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Abstract

How would the sound in a studio change with a carpeted
floor and acoustic tiles on the walls? We introduce the task
of material-controlled acoustic profile generation, where,
given an indoor scene with specific audio-visual charac-
teristics, the goal is to generate a target acoustic profile
based on a user-defined material configuration at inference
time. We address this task with a novel encoder-decoder
approach that encodes the scene’s key properties from an
audio-visual observation and generates the target Room
Impulse Response (RIR) conditioned on the material specifi-
cations provided by the user. Our model enables the gener-
ation of diverse RIRs based on various material configura-
tions defined dynamically at inference time. To support this
task, we create a new benchmark, the Acoustic Wonderland
Dataset, designed for developing and evaluating material-
aware RIR prediction methods under diverse and challeng-
ing settings. Our results demonstrate that the proposed
model effectively encodes material information and gener-
ates high-fidelity RIRs, outperforming several baselines and
state-of-the-art methods. Project: https://mahnoor-
fatima-saad.github.io/m-capa.html

1. Introduction

Sound, along with vision, plays a fundamental role in shap-
ing our perception of the environment. From conveying
essential spatial information to enhancing emotional and so-
cial experiences, sound improves our ability to interpret and
interact with the world around us. Realistic sound modeling
is therefore essential in applications that aim to create im-
mersive, lifelike experiences, such as AR/VR and gaming,
where a mismatch between the visual and acoustic stimuli
may lead to the room divergence effect [51] and the collapse
of the plausibility of the whole experience.

Achieving accurate and immersive audio experiences re-
quires precise modeling of how sound propagates in a given
space. As sound travels through a room, it interacts with
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Figure 1. Our material-controlled acoustic profile generation task.
Given a scene with specific visual and acoustic properties (top), the
objective is to create new acoustic profiles for the same scene by
allowing users to dynamically assign different materials to objects.
Our approach enables users to experience how various material
configurations impact the sound quality of the scene on the fly. For
instance, a user can explore how a classroom would sound with
acoustic tiles and big glass windows on the walls (middle) or a
carpeted floor (bottom).

objects, surfaces, and materials through processes like reflec-
tion, absorption, and transmission. These interactions impart
unique reverberations to the sound wave that are specific to
each environment, creating a distinct acoustic signature. For
example, the experience of listening to a symphony in a liv-
ing room differs dramatically from listening in a theater hall.
The Room Impulse Response (RIR) function [49] captures
these unique characteristics by modeling how sound travels
between two points within a space. By convolving an audio
signal with an RIR, we can reproduce the acoustic character-
istics of the room, producing a sound that closely resembles
what a listener would experience in that environment.

Given the importance of accurate RIR modeling, there



is considerable interest in developing high-fidelity RIR pre-
diction methods [31, 33]. When the geometry, object distri-
bution, and materials of a room are known and represented
in a 3D mesh, simulation methods [3, 15, 40, 50], such as
ray tracing, can be used to measure the RIR. However, cre-
ating such detailed 3D meshes requires expensive measure-
ments and time-consuming labeling, limiting the scalability
of these approaches to diverse scenarios. Recent work has
shifted toward predicting RIRs using sparse and inexpen-
sive data sources, such as room dimensions [25, 33, 43],
images [22, 23, 25, 35], or recorded audio [33, 45]. While
these approaches show promise in generalizing across scenes,
they often simplify room representations, typically modeling
them as simple boxes [43] or just via an RGB image [41].
Consequently, the materials within a scene are frequently
overlooked, and the model must infer material properties
implicitly from RGB images.

However, material properties have a significant impact on
the RIR of a space [35]. Even in a room with identical ge-
ometry and object placement, the perceived sound can vary
substantially depending on whether, for example, walls are
made of wood, concrete, or soundproof materials. Different
materials interact with sound in distinctive ways, modifying
its behavior by dampening, amplifying, or introducing spe-
cific reverberations across various frequencies. A few recent
methods have incorporated explicit material representations
in RIR prediction [30, 35], with [35] showing that including
material properties in model inputs leads to more accurate
RIR predictions. However, none of these existing methods
provide users with the flexibility to adjust the material con-
figuration of a scene at inference time to generate an RIR
that reflects such changes.

