaluate view-switch detection on
HowTo100M [34] by obtaining the views for the past frames
(c.f. Sec. 3.3) from our pseudo-labeler. For Ego-Exo04D, we
adopt a teacher-forcing setup and evaluate both tasks by us-
ing the ground-truth annotations for past frames and views.
We implement our view-switch detector D and view selector
S using the DINOvV2 [36] encoder for our frame encoder £ F
the Llama 2 [52] encoder for our narration encoder £V, a
8-layer transformer encoder [53] for our feature aggregator
A, a 2-layer MLP for the view classification head H, and
learnable embedding layers for our view encoder £V and
temporal encoder £7 .

Baselines. We provide strong baselines comprising SOTA

models and representations, as well as relevant heuristics.

For view-switch detection, we compare against

* InternVideo2 retrieval [54]: a set of baselines that given
the most recent past frame (Retrieval [54]-F'), most re-
cent past narration (Retrieval [54]-1V), or next narration
(Retrieval [54]-N), first encodes [54] them into fine-
grained features that capture multi-frame temporal con-
texts, then uses feature similarity to retrieve a nearest
neighbor of the same input type from the train set, and
finally outputs the next view for F" or N, or the correspond-
ing view for N’, as its prediction.’

3See Supp. for parallel evaluation with CLIP [39]-style encoders, which

Model Accuracy AUC AP
Human performance (Upper bound) 82.3 83.5 81.7
All-ego/exo 50.0 50.0 50.0
Random 493 493 49.7
Last-frame 50.0 50.0 50.0
First-person pronoun detector 50.3 50.3 50.1
Retrieval [54]-F 52.3 523 53.6
Retrieval [54]-N 51.9 51.9 51.0
Retrieval [54]-N’ 52.4 524 524
View-narration [54] Similarity 52.5 52.4 539
Finetuned X-CLIP [7]

Random negative sampling 52.1 52.0 53.1

Text-conditioned negative sampling 52.8 52.7 53.6
Proprietary VLMs

Gemini 2.5 Pro 51.2 51.2 51.0

GPT-40 53.3 533 523
LangView [32]

-smallData 52.1 52.6 532

-bigData (privileged) 533 548 54.5
Ours w/o pretraining 50.1 51.6 51.3
SWITCH-A-VIEW (Ours) 54.0 57.3 56.0

Table 2. Results and ablation for view selection with limited labels.
All values are in %; higher is better. Significance p < 0.05.

* All-ego, All-exo, Random, Last-frame: these are heuris-
tics that use the ego view (All-ego), the exo view (All-exo),
a randomly chosen (Random) view, or the view of the
most recent past frame (Last-frame), as their prediction.

* First-person pronoun detector: a heuristic that predicts
exo when it detects first-person pronouns like “T", “We",
“My" or “Our" in the next narration, as human editors often
use a wide shot that reveals their face or full body, when
using such pronouns.

For view selection with limited labels, in addition to the
baselines listed above, we compare against the following:

* LangView [32]: a SOTA view selector that uses multi-
view videos and human-annotated narrations for weakly
supervised pretraining. We finetune this model with
our Ego-Exo04D labels (Sec. 4). We evaluate two ver-
sions of this baseline: LangView-bigData and LangView-
smallData, which use large-scale Ego-Exo4D [32] videos,
and our same small subset (Sec. 4), respectively, for pre-
training. Note that the bigData variant enjoys access to
98 x more training samples than our method, an advantage
for the baseline.

* View-narration [54] Similarity (VN-Sim): separately
computes the cosine similarity between the InternVideo2
features [54] for each view and the next narration, and
picks the view most similar to the narration.

* Finetuned X-CLIP [31]: a finetuned CLIP [39]-style
model that aligns the frames from the target view and

generally underperformed InternVideo2 [54] encoders.



the future narration. We explore two negative sampling
strategies when finetuning: random and text-conditioned.

e Proprietary VLMs: we feed Gemini 2.5 Pro [12] and
GPT-40 [23] all our view selection inputs and task them
with choosing the best view by providing a text prompt
similar to our guidelines for collecting human annotations
(see Sec. 5 and Supp.).

LangView evaluates how our model fares against SOTA
view selection, while the retrieval, view-narration and fine-
tuned CLIP [39]-style baselines analyze whether SOTA
video-language embeddings, whether frozen or finetuned,
are sufficient for this task. The heuristics verify the challeng-
ing nature of the tasks. The proprietary VLMs evaluate if
employing large-scale generalist models is enough.

Evaluation metrics. We consider three metrics: 1) Accu-
racy, which directly measures the agreement between our
predictions and labels; 2) AUC, the area under the ROC
curve; and 3) AP, the average precision (AP) of the preci-
sion vs. recall curve. We use AUC and AP to account for
the possible class imbalance” in our collected annotations.
Moreover, for each metric, we separately compute its value
for the same-view and view-switch instances in our test sets,
and report the mean. This lets us account for differences
in the same-view and view-switch frequency, and obtain
unbiased performance measures.

View-switch detection. In Table 1, we report our view-
switch detection results. The heuristics generally perform
the worst on both datasets, underlining the challenging na-
ture of the task. The Retrieval [54] baselines improve over
them, indicating that our model inputs do provide cues about
the view type. Among the Retrieval baselines, retrieving
using the most recent past frame performs the best, showing
that the past frames offer fine-grained task-relevant infor-
mation beyond the narration words. Moreover, retrieving
with the next narration is better than retrieving with the most
recent past narration, revealing that the next narration carries
more pertinent details about the desired view. This is likely
because the next narration is better aligned with the time
interval for which the view is being predicted.

