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6. Supplementary Material
In this supplementary material, we provide further details
about:
• Supplementary video (with audio) Sec. 6.1 for qualitative

evaluation of our model predictions as stated in Sec. 4.
• Real-World Generalization (Sec. 6.3) as mentioned in

Sec. 4.
• Ablations on other test splits (Sec. 6.2) as mentioned in

Sec. 4, Table 2.
• Loss ablations Sec. 6.4 and computational cost analysis

Sec. 6.5 as stated in Sec. 4.
• Performance analysis on other test splits (Sec. 6.6) as

stated in Sec. 4.
• Evaluation results on seen splits (Sec. 6.7) as stated in

(Sec. 4).
• Robustness to noise experiments (Sec. 6.8) as noted in

Sec. 4.
• Acoustic Wonderland dataset (Sec. 6.9), as mentioned in

Sec. 3.2, and a user study on the perceptual differences as
mentioned in Sec. 3.2.

• Model Architecture details (Sec. 6.10).
• Evaluation setup (Sec. 6.11), as mentioned in Sec. 4.

6.1. Supplementary Video
We provide a supplementary video, see the project page,
to illustrate the qualitative results produced by our model,
M-CAPA. The video begins with a brief overview of the
motivation and contributions of this work. It then presents
qualitative results by showcasing a variety of speech sounds
from the datasets [39] and [30], convolved with the predicted
target room impulse response (RIR), ÂT . These examples
emphasize the quality of the predictions and demonstrate
how effectively the model captures the diverse target material
configurations introduced in the input scenes.

Furthermore, the video highlights failure cases where the
model encountered difficulties in accurately representing
material changes, thereby shedding light on challenges that
remain to be addressed. For instance, M-CAPA struggles
to model environmental acoustics when significant material
changes are applied to large objects with highly irregular
shapes. Additionally, we observe suboptimal performance
when certain materials, such as Sound-Proof and Steel, are
extensively used in the target material mask.

6.2. Ablations On Other Test Splits
We present ablation results on the remaining test splits, Dus

and Duk, in Table 3. Similar trends to those reported in

Unseen Environments
Seen Materials Unseen Pairings

Method L1 STFT RTE CTE L1 STFT RTE CTE

M-CAPA (Ours) 5.10 3.62 88.15 8.04 5.47 4.15 91.32 8.57

a) Ours w/o MT 5.39 3.78 104.77 8.67 5.77 4.35 107.53 9.13
b) Ours w/o BT 5.52 4.52 98.30 10.79 5.93 5.17 104.72 10.51
c) Ours w/ Inferred Gn 5.42 3.72 98.46 8.53 5.79 4.27 99.70 9.03
d) Ours w/ Changed MT 5.27 3.74 94.97 8.48 5.63 4.29 96.81 8.95

Table 3. Ablation results of our model on unseen environments
using test sets Dus (seen material profiles) and Duk (unseen ma-
terial profile pairings). The results exhibit similar trends to those
observed on Duu. For all metrics, lower values indicate better
performance.

Brick Carpet

Figure 6. Predicted RIRs from vision-only M-CAPA in an audito-
rium classroom environment where MT =Brick and MT =Carpet

Table 2 in the main text are observed. Our complete model,
M-CAPA, achieves the best overall performance across all
splits. Notably, as shown in row b, incorporating BT allows
the model to learn the differences between AS and AT that
arise from selecting target materials, which introduce new
types of reverberations not present in AS . This incorporation
enhances learning, particularly for acoustic metrics such as
RTE and CTE. Furthermore, in row a, excluding the target
material change and relying solely on visual cues and AS to
predict AT leads to a noticeable degradation in performance.

6.3. Real-World Generalization
To asses M-CAPA’s ability to generalize to real-world sam-
ples, we collected RGB images from two real-world scenes
and used our vision-only M-CAPA to generate a target RIR
(AT ). The target material of the objects in the scenes was
set to one of three classes carpet, brick, and glass (Figure 6
shows qualitative results).

