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In this supplementary material we provide additional de-
tails about:

• Video for qualitatively illustrating of our main idea and
also qualitatively evaluating of our view-switch detections
and view selections (Sec. 1), as mentioned in ‘Qualitative
examples’ in Sec. 5 in main

• Analysis of the impact of our shot-level pseudo-labeling on
view-switch detection performance (Sec. 2), as referenced
in Sec. 3.2 in main

• Annotation filtering and model evaluation with higher
inter-annotator agreement thresholds (Sec. 3), as noted
in ‘Annotator agreement on best view’ in Sec. 4 in in main

• View-selection results upon finetuning our view-switch
detector jointly with narration-based pseudo-labels and our
best view labels (Sec. 4), as mentioned in ‘View selection’
in Sec. 5 in main

• Analysis of the impact of the duration of our past frames
on view-switch detection performance (Sec. 5), as noted
in ‘Ablations’ in Sec. 5 in main

• Analysis of the impact of the duration of our past narra-
tions on view-switch detection performance (Sec. 6), as
referenced in ‘Ablations’ in Sec. 5 in main

• Analysis of the impact of the number of training samples
on view selection performance (Sec. 7), as mentioned in
‘Ablations’ in Sec. 5 in main

• Scenario-level breakdown of view selection performance
(Sec. 8), as noted in ‘Ablations’ in Sec. 5 in main

• Feature similarity baseline evaluation with CLIP [11]-style
encoders (Sec. 9), as mentioned in ‘Baselines’ in Sec. 5 in
main

• Dataset details (Sec. 10) in addition to the ones provided in
Sec. 3.2, and ‘Training data’, ‘Evaluation data’ and ‘Data
for view selection with limited labels’ in Sec. 4 in main

• Annotation details (Sec. 11) in addition to the ones pro-
vided in ‘Evaluation data’ and ‘Annotator agreement on
best view’ in Sec. 4 in main

• Additional implementation details (Sec. 12) to supplement
the ones mentioned in ‘Implementation’ in Sec. 5 in main

Model Accuracy AUC AP

Ours w/o shot-level pseudo-labeling 51.5 51.9 52.3
Ours 59.4 63.8 60.5

Table 1. Analysis of the impact of our shot-level pseudo-
labeling strategy on view-switch detection performance on the
HowTo100M [9] dataset. All values are in %, and higher is better.
Significance p ≤ 0.05.

1. Supplementary video

The supplementary video, available at https://vision.
cs.utexas.edu/projects/switch_a_view/,
qualitatively illustrates our task, View Selection with Lim-
ited Labels, and our main idea towards tackling that task,
Weakly-Supervised Learning from Unlabeled In-the-wild
Videos. We also show successful predictions by our model
for both view-switch detection and view selection. For view
selection, we additionally provide multi-step selection exam-
ples, where our model selects the best view over multiple
consecutive steps. Finally, we illustrate our model’s common
failure modes (‘Qualitative examples’ in Sec. 5 in main) with
qualitative examples.

2. Shot-level pseudo-labeling

In Table 1, we report the results for an additional ablation
study, in which we analyze the impact of our shot-level
pseudo-labeling strategy (Sec. 3.2 in main) on view-switch
detection with the HowTo100M [9] dataset. Upon replac-
ing our shot-level pseudo-labeling strategy with a clip-level
pseudo-labeling strategy (Sec 3.2 in main), we observe a
drastic drop in model performance. This demonstrates that
our pseudo-labeler is able to mitigate noisy clip-level predic-
tions, particularly at scene boundaries.