To address this challenge, we introduce the new task of
material-controlled acoustic profile generation (see Fig. 1).
In this task, the goal is to generate an RIR that reflects a hy-
pothetical scene configuration, where an initial audio-visual
observation of the scene provides the scene’s original charac-
teristics, and a user-defined material configuration specifies
the new material assignments for objects and surfaces.

The ability to control material configurations in RIR pre-
diction has valuable practical applications across domains
such as VR/AR, creative design, and architectural engineer-
ing. This capability enables users to make informed deci-
sions based on simulated acoustics for different material
setups. For example, an instructor could evaluate how a
classroom would sound if its walls were covered in wood;
a music enthusiast could experience the acoustic effects of
their studio with a carpeted floor or large glass windows; and
interior designers could assess the impact of various materi-
als on furniture and objects to enhance a room’s acoustics.
All of this can be done without physically altering the space
or purchasing expensive materials.

To tackle this task, we present a novel approach that en-

codes the scene’s initial properties from audio-visual data
and enables the user to define an arbitrary material mask,
allowing them to assign specific materials to selected ob-
jects in the scene. Our model processes the new material
configuration alongside the original scene representation to
generate a target RIR, using an encoder-decoder architecture
designed to capture how the new material configuration will
influence the RIR.

Furthermore, to support research on this task, we intro-
duce a new dataset, Acoustic Wonderland Dataset, designed
to model the impact of material properties on RIR predic-
tions explicitly, leveraging state-of-the-art audio-visual simu-
lators [8, 44]. Our benchmark evaluates model performance
across different generalization scenarios, including seen and
unseen material configurations and room geometries. Our
evaluation on this challenging benchmark demonstrates the
effectiveness of our approach, outperforming various base-
lines and existing methods that incorporate material informa-
tion either implicitly or explicitly. Furthermore, we conduct
a user study that demonstrates our model’s ability to general-
ize well to real-world scenarios.

2. Related Works
Estimating room impulse responses (RIRs) in a 3D scene has
numerous applications, like augmented and virtual reality
(AR/VR) [17, 24], audio-visual navigation [5, 6, 13], speech
enhancement [11, 34, 35], and audio-visual localization [28,
48, 52]. In this section, we review key directions in the
literature on RIR estimation relevant to this work.
Physics- and Geometry-based RIR Modeling Tradi-
tional methods estimate RIRs by using physics-based equa-
tions to model acoustic wave propagation [14, 15, 27, 29, 47],
or by applying geometry-based methods such as ray trac-
ing [1, 3, 50]. However, these methods often require exten-
sive manual measurements [2] or make simplified assump-
tions about the environment [12] (e.g., approximating it as
a rectangular box). Machine learning methods have shown
promising results for RIR estimation. Leveraging advanced
audio-visual simulators [5, 8, 38], these methods train deep
neural networks to estimate RIRs for any given source and
receiver location within complex environments [25]. How-
ever, such methods typically require access to the full 3D
mesh of the scene [25, 32, 43] or user-provided scene geom-
etry [23], making them computationally expensive [38] and
limiting their generalizability to novel scenes. In this work,
we propose a method for RIR modeling based on multimodal
observations from a single location, alleviating the need for
scene meshes or explicit geometric properties and capable
of generalization to novel environments.
RIRs from Audio-Visual Observations Recent ap-
proaches have aimed to bypass full 3D scene modeling
by using limited or single multimodal observations to es-
timate RIRs. Early methods used scene images to estimate



only the late reverberant characteristics of an RIR [19, 20]
or to infer room geometry from panoramic images, subse-
quently synthesizing RIRs based on these estimates [36].
Image2Reverb [41] improved on this by generating full
RIRs directly from RGB and depth inputs, while other
approaches [7, 9, 42] used audio-visual observations for
implicit RIR modeling, tailoring acoustics to a specific
scene [7, 42] or even a novel viewpoint [9]. Further methods
have sought to predict RIRs for arbitrary locations within a
scene using a few images and acoustic responses [23, 26],
demonstrating improved performance compared to purely
geometry-based methods [25, 33, 43]. Despite notable ad-
vancements in high-fidelity RIR generation, these methods
do not explicitly model objects and surface materials, which
limits the accuracy of the generated RIRs [35].