Then, we conduct a user study (4.3) to measure M-
CAPA’s performance. We ask 5 users to go through a brief
training so they may distinguish the acoustic properties of
different materials (Figure 7a). Afterwards, we ask them



Loss L1 STFT RTE CTE

L1 + L2+Energy Decay 5.29 3.87 90.61 8.52

a) L1 Only 5.46 4.13 97.92 9.47
b) L2 Only 6.19 4.00 241.41 9.22
c) L1+Energy Decay 5.55 4.15 99.00 9.45
d) L2+Energy Decay 6.47 4.12 248.69 9.12
e) L1 + L2 5.59 3.99 109.27 9.26

Table 4. Ablation of losses

Method AS Vn Params (M) GFLOPs Inf. Time (ms)

AV-RIR [37] ✓ ✓ 390.66 270.43 794.06
M-CAPA (Ours) ✓ ✓ 10.56 17.98 114.22

Image2Reverb [44] ✓ 57.6 276.91 198.44
FAST-RIR[35]++ ✓ 132.68 57.84 121.76
M-CAPA (Ours) ✓ 5.84 11.24 76.61

Table 5. Computational cost of the baselines and M-CAPA. Our
approach is significantly faster and lighter. Lower is better for all
metrics.

to listen to the predictions by M-CAPA on the real-world
samples when AT is convolved with speech, and ask them
to identify the target material used to generate AT as one
of the three materials: Brick, Carpet, and Glass (Figure 7b).
Overall, the accuracy achieved by the users in identifying
the correct material in this task was 61.1% (random chance:
33%), showing that our model successfully encodes the tar-
get material signature in AT even in samples from real-world
scenes.

6.4. Loss Ablations

As discussed in Sec.3.3, our model is trained with L1, L2
and energy decay loss [27]. We investigate the impact of
each loss as our learning objective by performing ablations
on the losses (Table 4). We see from row (a) and row (b) that
L1 is the most important loss in minimizing error between
predicted RIR and ground truth RIR. However, L2 plays a vi-
tal role in ensuring that the STFT loss is minimized, and that
loss between acoustic parameters is consequently reduced.
The energy decay loss acts as supervision for the acoustic
metrics, CTE and RTE, ensuring that the reverberation time
and early-to-late reflections of the predicted RIR are aligned
with the ground truth RIR.

6.5. Computational Cost

Our M-CAPA is a light-weight and efficient end-to-end
model that can render RIRs conditioned on material pro-
files. Table 5 compares the number of trainable parameters,
GFLOPs, and inference time of M-CAPA to other SoTA
approaches. Our model is significantly faster and lighter
than the baselines.

(a)

(b)

Figure 7. User interface for the real-world user study. a) Interface
for user training b) Interface for the real-world samples.

6.6. Performance Analysis on Dus and Duk

We analyze the performance of our model with respect to
the changed material area in MT and the different material
classes, on the remaining test splits Dus (Fig. 8) and Duk

(Fig. 9). In both cases, we observe that our model generally
benefits from material changes applied to larger areas within
the scene. Larger areas provide more information to the
model about how the target acoustic profile may change,
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Figure 8. Performance analysis of our model on Dus with respect
to the percentage of new material assignments in MT (a and b)
and across different material classes (c and d).
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Figure 9. Performance analysis of our model on Duk with respect
to the percentage of new material assignments in MT (a and b)
and across different material classes (c and d).

compared to cases where only a small area undergoes new
material assignments.

Furthermore, consistent with our analysis of performance
on Duu, we find that certain material classes, such as Steel
and Wood, are relatively more challenging for the model to
accurately predict compared to others.

6.7. Evaluation Results on Seen Environments
We present the performance of our model in seen environ-
ments in Table 6. These environments are observed during
training, and we evaluate performance under two setups:
with seen material profiles (Dss) and with unseen material
profiles (Dsu). The results for the split where both environ-
ments and materials match the training setup (Dss) show that
baselines, such as the Material Aware baseline, perform ex-
ceptionally well. This is expected, as both the evaluation and
training samples originate from the same scene and material

Seen Environments
Observation Seen Materials (Dss ) Unseen Materials (Dsu )

Method As Vn L1 STFT RTE CTE L1 STFT RTE CTE

Direct Mapping ✓ 8.22 8.29 121.01 12.07 8.33 8.27 120.97 12.99
M-CAPA (Ours) ✓ 5.96 4.63 92.33 7.73 5.98 4.62 93.96 8.72