3. Inter-annotator agreement threshold

In main, we evaluated our models with an inter-annotator
agreement thresholds of 78%, meaning at least 7 out of 9
agree for each annotation instance (‘Annotator agreement on
best view’ in Sec. 4 in main). Here, we evaluate even higher
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View-switch detection on HT100M View selection on Ego-Exo4D
Model 78% 89% 100% 78% 89% 100%

Retrieval [17]-F 53.2 53.6 53.6 __ __ __
View-narration [17] Similarity __ __ __ 53.9 54.2 53.7
LangView [8]-bigData __ __ __ 54.5 54.9 54.1
Ours 60.5 60.8 60.7 56.0 56.2 55.3

Table 2. Model performance (AP) vs. inter-annotator agreement threshold. __ indicates that the baseline is not applicable for the particular
task. All values are in %, and higher is better. Significance p ≤ 0.05.

agreement thresholds of 89%—at least 8 out of 9 annotators
agree, and 90%—all annotators agree. For HT100M [9],
the number of samples drops from 3,151 to 1,840 at 80%,
and 1,345 at 90%. For Ego-Exo4D [4], the same goes down
from 5,049 to 3,421 at 80%, and 1,887 at 90%, respectively.
Table 2 reports the results. Even at these higher and more
challenging inter-annotator agreement thresholds, our model
outperforms the strongest baseline—Retrieval [17]-F for
view-switch detection, and LangView [8]-bigData for view
selection—on both tasks.

4. Finetuning jointly with narration-based
pseudo-labels and best view labels, for view
selection

Here, we provide details on how we finetune our view-switch
detector jointly with narration-based pseudo-labels [8] and
our best view labels (‘Data for view selection with limited
labels’ in Sec. 4 in main), for doing view selection. Essen-
tially, we modify our view selector training loss LS (Sec. 3.5
in main) as follows:

LS = LCE(V̈(tw,tw+∆], V(tw,tw+∆]) + α ∗ LN ′
, (1)

where LN ′
= LCE(V̈(tw,tw+∆], Ṽ

N ′

(tw,tw+∆]) is the cross-

entropy loss between the predicted views V̈(tw,tw+∆]

(Sec. 3.4 in main) and narration-based pseudo-labels [8]
Ṽ N ′

(tw,tw+∆], generated using next narrations N ′ (Sec. 3.1 in

main), and α is the weight on LN ′
, which we set α to 0.3 on

the basis of validation. See Fig. 1b for quantitative results.

5. Duration of past frames
In Table 3, we report our view-switch detection performance
numbers for different durations of past frames, denoted by
TF , using the HowTo100M [9] dataset. We notice that our
model performance declines monotonically as we move from
our choice of TF = 8 seconds (‘Implementation’ in Sec. 5
in main) to both smaller and larger values. While very short
visual contexts fail to capture long-range temporal patterns in
human-preferred view sequences, very long visual contexts
might contain spurious signals that affect model performance.
TF = 8 seconds balances this trade-off and leads to the best
model performance, per this study.

Model Accuracy AUC AP

TF = 2 59.4 63.1 59.6
TF = 4 59.0 63.4 60.2
TF = 8 (Ours) 59.4 63.8 60.5
TF = 16 55.4 59.1 57.0
TF = 32 52.8 55.0 53.6

Table 3. Analysis of the impact of the duration of past frames,
denoted with TF , on view-switch detection performance on the
HowTo100M [9] dataset. All values are in %, and higher is better.
Significance p ≤ 0.05.

Model Accuracy AUC AP

TN = 2 56.1 55.9 56.2
TN = 4 52.4 53.9 53.4
TF = 8 55.5 60.2 58.0
TN = 16 56.1 60.2 58.0
TN = 32 (Ours) 59.4 63.8 60.5

Table 4. Analysis of the impact of the duration of past narrations,
denoted with TN , on view-switch detection performance on the
HowTo100M [9] dataset. All values are in %, and higher is better.
Significance p ≤ 0.05.

6. Duration of past narrations
In Table 4, we report our view-switch detection results for
different durations of past narrations, denoted by TN , with
HowTo100M [9]. Upon reducing TN to values lower than
our choice of 32 seconds (‘Implementation’ in Sec. 5 in
main), our model performance declines monotonically. This
shows that a longer past narration context helps better learn
correlations between the text in the narrations and desired
view types.

7. Sample count for training view selector
In Fig. 1a, we study the effect of sample count on our view
selection performance. Our model already improves perfor-
mance with as few as 1000 samples. This plot also highlights
the low-shot success of our model versus the best baseline,
LangView [8]-bigData.