Explicit Material Modeling The materials present in a
scene significantly influence its acoustic properties, as dif-
ferent materials have unique absorption, transmission, and
reflection characteristics that directly affect the RIR. Some
methods have incorporated explicit material modeling in
RIR generation [21, 30, 35, 39], achieving superior perfor-
mance over material-agnostic approaches [35]. However,
they typically require dense observation sampling and 3D
mesh reconstruction to estimate materials [21, 30, 38, 46],
they rely on predefined mappings between semantic cate-
gories and material types [30, 35] (e.g., all walls are brick,
all chairs are wood), or retrieve material-related late reverber-
ations from the training set [35]. As a result, these methods
struggle to generalize when RIRs must be estimated for new
scenes with novel material configurations. In contrast, our
method explicitly models materials in RIR generation and
can adjust RIR predictions based on new material config-
urations during inference, using only a single audio-visual
observation from the scene. To our knowledge, this is the
first work to address material-controlled RIR generation with
arbitrary material configurations at inference time.

3. Material-Controlled RIR Generation

We present the first work to address the task of Room Im-
pulse Response (RIR) generation, conditioned on arbitrary
material configurations at inference time. Next, we begin by
formally defining this novel task (Sec. 3.1), followed by a de-
scription of the dataset collected for this purpose (Sec. 3.2).
Finally, we introduce our new approach for high-fidelity,
material-controlled RIR generation (Sec. 3.3).

3.1. Task Definition
The goal of our novel task is to predict the changes in an RIR
of a 3D scene given a new material configuration provided
at inference time. Specifically, while the scene’s geometry,
surfaces, and objects remain unchanged, the user can mod-
ify the material properties of these elements at inference

(e.g., assign wood to walls), and our goal is to anticipate the
changed RIR accordingly.

Formally, let S denote a 3D scene. From a random lo-
cation l with coordinate (x, y) and orientation θ in S, we
sample a multimodal observation O = (V,A), where V is
an egocentric visual view of S from l, represented as an
RGB image, and A represents the RIR of a binaural echo
response from l. Given a target material configuration MT

for S, our goal is to predict the target RIR, AT , consistent
with the specified MT . Formally, we aim to learn a mapping
AT = f((V,A);MT ), where the user can define multiple,
distinct MT configurations for a given observation O and
generate their corresponding AT each.

In this work, we represent MT using a segmentation
mask, derived from a semantic segmentation mask G in-
ferred from V . This representation provides a flexible and
intuitive interface for defining MT , allowing the user to
simply click on an object or surface ci in G and assign it a
material class mj , as demonstrated in Fig. 1. This method
eliminates the need for pixel-wise material assignments. Un-
selected areas or objects in G are assigned an unchanged
material class, mu, in MT . While we adopt this represen-
tation of MT in this work, alternative approaches, such as
language-based queries (e.g., ”assign ceramic to tables”),
could also be explored and are left for future work.

3.2. Acoustic Wonderland Dataset
To our knowledge, there are no publicly available datasets
compatible with our task. Therefore, we introduce a novel
dataset, named the Acoustic Wonderland dataset, which we
discuss next (see the Supp for more details).

Platform and Scenes We use the SoundSpaces 2.0
(SSv2) [8] audio-visual 3D simulator to collect our dataset.
SSv2, built on the AI-Habitat platform [44], is a state-of-
the-art simulator that offers fast and realistic audio-visual
rendering, shown to transfer effectively to real-world set-
tings [10]. Additionally, we use 84 Matterport3D (M3D)
scenes [4], comprising 3D meshes derived from scans of
real-world homes and indoor spaces. This enables us to
evaluate our approach across numerous environments and di-
verse material configurations, facilitating comparisons with
multiple baselines under consistent, reproducible conditions
while simulatenously using realistic audio-visual renderings
that closely resemble real-world scenes.