Image2Reverb[44] ✓ 14.35 7.60 253.02 20.95 14.12 7.39 237.69 21.48
FAST-RIR++[27, 35] ✓ 17.25 32.45 303.95 22.95 17.21 33.51 316.15 21.91
Material Agnostic ✓ 8.18 8.11 119.23 11.47 8.23 8.24 117.03 12.33
Material Aware ✓ 3.47 3.36 57.68 5.09 7.27 7.02 83.91 9.79
M-CAPA (Ours) ✓ 5.98 5.17 90.16 7.62 5.96 5.05 91.59 8.64

AV-RIR [37] ✓ ✓ 7.66 8.14 64.47 10.56 8.16 8.22 85.83 11.67
M-CAPA (Ours) ✓ ✓ 5.80 4.63 90.72 7.71 5.81 4.61 91.56 8.70

Table 6. Results on seen environments (used during training) when
evaluated under two conditions: when coupled with seen material
profiles (Dss) which match exactly the training setup, and when
coupled with unseen material profiles (Dsu). Certain methods, such
as the Material Aware, appear to overfit to the training samples in
Dss, leading to poor generalization performance on unseen cases
like those in Dsu. In contrast, our model, M-CAPA, demonstrates
better generalization capabilities, achieving improved performance
on Dsu while maintaining balanced results on Dss. STFT and
L1 are scaled by ×10−2, RTE is in milliseconds (ms), and CTE
in decibels (dB). Lower values indicate better performance for all
metrics.

distributions, enabling these baselines to overfit effectively
to the training data. However, this overfitting results in poor
generalization to unseen material profiles (Dsu), as shown in
the left side of Table 6, and limited generalization to unseen
environments, as highlighted in the main experiments (Ta-
ble 1). In contrast, our model, M-CAPA, demonstrates robust
generalization across unseen material profiles and unseen
environments, as demonstrated by the results.

6.8. Noise Experiments

We evaluate the robustness of our model against noisy esti-
mates of AS . During inference, we introduce Gaussian noise
to the source RIR with varying levels of strength, ranging
from a signal-to-noise ratio (SNR) of 40 dB (relatively clean
AS) to 0 dB (extremely noisy AS). In Fig. 10, we illustrate
the impact of noise on our model’s performance for both the
STFT error and the RTE metrics on the Duu split (a similar
trend is observed on the other test splits).

Our results show that the model’s performance degrades
gradually as the noise level increases. We believe that the
robustness of our model to noise could be improved by in-
corporating data augmentation techniques with noisy inputs
during training. We leave this as a direction for future work.

6.9. Acoustic Wonderland Dataset

We provide detailed information regarding the creation and
characteristics of our dataset, including the location sampling
methodology, material properties, material profiles, and their
pairings.
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Figure 10. Robustness to noise. We introduce increasing levels of
noise to the source RIR AS during inference, ranging from an SNR
of 40 dB (clean AS) to 0 dB (extremely noisy AS), and evaluate
performance on Duu. For both metrics, lower values indicate better
performance.

Location Sampling The locations for sampling data points
in our dataset are selected based on specific criteria to ensure
that each point lies in an open space within the environ-
ment and provides meaningful visual and acoustic infor-
mation. The sampling process involves randomly selecting
locations within an indoor scene, subject to the condition that
no two sampled locations are closer than a predefined dis-
tance threshold of 0.1m. This prevents sampling overlapping
locations and ensures a more uniform spatial coverage of
the scene. At each selected location, we place a sensor suite
consisting of a camera, a speaker, and binaural microphones
with a random orientation. To enhance the diversity and
realism of the dataset, care is taken to avoid situations where
the camera is positioned too close to, or directly facing, large
objects such as walls or doors.

Material Classes Our dataset incorporates 12 material
classes, including wood, steel, concrete, grass, foliage, glass,
brick, steel, sound-proof, carpet and acoustic tiles. We also
include a default material class which is SoundSpaces de-
fault material mapped onto any unlabeled object in the scene.
Each material class is characterized in SoundSpaces by its
acoustic coefficients, such as reflection, absorption, trans-
mission, and damping properties across various frequency
bands of sound waves. These coefficients are essential for
accurately modeling the acoustic behavior of the materials
within the simulated environment.