8. Scenario-level analysis of view-selection per-
formance
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Figure 1. (a) Effect of sample count on our view selection (VS)
performance; (b) Impact of joint finetuning with narration-based
pseudo-labels [8] and best view labels on view selection (VS)

HowTo100M [9] Ego-Exo4D [4]
Model Accuracy AUC AP Accuracy AUC AP

Retrieval [11]-F 53.0 53.0 52.7 52.1 52.1 53.4
Retrieval [11]-N 52.3 52.3 51.8 51.8 51.8 50.7
Retrieval [11]-N ′ 52.6 52.6 53.2 52.0 52.0 52.5
Ours 59.4 63.8 60.5 51.2 56.4 55.4

Table 5. View-switch detection results. Evaluation on Ego-
Exo4D [4] is zero-shot. All values are in %, and higher is better.
Significance p ≤ 0.05.

Fig. 2 shows the breakdown of view selection performance
per scenario, where only the scenarios with a minimum of
10 instances after filtering low-quality annotations (‘Data
for view selection with limited labels’ in Sec. 4 in main)
are shown. Compared to the best-performing baseline,
LangView [8]-bigData, our model’s performance goes up
both in absolute and relative terms, from the procedural sce-
narios like Cooking or Bike Repair, to physical scenarios like
Rock climbing. This demonstrates that our model is better
able to handle more scenarios with more physical activity,
and consequently, more view changes, than the best baseline.

9. Feature similarity baselines with CLIP [11]
encoders

In ‘View-switch detection’ and ‘View selection’ in Sec. 5
in main, we evaluated feature similarity baselines with In-
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Figure 2. Per-scenario breakdown of our and the strongest baseline,
LangView-bigData’s view selection performance, measured with
AP (%).

Model Accuracy AUC AP

Retrieval [11]-F 52.1 52.1 53.4
Retrieval [11]-N 51.8 51.8 50.7
Retrieval [11]-N ′ 52.0 52.0 52.5
View-narration [7] Similarity 52.5 52.2 53.4
Ours 54.0 57.3 56.0

Table 6. Results and ablation study for view selection with limited
labels. All values are in %, and higher is better. Significance
p ≤ 0.05.

ternVideo2 [17] encoders. Here, we provide the parallel ex-
periment with CLIP [11]-style encoders in Table 5 for view-
switch detection, and Table 6 for view selection. Specifi-
cally, while for the retrieval baselines, we use the unmodified
CLIP encoders, we use X-CLIP [7] encoders in the View-
narration Similarity baseline for encoding multiple frames
in the ego and exo views (Sec. 3.4 in main). With CLIP, the
similarity baselines generally perform worse. This happens
possibly because, unlike InternVideo2, CLIP features are
not very fine-grained and/or do not capture temporal context
in the case of retrieval baselines. Furthermore, our model
outperforms all feature similarity baselines, even when im-
plemented with CLIP, highlighting its advantages over the
baselines across different encoder choices.

10. Additional dataset details
Here, we give further dataset details, in addition to the ones
provided in ‘Training data’, ‘Evaluation data’ and ‘Data for
view selection with limited labels’ in Sec. 4 in main.

Charades-Ego [12] datasets for training view classifier
in our pseudo-labeler. As mentioned in Sec. 3.2 in main
in main, we train the view classifier of our pseudo-labeler
on the Charades-Ego [13] dataset. To do so, we create a
dataset containing 5,551 train, 615 val, and 1,597 test videos,
where all videos are randomly sampled and the splits are
completely disjoint. Moreover, we train and test our model
by sampling fixed-length clips, where the clip length is set
to 2 seconds.

HowTo100M [9] datasets for view-switch detection. As
noted in ‘Training data’ and ‘Evaluation data’ in Sec. 4
in main in main, we train our view-switch detector on
HowTo100M (HT100M) [9] and also use it as a dataset
for evaluating view-switch detection. To do so, we sample a
maximum of 500 videos from each category in the second
level of the HT100M video classification hierarchy. This
results in a total of 4,391 hours of HT100M videos.