Material Profiles SSv2 applies predefined material-object
mappings when rendering audio-visual observations, with
each material characterized by its absorption, transmission,
and reflection coefficients. SSv2 includes 30 material def-
initions and there are over 40 semantic categories in M3D.
To balance storage efficiency with comprehensive material
representation in our dataset, we select a representative set of
12 material classes, M = {mi} (e.g., wood, concrete, steel,
soundproof ), and identify a subset of semantic categories



C = {cj} representing prominent objects and surfaces (e.g.,
ceiling, floor, tables). We then generate a set of random
mappings between C and M (material profiles) such that
each cj is randomly assigned to a material mi. For small or
infrequent objects (e.g., ball, shoes), we retain the default
SSv2 material mappings. In total, we create 2, 673 material
profiles, P = {Pk}.
Observation Sampling For each scene Si in M3D, we
sample N random locations ln = (xn, yn, θn) from spa-
tial coordinates (xn, yn) and orientation θn. At each lo-
cation ln, we capture the RGB view, Vn, and the corre-
sponding semantic segmentation mask Gn. Furthermore,
at each ln, we initialize SSv2 J times with random mate-
rial profiles Pj ∈ P , generate the corresponding material
segmentation mask Mn,j based on Gn and Pj , and sam-
ple the corresponding RIR An,j . This process results in a
dataset {(Vn, Gn, {Mn,j ,An,j}J)}N where N = 200 and
J = 100 in our setup.
Data Point Generation To generate data points for our
task, we select an observation On and two random RIRs, a
source An,S and a target An,T RIR, at location ln. Here,
(Vn, Gn, An,S) serves as the model input, Mn,T is the con-
ditional target material mask, and An,T is the target RIR
to be generated. That is, for a specific input there could be
multiple Mn,T with a corresponding An,T to predict. This
sampling strategy yields ≈ 1.68 million unique data points
in our dataset. See the Supp for a user study that analyze the
perceptual differences between AS and AT in our dataset.
Data Splits To evaluate model performance with respect
to generalization, we define the following data splits. First,
we divide the scenes into seen, Ss, and unseen environments,
Su. Additionally, we split the material profiles into seen
profiles Ps, and unseen ones Pu. Further, we isolate a set
of pairings between seen profiles, K = {(Ps → Ps)} to
serve as unseen mappings from source to target material
configurations. The distinction between Pu and K lies in
pairing configurations: K contains seen material profiles but
with previously unseen source-target pairings, such as cases
where walls are assigned to wood or concrete individually in
training, but the model is not trained to anticipate transitions
between these specific assignments. In contrast, Pu contains
entirely unseen profiles for both source and target configura-
tions, with the pairings also being unseen by definition. This
setup allows for multiple evaluation scenarios of varying
difficulty to test the model’s generalization across scenes,
profiles, and pairings. We use Ss and Ps for training, and
Su, Pu, Ps, and K for evaluation (see Sec. 4).

3.3. M-CAPA Model
We propose a novel approach for RIR prediction, conditioned
on arbitrary material configurations within a given scene,
named material-controlled acoustic profile anticipation (M-
CAPA). Our model comprises three main components (see

Fig. 2): 1) a multimodal scene encoder fE , which processes
visual input Vn, corresponding semantic segmentation mask
Gn, and binaural echo response An,S to create a multimodal
embedding em that captures both acoustic and visual prop-
erties of the scene; 2) a target material encoder fM that
encodes the new material configuration of the scene into an
embedding et; and 3) a conditional target RIR generator fT ,
which uses both the scene encoding em and target material
information et to predict changes in the target RIR Ân,T (for
clarity we drop the sample index n in the remainder of the
text). We detail these components below.

Multimodal Scene Encoder The model receives as in-
put the RGB image Vn ∈ RH×W×3 captured with a 90◦

field-of-view (FoV) camera, and its associated semantic seg-
mentation mask, fS(Vn) = Gn ∈ RH×W , where fS can be
a pretrained semantic segmentation model, and H and W
are the height and width of the RGB. These images are each
encoded via a four-layer convolutional UNet [37] encoder
block into a visual ev and a semantic eg embedding.

The source binaural echo response RIR is first trans-
formed into a binaural spectrogram magnitude image AS ∈
R2×F×T using the short-time Fourier transform (STFT),
where F denotes the number of frequency bins and T the
number of overlapping time frames. This spectrogram is
then encoded by a separate four-layer convolutional UNet
encoder, fA, yielding an acoustic embedding ea.

This combination of input modalities (V,AS) is advan-
tageous because it avoids reliance on specialized hardware
(e.g., a 360◦ field-of-view camera) while still maintaining
strong performance. This is due to the fact that echo re-
sponses inherently capture acoustic information from the
entire room, including areas beyond the camera’s field of
view. Finally, the embeddings ev, eg, and ea are concate-
nated to form the multimodal scene embedding em.