Material Profiles Each profile defines a mapping between
material classes and semantic object categories within a
scene. The SoundSpaces simulator utilizes this mapping to
assign materials to objects based on their semantic labels.
For each material profile in our dataset, a random mapping
is generated to disentangle the relationship between material
and semantic classes. For instance, one material profile may
assign wall and floor to the material wood, while another
profile maps wall to concrete and floor to carpet. These
mappings are applied to large objects and surfaces, such as
furniture, doors, and walls, while smaller objects (e.g., sports
equipment, utensils, televisions) retain their default materials.
This distinction is made because smaller objects typically

have negligible impact on the overall acoustic profile of the
scene. In total, we generate 2,673 unique material profiles
for our dataset. See examples in Fig. 11.

Pairings Following the observation sampling step de-
scribed in the main paper (Sec. 3.2), we sample, for each
location, a random pairing of two observations derived from
different material profiles: On,S = (Vn, Gn,Mn,S , An,S)
and On,T = (Vn, Gn,Mn,T , An,T ). In this pairing, one
observation serves as the source configuration, represent-
ing the original state of the scene (Vn, Gn, An,S), while the
other represents the target state (Mn,T , An,T ), after apply-
ing a material change. The material change is denoted as
diff(Mn,T ,Mn,S). This setup simulates a scenario where
a user alters the material configuration of the scene from
Mn,S to Mn,T , and the objective is to generate the corre-
sponding target acoustic profile An,T .

Perceptual Differences When collecting our dataset, we
filtered out any samples in which less than 10% of the in-
put view contained changed material to ensure a noticeable
difference between AS and AT . However, does our data cor-
respond to samples with noticeable perceptual differences
observed by the users? To investigate this, we selected 45
samples uniformly from various L2 differences between AS

and AT in our test data, along with 15 controlled samples
featuring identical RIR pairs where AS = AT . We then
asked 8 users to listen to sounds convolved with both RIRs
and determine whether they sounded the same or different.

Our results show that the users achieved 87.9% accuracy,
indicating a strong perceptual distinction in our dataset. We
show error distribution for the user study in Figure 12b.
Most errors occurred when the L2 difference was in the
lower range (11.1 to 77.8), suggesting that smaller variations
in L2 distance are less perceptually salient. However, in
general the error is low, below 6%, across all L2 bins.

In Table 7 and Table8, we present the performance of
different models on our test data, focusing only on samples
with high perceptual differences (L2 ≥ 75). The results
show that our model maintains its advantage over state-of-
the-art and baselines in this setting as well.

6.10. Model Architecture Details
The encoders in our model are based on a convolutional
neural architecture inspired by the UNet [40]. Each encoder
(fV , fG, fA, or fM ) comprises four downsampling layers.
Each layer includes a convolutional block followed by a
downsampling module.

The convolutional block consists of two consecutive
Conv2D layers, each with a kernel size of 3, a batch normal-
ization layer, and a LeakyReLU activation [57]. To enhance
generalization, a dropout layer [46] with a rate of 0.2 is
included in each layer.



Figure 11. Examples from our Acoustic Wonderland Dataset. Each data point contains an RGB image, a semantic segmentation mask, a
material segmentation mask, and the corresponding acoustic profile in the form of a two-channel RIR.

Observation Seen Materials Unseen Materials Unseen Pairings
Method As Vn L1 STFT RTE CTE L1 STFT RTE CTE L1 STFT RTE CTE

Direct Mapping ✓ 9.63 10.29 132.7 14.65 9.59 10.31 134.4 15.04 9.97 10.89 133.9 14.03
M-CAPA (Ours) ✓ 6.75 5.38 98.28 9.05 6.76 5.42 102.2 9.41 7.25 6.12 100.2 9.91

Image2Reverb [44] ✓ 18.38 9.51 234.1 39.92 17.56 8.91 202.2 40.65 16.36 9.27 231.5 37.89
FAST-RIR++ [27, 35] ✓ 18.97 34.88 311.4 20.78 18.67 37.29 324.8 20.30 19.71 44.80 312.0 20.67
Material Agnostic ✓ 10.06 13.27 127.8 14.28 10.12 13.01 127.1 14.56 10.49 13.76 129.9 13.93
Material Aware ✓ 9.88 12.64 105.2 11.81 9.81 12.65 102.5 12.18 10.60 13.75 106.3 12.05
M-CAPA (Ours) ✓ 7.16 7.23 96.90 9.30 7.13 7.23 98.28 9.65 7.70 8.24 101.3 10.03

AV-RIR [37] ✓ ✓ 9.62 10.30 108.3 12.78 9.57 10.32 106.7 12.78 10.06 10.97 107.4 12.35
M-CAPA (Ours) ✓ ✓ 6.57 5.39 97.58 8.99 6.54 5.42 101.0 9.22 7.07 6.15 101.6 9.81

Table 7. Results on unseen environments with (AS ,AT ) samples that have L2 ≥ 75 for our three test splits: Dus, Duu and Duk. STFT and
L1 are scaled by ×10−2, RTE is in milliseconds (ms), and CTE in decibels (dB). Lower values indicate better performance for all metrics.