In addition to the details provided in ‘Evaluation data’
in Sec. 4 in main, for creating the HT100M test set for
evaluating view-switch detection, we also include the clips



right after all view-switch boundaries, as identified by our
pseudo-labeler, in the test set. This ensures that the test set
is not totally dominated by the more frequently-occurring
same-view instances, which can affect the estimation of our
unbiased mean performance (‘Evaluation metrics’ in Sec. 5
in main). Finally, we provide the clip just before each clip
being labeled, to the annotators in order to identify instances
where the ground-truth view stays the same (same-view) and
where it switches (view-switch). This allows us to separately
evaluate these two alternate but important scenarios, and
report unbiased mean performance (‘Evaluation metrics’ in
Sec. 5 in main).

Ego-Exo4D [4] datasets. We create our datasets for Ego-
Exo4D [4] (‘Evaluation data’ and ‘Data for view selection
with limited labels’ in Sec. 4 in main) for evaluating view-
switch detection, and training and evaluating view selection,
by sampling clips from each video at a regular interval of 1
second.

11. Additional annotation details
Here, we provide further annotation details, in addition to
what are provided in (‘Evaluation data’ and ‘Annotator agree-
ment on best view’ in Sec. 4 in main). We start with the
details that are common for both both HT100M [9] and
Ego-Exo4D [4].

We use Amazon Mechanical Turk (MTurk) to collect
annotations for both datasets. Before assigning an MTurk
worker our job, we ensure that their prior annotation approval
rate is more than 98%. We also require them to take short
qualifiers (‘Annotator agreement on best view’ in Sec. 4
in main), each of which contains 10 annotation instances.
We design these qualifiers such that they are very similar to
our main jobs. Furthermore, we handpick the annotation in-
stances in the qualifiers such we that know the ground-truth
for each of them. This lets us easily compare an annota-
tor’s choices against the ground-truths in the qualifiers, and
consequently, gauge the their reliability. We only accept
annotators who pass these qualifiers with a success rate of at
least 90%.

Next, we provide dataset-specific annotation details.

HT100M. In Fig. 3, we show our annotation interface for
HT100M (‘Evaluation data’ and ‘Annotator agreement on
best view’ in Sec. 4 in main). In short, we provide a set of
detailed instructions, which lists the different characteristics
of both ego and exo clips1, and give examples for each char-
acteristic. Additionally, we provide a more concise summary
of the lists of per-view attributes on each annotation page
to give a quick recap of the annotation task, to the workers.

1We refer to ego and exo views as “closeup" and “wide" shots, respec-
tively, in order to easily explain the annotation process to the workers.

Finally, we provide video examples of both ego and exo
clips, to further guide the annotation process.

Ego-Exo4D. In Fig. 4, we show our annotation interface
for Ego-Exo4D (‘Evaluation data’ and ‘Annotator agreement
on best view’ in Sec. 4 in main). In summary, we provide a
set of detailed instructions on each annotation page, which
describes the kind of information captured by the two views
(ego and exo) and the role of the associated atomic descrip-
tion, and also specify that we expect the annotator to pick
a view that best shows the activity mentioned in the atomic
description and hence, useful for instructional purposes. To
further assist with the annotation process, we provide exam-
ples showing pairs of clips from both ego and exo views,
their associated atomic descriptions, and how an annotator
should reason about which view is better for viewing the ac-
tivity, in the context of its corresponding atomic description.

12. Additional implementation details
Here, we provide additional implementation details.

View assignment to past frames and narrations for Ego-
Exo4D [4]. In Sec. 3.2 in main, we provide details about
how we assign our view pseudo-labels to past frames and
past narrations, for using our model (view-swtich detector or
view selector) with HowTo100M [9]. Here, we describe our
process for assigning views to the past frames and narrations
for Ego-Exo4D [4].

Note that all frames or narrations in an Ego-Exo4D video
might not be assigned a ground-truth best view during our an-
notation process, because the annotations for some couplets
of pairs of clips from the two views, and their associated
atomic descriptions (‘Evaluation data’ in Sec. 4 in main),
might get discarded due to our annotation quality control
measures (‘Annotator agreement on best view’ in Sec. 4 in
main, and above). To tackle this, we set the best view for
each past frame and past narration to the best view ground-
truth for the nearest couplet of clip pair and its associated
atomic description, for which the ground-truth has not been
discarded.