Target Material Encoder The arbitrary target material
configuration of the scene is represented by a material seg-
mentation mask MT ∈ RH×W , where each element in MT

is a material class index mi ∈ M . This mask can be defined
by the user by assigning materials to objects and surfaces in
Gn or generated as part of the dataset during training (see
Sec. 3.2). MT represents a hypothetical new material con-
figuration for which the user wishes to generate the RIR. The
target material information is encoded with a convolutional
encoder fM , similar to fG, into an embedding et.

Material-Controlled RIR Generator With the scene in-
formation encoded in em and the target material in et, we
use both representations in a novel RIR prediction module,
fT , to generate AT . This module first fuses the information
from em and et using the fusion module F , a convolution
layer that combines the different modalities, and employs a
decoder architecture with a series of four deconvolution lay-
ers, taking F(em, et) as input along with skip connections
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Figure 2. The architecture of our model. Given an audio-visual observation from the scene (Vn, AS), the model encodes key visual and
acoustic properties using a multimodal encoder. For a given arbitrary target material assignment MT , the model then generates a weighting
WT and a residual BT to adjust AS with a new reverberation pattern compatible with MT , thereby predicting the target RIR (ÂT ).

from fA, to estimate a weighting mask WT ∈ R2×F×T and
a material residual information BT ∈ R2×F×T such that:

ÂT = WT ⊙AS +BT , (1)

where ⊙ is element wise multiplication. The decoder fT

predicts the target ÂT by learning which parts of the input
AS to emphasize or dampen using WT and which new rever-
berations to introduce using BT , based on the conditional
target material MT . We found that this novel formulation
effectively anticipates changes in RIR, as new materials
in the scene not only alter existing reverberation patterns
but can also introduce reverberations in previously inac-
tive frequency and time bins—a phenomenon not captured
by conventional masking-based RIR prediction approaches
(e.g., [11]), as we will demonstrate in our evaluation.

Model Training Our model is trained end-to-end to mini-
mize the error in the generated target RIR ÂT compared to
the ground truth AT . The loss function is defined as:

Ln = λ1||ÂT −AT ||2+λ2||ÂT −AT ||1+λ3LD(ÂT , AT ),
(2)

where || · ||2 and || · ||1 are the L2 and L1 losses based on
the predicted ÂT and ground truth AT binaural magnitude
spectrograms. LD is an energy decay loss [26], which aligns
the temporal energy decay in the predicted RIR with the
target, improving the quality of reverberations in ÂT . Based
on validation performance, we set λ1 = λ2 = 0.5 and
λ3 = 5× 10−3.

4. Experiments
We evaluate our model’s performance on RIR generation
using the Acoustic Wonderland Dataset (AcWon) (Sec. 3.2)

and compare it with several state-of-the-art (SoTA) meth-
ods and baselines to demonstrate the effectiveness of our
approach (Sec. 4.1). We provide a detailed analysis of our
model in Sec. 4.2. Next, we outline our evaluation setup,
with more details provided in the Supp.

Implementation Details For RGB images, Vn, we use
a resolution of 256 × 256 and sample the binaural echo
response RIRs, A, from SSv2 at a rate of 16kHz and a
duration of 0.5 seconds. Spectrograms are generated using
STFT with a Hann window [16] of length 256, hop length of
32, and FFT size of 511, resulting in a binaural spectrogram
with dimensions 2 × 256 × 256. Additionally, we extract
the semantic segmentation mask Gn from SSv2 and also test
with an inferred Gn from a pretrained model [53]. Our model
is trained on a single GPU using the Adam optimizer [18]
with a learning rate of 10−3 and a batch size of 64.

Dataset Splits We use the AcWon dataset and split the
84 MP3D scenes into |Ss| = 76 seen and |Su| = 8 unseen
environments. The 2, 673 material profiles are split into
|Ps| = 2, 405 seen and |Pu| = 268 unseen profiles. Fur-
thermore, we isolate |K| = 2000 source-to-target material
profile mappings to be used exclusively for evaluation, not
for training. Our training data consists of Dtr = {Ss,Ps},
and we create three evaluation splits: Dus = {Su,Ps},
Duu = {Su,Pu}, and Duk = {Su,K}. For validation
splits Dv, we follow similar criteria as the previous three,
using three of the Su scenes and reserving the remainder for
testing as Dt. The test set comprises 6, 000 samples, with
2, 000 samples each for Dt

us, Dt
uu, and Dt

uk.