The downsampling module within each encoder layer
consists of a MaxPooling layer with a kernel size of 2 and
a stride of 2. This reduces the spatial resolution by a factor
of 2 at each layer. The four layers of the encoder use 32, 64,
128, and 512 kernels, respectively.

The fusion layer, F , combines the multimodal scene em-
bedding em and the material embedding et. This fusion is
performed using a single Conv2D layer with a kernel size of
3 and a stride of 1, which effectively integrates information
from both embeddings into a unified representation.

The decoder, fT , follows an architecture similar to the
encoders but in a mirrored configuration. It consists of four
upsampling blocks. Each upsampling block contains a single
Transpose Conv2D layer, followed by two Conv2D layers,
a batch normalization layer, and a LeakyReLU activation
function. Skip connections are incorporated from the corre-
sponding layers of the fA encoder, allowing the decoder to
leverage features from earlier stages of the encoding process.
The final output of the decoder is a two-channel binaural
magnitude spectrogram of the target acoustic response.



Method L1 STFT RTE CTE

M-CAPA (Ours) 6.56 5.42 101.0 9.25

a) Ours w/o MT 6.91 5.64 117.1 10.02
b) Ours w/o BT 7.20 6.98 116.3 12.52
c) Ours w/ Inferred Gn 6.93 5.56 107.3 9.96
d) Ours w/ Changed MT 6.78 5.59 108.1 9.91

Table 8. Ablation of our model on the test split Duu with distance
between (AS , AT ) ≥ 75. Lower is better for all metrics.
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Figure 12. Analysis of perceptual differences in test data. Left,
we show the distribution of differences between (AS , AT ) in our
unseen environments test splits. Right, we analyze the breakdown
of errors accumulated by users during the perceptual difference
user study. Overall, the error is low across all bins (below 6%),
and as the L2 distance between AS and AT increases, perceptual
differences become more apparent and user error decreases.

6.11. Evaluation Setup
In this section, we provide additional details about the base-
lines and evaluation metrics used in our experiments.

Baselines
• Direct Mapping: This baseline directly uses AS as the

prediction for AT , effectively ignoring the target material
information. In other words, it assumes that the original
acoustic response is sufficient to predict the target response.
This baseline serves as a reference for quantifying the
impact of material configuration on the target acoustics, as
AS already captures the scene shape, object distribution,
and original material configuration.

• Material Agnostic Matcher: In this baseline, we compute
the cosine similarity between the visual embedding ev of
the input and the embeddings of visual observations Vn in
the training set. The most similar data point is selected, and
a random RIR associated with that location ln is returned
as the prediction. This approach represents methods that
estimate RIRs based on visual characteristics of the scene
alone, without incorporating material information.

• Material Aware Matcher: Similar to the Material Ag-
nostic Matcher, this baseline identifies the most visually
similar scene location ln from the training data. However,
in addition to visual similarity, it takes material informa-
tion into account. From the set of RIRs associated with
different material profiles at the selected location, we com-

pute the L1 distance between the material distribution as-
sociated with each RIR and the target material distribution
MT . The RIR with the most similar material distribution
to MT is selected. This baseline highlights the importance
of accounting for material configuration and the similarity
between material settings during training and testing.

• Image2Reverb [44]: We follow the official implementa-
tion provided by the authors to train this model on our
dataset. With the same pre-trained depth and visual en-
coders from the original implementation, we train the
GAN-based network to predict RIRs using the Acoustic
Wonderland dataset.