Our method outperforms all baselines on both datasets,
with the AUC margin over the best baseline, Retrieval [54]-
F, being as high as 10.4% on HowTo100M (HT100M) [34]
and 3.8% on Ego-Exo4D [18]. Our improvement over the
Retrieval baselines show that computing feature [54]-level
similarities are not enough for this task. Instead, learning
it by leveraging complementary cues from both narrations
and frames is critical. Moreover, our zero-shot results on
Ego-Exo04D speak to our model’s efficacy vis-a-vis learning
human view patterns from large-scale and in-the-wild videos,
which generalize to different scenarios, without any training.

4Same-view instance count = 1.6x view-switch instance count for
HT100M and 3.9x for Ego-Exo4D

HowTol00M [34] Ego-Exo4D [18]

Model Accuracy AUC AP | Accuracy AUC AP
N-only 53.5 544 523 50.0 48.7 49.0
N'-only 55.4 57.8 56.2 49.8 49.8 50.0
F-only 53.3 545 54.7 51.0 534 532

(F,N)-only 555 60.1 58.1| 521 542 526
(N,N)-only 575 593 566| 500 530 526
(F,N)-only 560 609 574| 518 549 542
Ours 594 638 60.5| 512 564 554

Table 3. Ablation study for view-switch detection. All values are
in %, and higher is better. Significance p < 0.05.

View selection. Table 2 shows our results on view selec-
tion with limited labels. For the heuristics and Retrieval [54]
baselines, we observe the same performance trends as view-
switch detection. The View-narration [54] Similarity (VN-
Sim) baseline marginally improves over these methods, indi-
cating the frames from candidate views when combined with
the corresponding narration (N') provide direct cues about
the preferred view. LangView [32]’s results benefit from its
language-guided training, generally outperforming VN-Sim.

Our method significantly improves over all baselines,
with the AUC margin over the best baseline, LangView [32]-
bigData, being 2.5%. Our gains over VN-Sim and Fine-
tuned X-CLIP [31] underscore that using feature similarity
to match the activity described in the next narration with a
candidate view does not suffice, and instead a model like
ours, which can leverage multi-modal cues from the combi-
nation of both past and candidate frames, and past and next
narrations, is valuable for this task. Our improvement over
the proprietary VLMs—despite their much larger size and
training data—shows that task-specific experts are necessary
to tackle our challenging task. Training our model from
scratch with only the small set of best view labels (“ours
w/o pretraining") is significantly weaker, showing that our
view-switch pretraining idea is doing the heavy lifting.

Our gains over the SOTA LangView [32] show that learn-
ing view selection from language is less effective than that
from large-scale human-edited videos, even when the videos
and language are available at scale (bigData). Moreover,
the insights of LangView and this work are complementary.
We find if we fine-tune SWITCH-A-VIEW with LangView’s
narration-based pseudo-labels, in addition to our labels
(Sec. 4), we achieve further gains. See Supp. for details.

Ablations. Table 3 shows our ablation results for view-
switch detection. Dropping any one input to our model
degrades performance, indicating that each input plays a
role. Dropping two inputs hurt the performance even more,
showing that more inputs are better in any combination, sug-
gesting our model design extracts complementary cues from
them in all configurations. Moreover, using past frames
instead of narrations improves performance, re-affirming
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Figure 3. Left: successful view-switch detections by our model on same-view (top) and view-switch cases (bottom). Our model correctly
detects view switches by anticipating the next step using past frames (same-view sample 1, and view-switch sample 2) or leveraging the
content of the next narration (same-view sample 2, and view-switch sample 1 and 2). Right: successful view selections by our model on
same-view (top) and view-switch cases (bottom). For view selection as well, our model can predict the desired next view by relying on the
next narration (same-view sample 1, and view-switch sample 1 and 2), or anticipate it using the past narrations (same-view sample 1 and 2),
or the past frames (same-view sample 1). These examples show that all three inputs play a role in our model predictions.

that vision provides fine-grained features necessary for high
performance. Finally, using N’ instead of N improves per-
formance in some cases, showing the next narration’s role.
See Supp. for more analysis, including the effect of the
past frame and narration durations, and sample count on
model performance, and its scenario-level breakdown.

Qualitative examples. Fig. 3-left shows our model’s suc-
cessful view-switch detections on both same-view (top) and
view-switch cases (bottom); see caption for details. We
also notice some common failure modes with our model.
For view-switch detection, our model sometimes fails when
there is no next narration overlapping with the prediction
interval, and neither the past frames nor narrations are pre-
dictive of the next view. In another failure type, the past
views are wrongly categorized by our pseudo-labeler for
HowTol100M [34] or by professional annotators for Ego-
Exo04D [18]. This leads to our model getting confused and
predicting the wrong next view. For view selection, in addi-
tion to these failures, our model can fail when both views

look equally good. See Supp. for video examples.

6. Conclusion and future work

We introduced an approach for learning to select views from
instructional video by bootstrapping human-edited (but un-
labeled) in-the-wild content. Results show the method’s
efficacy and set the benchmark for this new task.

A potential limitation of our model is its clip-level predic-
tions, which can lead to rapid switches between viewpoints
over time. While hard cuts are in fact necessary at times to
maximize informativeness, the trade-off between view infor-
mation and perceived viewing ease is interesting future work.
Other challenges uncovered by our work are the distribu-
tion gap between between edited in-the-wild and multi-view
videos and the complexity of learning view selection from
limited labels. In addition, we plan to generalize to continu-
ous view selection, potentially by integrating ideas from new
view synthesis, and we will explore modeling user attention
for personalized view selection.
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