SoTA Methods and Baselines We compare our M-CAPA
model against the following SoTA methods and baselines
(see Supp for more details):



Observation Seen Materials Unseen Materials Unseen Pairings
Method As Vn L1 STFT RTE CTE L1 STFT RTE CTE L1 STFT RTE CTE

Direct Mapping ✓ 7.14 6.59 115.8 12.65 7.47 7.10 119.7 12.78 7.48 7.18 120.9 11.97
M-CAPA (Ours) ✓ 5.29 3.66 89.52 8.14 5.49 3.91 93.54 8.60 5.65 4.17 91.29 8.68

Image2Reverb [41] ✓ 14.68 7.89 245.16 18.76 14.13 7.59 223.36 19.15 14.98 8.19 244.49 19.55
FAST-RIR++ [26, 33] ✓ 16.73 25.06 317.18 21.47 14.81 28.39 231.83 16.83 16.41 31.02 321.01 21.18
Material Agnostic ✓ 8.95 11.16 121.43 12.21 9.21 11.65 122.7 13.66 9.41 11.93 124.75 14.19
Material Aware ✓ 8.91 11.19 98.02 11.48 8.91 11.29 98.06 11.75 9.21 11.52 98.72 11.19
M-CAPA (Ours) ✓ 5.92 5.49 89.23 8.41 6.06 5.76 92.80 9.05 6.30 6.17 91.75 8.95

AV-RIR [35] ✓ ✓ 7.31 6.65 99.34 10.92 7.59 7.17 99.10 11.35 7.67 7.25 98.46 10.56
M-CAPA (Ours) ✓ ✓ 5.10 3.61 87.49 7.98 5.27 3.87 91.44 8.44 5.46 4.15 90.77 8.56

Table 1. Results on unseen environments for our three test splits: Dus with seen material profiles, Duu with unseen material profiles, and
Duk with unseen profile pairings. STFT and L1 are scaled by ×10−2, RTE is in milliseconds (ms), and CTE in decibels (dB). Lower values
indicate better performance for all metrics. We group the models based on the input modalities: audio-only (top), vision-only (middle), and
audio-visual (bottom). Our model outperforms all baselines across these groups and all metrics.

Direct Mapping AS → AT : This baseline outputs AS

as the predicted ÂT , capturing the scene’s mean acoustic
characteristics under the original material configuration.
This helps quantify improvements achieved by our model
in predicting AT conditioned on the target material MT .
Material Agnostic Matcher: It finds the closest visual
match from the training set based on similarity of the visual
embedding ev and retrieves an RIR associated with that
location, ln, as the output. It serves as a representative of
models that memorize training RIRs and predict based on
visual similarity between the test and training scenes.
Material Aware Matcher: Similar to the previous baseline,
but in addition to visual similarity, it also considers the
similarity of material distributions. It retrieves an RIR
based on both visual and material similarity between the
test sample and training data.
Image2Reverb [41]: A vision-only RIR prediction SoTA
model, which uses RGB and depth maps to predict the RIR
of the input scene. We train the model on our training split
using the code provided by the authors.
FAST-RIR++ [26, 33]: Fast-RIR [33] is a GAN-based
SoTA approach that uses the scene properties to synthesize
RIRs for rectangular rooms. We follow the improved ver-
sion introduced by [26] and use the estimated RT60 and
DRR from AS , and GT depth maps as inputs to the model.
AV-RIR [35]: A SoTA audio-visual model with explicit
material modeling for RIR prediction. Instead of inferring
source RIR from reverberant speech, we adapt this model
to our setting by providing AS directly. We replace the late
components of the RIR by retrieving the closest training
sample based on target material similarity to generate ÂT .