• AV-RIR [37]: The AV-RIR model initially infers the RIR
from reverberant speech and then estimates the late compo-
nents of the RIR using a retrieved sample from a material-
aware training database. To adapt this baseline to our
case and improve its performance, we make the following
changes: (1) Instead of inferring the source RIR from rever-
berant speech, we provide AS directly as input, as it offers
a more accurate representation; (2) Similar to the Mate-
rial Aware Matcher baseline, we retrieve the RIR of the
closest training sample based on both visual and material-
based similarity to the input sample. (3) While the original
implementation uses a 360◦ panoramic RGB images to
predict target RIRs, we choose to retrieve the closest sam-
ple in the training set using 90◦ Field of View (FoV) for
fair comparison with M-CAPA which also uses 90◦ FoV.
When comparing the impact of FoV on the performance
of the AV-RIR baseline, we note that an increased FoV
yields only marginal improvement. For example, in test
split Duu, L1 error drops from 7.59 to 7.49, STFT error
reduces from 7.17 to 7.12, RTE improves from 99.10ms
to 98.56ms and CTE drops from 11.35 to 11.22. This
suggests that AS already carries significant cues about the
entire room, without needing 360◦ FoV as visual input.
Following the AV-RIR approach, we retain the first 2000
samples of AS and replace the remaining samples with the
reverberant components of the retrieved RIR.

• FAST-RIR++: [35] is a GAN-based approach to RIR
synthesis for rectangular rooms, using properties of the
acoustic environment such as room size, speaker/listener
positions and reverberation time of the target RIR. We
modify this approach following [27] by making the follow-
ing changes: (1) Instead of providing the room size, we
provide ground truth depth images, making this a vision-
based variation of the original implementation. (2) In
addition to RT60 provided by the original implementation,
we also provide the direction-to-reverberant ratio (DRR)
as an acoustic parameter of the room. We obtain acoustic
parameters from the source RIR. We train FAST-RIR++
on our training dataset until convergence and evaluate on
test splits.

These baselines and existing methods address various



aspects of evaluation and represent key directions in the RIR
prediction literature. The Direct Mapping baseline evaluates
methods that focus solely on capturing the geometric and
structural properties of the scene, without accounting for
material changes. In contrast, the Material Agnostic and
Material Aware baselines represent robust nearest-neighbor
approaches. These baselines rely on the similarity between
test and training scenes, either based purely on visual in-
formation or incorporating material representations. This
comparison enables us to evaluate whether a method merely
memorizes training data and whether the inclusion of mate-
rial information leads to improved predictive performance.

Furthermore, Image2Reverb, FAST-RIR++, and AV-RIR
represent state-of-the-art (SoTA) approaches for RIR pre-
diction. Image2Reverb relies exclusively on visual inputs
to predict the RIR of a scene. Interestingly, our findings
reveal that Image2Reverb demonstrates low performance in
evaluations, even after retraining on our dataset, being out-
performed by some of the baselines in RTE and CTE. This
observation shows that reliance on just RGB observations
is not sufficient to render accurate RIRs that model mate-
rial changes in the environment. AV-RIR integrates material
information within a more advanced prediction framework,
estimating RIRs from reverberant speech, and finally condi-
tioning late components of the estimated RIR using scene-
based retrieval. AV-RIR focuses on limited material-object
mapping, while our approach assumes all semantic objects
in the scene are mapped to materials and contribute to the
final RIR prediction. FAST-RIR++ provides an acoustically
guided approach to RIR prediction, using target acoustic
parameters to guide RIR generation. This baseline examines
the impact of explicit acoustic parameters for the prediction
of accurate RIRs.

Metrics We used the following metrics to evaluate perfor-
mance:
• L1 Error: The L1 norm between the generated ÂT and

ground truth AT audio’s magnitude spectrograms.
• STFT Error: The mean squared error (MSE) between the

magnitude spectrograms of the generated and ground truth
audio’s magnitude spectrograms.

• RTE: This metric (Reverberation Time Error) quantifies
the difference in time taken for the energy of the pre-
dicted signal ÂT and the ground truth signal AT to decay
by 60 dB. This is a standard metric used in prior works
(e.g., [11, 27, 37]). Following the approach in [27], we
use the Schroeder Integration Method [21] to estimate the
decay time. For binaural RIRs, we compute the reverbera-
tion time for both channels and report the average absolute
difference between ÂT and AT .

• CTE [53]: This metric calculates the difference in the
ratio of direct energy (the first 50 ms of the signal) to
late energy for both signals, providing insight into how

accurately a model captures the acoustic characteristics of
the environment.