12.1. View pseudo-labeler
Scene detector. As mentioned in Sec. 3.2 in main, we use
PySceneDetect [1], an off-the-shelf scene detector, for de-
tecing scene boundaries in HowTo100M [9] videos. Specifi-
cally, we use the image-content-based detector. Moreover,
we set the weights for pixel colors to 1.0 and the same for
object edges to 0.0, and the minimum shot length to 2 sec-
onds.

View classifier. For our view classifier (Sec. 3.2 in main),
we use the slow branch of a SlowFast [2] model that has



Figure 3. Sample interface for collecting HT100M [9] annotations (‘Evaluation data’ and ‘Annotator agreement on best view’ in Sec. 4 in
main). Additionally, we also provide video examples for both ego (closeup shot) and exo (wide shot) clips, to help the annotators.

a ResNet3D [15]-50 architecture and is pretrained on the
Kinteics-400 [5] dataset, as the visual encoder. This encoder
takes 8 uniformly sampled frames from each 2-second clip
(c.f. Sec. 11), embeds them into a visual feature, and passes
the visual feature to a linear classification head, which is
implemented as a single linear layer. We initialize the pa-
rameters for all model components that are trained from
scratch, using a parameter initialization strategy for masked
auto-encoders for videos [3]. We train the model until con-
vergence by using an AdamW [6] optimizer, a batch size of
32, and initial learning rates of 10−5 and 10−4 for the visual
encoder, and the classification head, respectively.

12.2. View-switch detector
Here, we provide more implementation details of view-
switch detector, in addition to those provided in ‘Implemen-
tation’ in Sec. 5 in main. Our detector’s DINOv2 [10] frame
encoder has 12 layers and takes in frames sampled at 4 fps,
and produces a 768-dimensional feature for each frame. Our
detector’s Llama 2 [14] text encoder begins by producing
a token sequence for each input narration by tokenizing its
text, and padding the tokenizer output to match the length
of the longest token sequence in a batch, or truncating it
to reduce its length to 512, depending on which length is
shorter. Moreover, for the past narrations, it ensures that
their total token count does not cross 1024, by truncating

wherever necessary. It then encodes each token from the
past narration sequence, or the next narration, into a 4096-
dimensional features. Next, it projects each such feature
into a 768-dimensional feature using a linear layer. We im-
plement our modules for encoding views for both frames
and past narrations, and their relative temporal positions, as
learnable embeddings that produce 768-dimensional features.
Specifically, for encoding views, we use a learnable feature
dictionary with 0 (ego) and 1 (exo) as keys. For encoding
relative temporal positions, we first discretize the durations
in seconds, by using bins of size 0.1 second, and then en-
code them with learnable feature dictionaries, in which the
number of keys is set to the maximum number of bins. To
aggregate all the above-mentioned 768-dimensional features,
we use a 8-layer and 8-head transformer encoder [16] that
adds a positional embedding [16] to each feature and per-
forms self-attention on them. Finally, the 2-layer MLP for
our view classification is a stack of two hidden linear layers
with the output feature size of 256 and 64, respectively, and
a final linear layer that esimtates the next view. We initialize
the parameters for all model components that are trained
from scratch, using a parameter initialization strategy for
masked auto-encoders for videos [3]. We freeze the pre-
trained components of our view-switch detector and train
the rest of the model until convergence with the AdamW [6]



C places the garlic in the bowl on the countertop, using his right hand

Figure 4. Sample interface for collecting Ego-Exo4D [4] annotation (‘Evaluation data’ and ‘Annotator agreement on best view’ in Sec. 4 in
main) . Additionally, we also provide examples showing pairs of clips from both ego and exo views, their associated atomic descriptions,
and how to reason about which view is better for viewing an activity, to help the annotators.

optimizer, a batch size of 48, and a learning rate of 10−6.

12.3. View selector

Our view selector has the exact same architecture as our
view-switch detector. For training it, we first initialize its
parameters with those of our pretrained view-switch detector.
We then freeze the frame encoder and the text encoder, and
finetune the rest of the model until convergence with the
exact same optimizer and hyperparameters as the ones used
in our view-switch detector training.
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