Metrics We evaluate performance using standard RIR pre-
diction metrics: 1) STFT Error: the mean squared error
between predicted and target RIR based on the magnitude
spectrograms; 2) L1 Distance: similar to STFT, but mea-

sures L1 distance; 3) RT60 Error (RTE) [32]: the error
in RT60 values of the predicted RIR, and 4) Early-to-Late
Index Error (CTE) [32]: capturing the error in the ratio of
early- to late-sound energy received. STFT and L1 metrics
capture fine-grained prediction errors, while RTE and CTE
focus on acoustic and reverberation characteristics.

4.1. Target RIR Generation Results
In Table 1, we present the performance of our model (M-
CAPA) in comparison to existing methods and baseline ap-
proaches on the three splits of the test dataset Dt. For a
fair comparison, we evaluate three versions of our model,
each using different input modalities to match the corre-
sponding baselines. We observe that, in general, audio-only
models outperform those that rely solely on vision, while
audio-visual methods achieve the best performance.

For retrieval-based RIR predictors, we find that the
material-aware baseline, which considers the target mate-
rial distribution, outperforms the material-agnostic method,
FAST-RIR++ [26, 33], and Image2Reverb [41] (except for
STFT). Furthermore, AV-RIR [35] improves upon these re-
trieval methods by leveraging the estimated source RIR of
the original scene, AS , and transferring late reverberation
patterns from a retrieved RIR with a similar visual and mate-
rial distribution within the training data. Nevertheless, while
AV-RIR improves the RTE and CTE performance, all other
methods still struggle to surpass the simple direct mapping
baseline. This may be due to the challenges in effectively
modeling the impact of material properties on the target RIR
and the substantial differences between the seen scenes Ss

used for training and the unseen scenes Su used for testing,
which require strong generalization capabilities.

Our approach outperforms all baselines and methods
across the various input modalities, metrics, and testing se-
tups, demonstrating the robustness and effectiveness of our



Method L1 STFT RTE CTE

M-CAPA (audio-visual) 5.27 3.87 91.44 8.44

a) Ours w/o MT 5.61 4.06 109.46 9.19
b) Ours w/o BT 5.75 4.93 105.19 10.83
c) Ours w/ Inferred Gn 5.63 3.99 97.63 9.10
d) Ours w/ Changed MT 5.47 4.00 96.36 9.04

Table 2. Ablation of our model on the test split Duu. Lower is
better for all metrics. For the other splits, see Supp.

model. Interestingly, the vision-only variant of our model
(using Vn and without AS or Gn) still outperforms all com-
peting methods, including those with audio-visual inputs.
This demonstrates that while audio observations are benefi-
cial, strong performance can still be achieved using vision
alone, simplifying the input requirements. Across different
splits, performance on Dt

uu and Dt
uk is lower than on Dt

us.
This is expected, as these settings require the model to gen-
eralize not only to unseen scenes but also to unseen material
configurations and profile pairings. Analyzing the perfor-
mance of different models on separate splits using the seen
scenes Ss (see Supp for details) further highlights that gen-
eralization across scenes remains a major factor contributing
to prediction errors across all methods.

4.2. Model Analysis
Ablations Table 2 presents various ablations of our model
to investigate the contribution of different components.

First, excluding the target material information (row a)
negatively impacts performance, especially in metrics that
capture key RIR acoustic properties, such as RTE and CTE.
We also evaluate our novel formulation for RIR generation
(Eq. 1), finding that not explicitly modeling the novel im-
pact, BT , of the target material on AT leads to weaker per-
formance. Notably, learning only masking weights is not
sufficient for precise predictions (row b).

Furthermore, in row c, we test the effect of using a pre-
trained semantic segmentation model [53] to infer Gn from
Vn, rather than retrieving Gn directly from SSv2. This leads
to a small drop in performance, suggesting a gap that could
be mitigated with a more effective segmentation model.

Finally, in row d, we examine whether it is necessary to
provide a full material assignment in MT or if specifying
only the changed materials is sufficient. Our results indicate
that a complete target material mask, while it helps, it is not
necessary, which simplifies the input requirements for our
model. See the Supp for loss ablations and comparisons of
the computational cost between our model and the baselines.