Signal Reconstruction For both RTE and CTE, a wave-
form representation of ÂT is required. Reconstructing the
target signal accurately necessitates the inclusion of phase
information. To address this, we leverage the phase infor-
mation from the source impulse response (AS). By carrying
over the phase from AS , the predicted magnitude can be
reconstructed into a waveform that can be directly compared
to the target waveform, ensuring a meaningful evaluation of
the reconstruction accuracy.
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[21] Tobias Lentz, Dirk Schröder, Michael Vorländer, and Ingo As-
senmacher. Virtual reality system with integrated sound field
simulation and reproduction. EURASIP journal on advances
in signal processing, 2007:1–19, 2007. 7

[22] Dingzeyu Li, Timothy R Langlois, and Changxi Zheng.
Scene-aware audio for 360 videos. ACM Transactions on
Graphics (TOG), 37(4):1–12, 2018. 3

[23] Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar,
and Chenliang Xu. AV-NeRF: Learning Neural Fields for
Real-World Audio-Visual Scene Synthesis. In Conference on
Neural Information Processing Systems (NeurIPS), 2023. 2

[24] Susan Liang, Chao Huang, Yapeng Tian, Anurag Kumar, and
Chenliang Xu. Neural Acoustic Context Field: Rendering
Realistic Room Impulse Response With Neural Fields, 2023.
2, 3

[25] Shiguang Liu and Dinesh Manocha. Sound synthesis, propa-
gation, and rendering. Morgan & Claypool Publishers, 2022.
2

[26] Andrew Luo, Yilun Du, Michael J. Tarr, Joshua B. Tenen-
baum, Antonio Torralba, and Chuang Gan. Learning Neural
Acoustic Fields. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2022. 2, 3

[27] Sagnik Majumder, Changan Chen*, Ziad Al-Halah*, and
Kristen Grauman. Few-Shot Audio-Visual Learning of En-
vironment Acoustics. In Conference on Neural Information
Processing Systems (NeurIPS), 2022. 3, 5, 6, 2, 7

[28] Ravish Mehra, Nikunj Raghuvanshi, Lauri Savioja, Ming C.
Lin, and Dinesh Manocha. An efficient GPU-based time do-
main solver for the acoustic wave equation. Applied Acoustics,
73(2):83–94, 2012. 2

[29] Shentong Mo and Yapeng Tian. AV-SAM: Segment Anything
Model Meets Audio-Visual Localization and Segmentation.
arXiv preprint arXiv:2305.01836, 2023. 2

[30] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur. Librispeech: an asr corpus based on public do-
main audio books. In 2015 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pages
5206–5210. IEEE, 2015. 1

[31] Nikunj Raghuvanshi, Rahul Narain, and Ming C. Lin. Effi-
cient and Accurate Sound Propagation Using Adaptive Rect-
angular Decomposition. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 15(5):789–801, 2009. 2

[32] Anton Ratnarajah and Dinesh Manocha. Listen2Scene: Inter-
active material-aware binaural sound propagation for recon-
structed 3D scenes . In IEEE Conference Virtual Reality and
3D User Interfaces (VR), pages 254–264, 2024. 2, 3

[33] Anton Ratnarajah, Zhenyu Tang, and Dinesh Manocha. IR-
GAN: Room Impulse Response Generator for Far-Field
Speech Recognition. In Proceedings of Interspeech 2021,
pages 286–290, 2021. 2

[34] Anton Ratnarajah, Zhenyu Tang, and Dinesh Manocha. TS-
RIR: Translated Synthetic Room Impulse Responses for
Speech Augmentation. In IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages 259–266,
2021. 2, 6

[35] Anton Ratnarajah, Shi-Xiong Zhang, Meng Yu, Zhenyu Tang,
Dinesh Manocha, and Dong Yu. Fast-RIR: Fast Neural Dif-
fuse Room Impulse Response Generator. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 571–575, 2022. 2, 3, 6, 5

[36] Anton Ratnarajah, Ishwarya Ananthabhotla, Vamsi Krishna
Ithapu, Pablo Hoffmann, Dinesh Manocha, and Paul Calamia.
Towards improved room impulse response estimation for
speech recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
1–5, 2023. 2

[37] Anton Ratnarajah, Sreyan Ghosh, Sonal Kumar, Purva
Chiniya, and Dinesh Manocha. AV-RIR: Audio-Visual
Room Impulse Response Estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 27164–27175, 2024. 2, 3, 6, 5, 7