Performance Analysis In Fig. 3, we present a detailed
analysis of our model’s performance on the Duu test split.
First, we examine the correlation between the relative area
size associated with new material assignments in MT and
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Figure 3. Performance analysis of our model with respect to the
percentage of new material assignments in MT (a and b) and across
different material classes (c and d).

the performance metrics. As shown in Fig. 3a and Fig. 3b, an
interesting relationship exists between these variables. When
the modified area in MT is small, we observe a relatively
large error, which decreases as the material assignments
cover a larger portion of MT . This may be due to the
difficulty in capturing the impact of small material changes
in the scene (e.g., changing the material of a chair) on the
final RIR. Additionally, smaller objects often have irregular
shapes, which makes predicting how they interact with sound
in the target RIR more challenging.

The lowest error is observed when the changed material
covers between 50% and 70% of the mask, typically corre-
sponding to objects like walls, floors, and ceilings. These
surfaces tend to be flat and regular, which makes it relatively
easier to model their acoustic effects. Interestingly, the er-
ror increases slightly when new material assignments cover
almost the entire scene.

We further analyze performance across different material
classes in Fig. 3c and Fig. 3d. Our model appears to exhibit
higher error rates with material classes such as wood and
steel, compared to cloth, foliage, and acoustic tiles, which
seem easier for our model to handle. This difference could
be due to the intrinsic properties of these materials (i.e, how
they absorb, reflect, and cause reverberations) across various
frequency bands. Additional analysis is needed to better
understand these material-specific behaviors.

Qualitative Results In Fig. 4, we present two qualitative
results from our model. Our model effectively incorporates
changes in the target material mask and simulates their im-
pact on the predicted target RIR of the scene. For instance,
the model successfully introduces new reverberation patterns
to reflect the effect of assigning a brick material to the floor
(Fig. 4a) or foliage to the ceiling (Fig. 4b). Note that these re-
verberation patterns were absent in the source echo response
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Figure 4. Qualitative results. Our model effectively captures the impact of target material configurations on the generated target RIR, even
when these patterns are novel and absent from the source RIR (a and b). For brevity, we only show one channel of the binaural RIRs.
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Figure 5. For scenes with complex and highly irregular shapes,
such as the ceiling in this example, the model encounters challenges
in accurately estimating the target RIR.

RIR; nonetheless, our model accurately captures the effects
of the changed materials in the output. Please refer to the
supplementary video to experience the impact of material
changes on the generated target RIRs.

Failure Cases and Limitations While our model performs
well overall, we observed some cases where the proposed
approach encounters difficulties. Specifically, changing the
materials of irregularly shaped objects often leads to subop-
timal estimates of the target RIR. We provide an example
of such a scenario in Fig. 5. In this example, the top of
the scene comprises an intricate set of columns, domes, and
beams, along with a dense arrangement of chairs and tables.
When changing the material of the top area to concrete, the
model struggled to accurately capture this change, likely due
to the strong irregularity in the ceiling’s shape.

Furthermore, when analyzing the impact of acoustic noise
on the robustness of our predictions (see Supp for details),

we find that performance degrades as noise levels increase,
due to the reduced quality of the source echo response RIR.
However, we anticipate that training the model with acoustic
augmentation techniques with noisy inputs could improve
the approach’s robustness. Lastly, our approach does not cur-
rently account for the introduction of new, unseen material
classes at inference time. Addressing this limitation is an
interesting direction for future work.

4.3. User Study on Real-World Data
Since there is no real-world dataset compatible with our task,
we collected samples (RGBs) from two real scenes. In each
scene, we assigned the target materials to one of three classes
(Carpet, Brick, and Glass) and used our vision-only model to
generate the target RIR. After a brief training with simulated
data, 5 users were asked to identify the target material based
solely on speech convolved with the predicted AT . The
overall accuracy was 61.1% (random chance: 33%), demon-
strating that our model effectively encodes target material
properties and generalizes to real-world data. See Supp and
video for details.

5. Conclusion
This work introduces a novel task and an approach for dy-
namically controlling the generation of a target Room Im-
pulse Response (RIR) using arbitrary material configurations
at inference time. Additionally, we have compiled a new
dataset, the Acoustic Wonderland dataset, designed to sup-
port the development and evaluation of multimodal methods
for material-aware acoustic profile modeling within a 3D
scene. We anticipate that the proposed task and dataset will
be of significant interest to the research community, and
enable new applications in AR/VR, creative design, sound
engineering, and spatial planning.
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