[38] Luca Remaggi, Hansung Kim, Philip JB Jackson, and Adrian
Hilton. Reproducing real world acoustics in virtual reality



using spherical cameras. In International Conference on
Immersive and Interactive Audio. Audio Engineering Society,
2019. 3

[39] Colleen Richey, Maria A Barrios, Zeb Armstrong, Chris
Bartels, Horacio Franco, Martin Graciarena, Aaron Lawson,
Mahesh Kumar Nandwana, Allen Stauffer, Julien van Hout,
et al. Voices Obscured in Complex Environmental Settings
(VOICES) corpus. arXiv preprint arXiv:1804.05053, 2018. 1

[40] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Inter-
vention (MICCAI), pages 234–241. Springer, 2015. 4

[41] Carl Schissler and Dinesh Manocha. Interactive Sound Prop-
agation and Rendering for Large Multi-Source Scenes. ACM
Transactions on Graphics (TOG), 36(4):1, 2016. 2, 3

[42] Carl Schissler, Christian Loftin, and Dinesh Manocha. Acous-
tic classification and optimization for multi-modal rendering
of real-world scenes. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 24(3):1246–1259, 2017. 3

[43] Carl Schissler, Christian Loftin, and Dinesh Manocha. Acous-
tic Classification and Optimization for Multi-Modal Render-
ing of Real-World Scenes. IEEE Transactions on Visual-
ization and Computer Graphics (TVCG), 24(3):1246–1259,
2018. 2

[44] Nikhil Singh, Jeff Mentch, Jerry Ng, Matthew Beveridge, and
Iddo Drori. Image2Reverb: Cross-Modal Reverb Impulse
Response Synthesis. IEEE/CVF International Conference on
Computer Vision (ICCV), pages 286–295, 2021. 2, 3, 6, 5

[45] Arjun Somayazulu, Changan Chen, and Kristen Grauman.
Self-Supervised Visual Acoustic Matching. Advances in Neu-
ral Information Processing Systems (NeurIPS), 36, 2024. 3

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 4

[47] Kun Su, Mingfei Chen, and Eli Shlizerman. INRAS: Implicit
Neural Representation for Audio Scenes. In Advances in
Neural Information Processing Systems (NeurIPS), 2022. 2,
3

[48] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans,
Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan,
Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech
Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra
Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training
Home Assistants to Rearrange their Habitat. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 2,
3

[49] Zhenyu Tang, Nicholas J. Bryan, Dingzeyu Li, Timothy R.
Langlois, and Dinesh Manocha. Scene-aware audio rendering
via deep acoustic analysis. IEEE Transactions on Visualiza-
tion and Computer Graphics (TVCG), 26:1991–2001, 2019.
2

[50] Zhenyu Tang, Rohith Aralikatti, Anton Jeran Ratnarajah, and
Dinesh Manocha. GWA: A large high-quality acoustic dataset
for audio processing. In Proceedings of the ACM Special Inter-
est Group on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 1–9, 2022. 3

[51] Lonny L. Thompson. A review of finite-element methods
for time-harmonic acoustics. The Journal of the Acoustical
Society of America, 119(3):1315–1330, 2006. 2

[52] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chen-
liang Xu. Audio-Visual Event Localization in Unconstrained
Videos. In Proceedings of the European Conference on Com-
puter Vision (ECCV), 2018. 2

[53] Tor Erik Vigran. Building acoustics. CRC Press, 2014. 1, 7
[54] Michael Vorländer. Simulation of the transient and steady-

state sound propagation in rooms using a new combined ray-
tracing/image-source algorithm. The Journal of the Acoustical
Society of America, 86(1):172–178, 1989. 2

[55] Stephan Werner, Florian Klein, Annika Neidhardt, Ulrike
Sloma, Christian Schneiderwind, and Karlheinz Branden-
burg. Creation of auditory augmented reality using a position-
dynamic binaural synthesis system—technical components,
psychoacoustic needs, and perceptual evaluation. Applied
Sciences, 11(3):1150, 2021. 1

[56] Xinyi Wu, Zhenyao Wu, Lili Ju, and Song Wang. Binau-
ral Audio-Visual Localization. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 2961–2968, 2021.
2

[57] Bing Xu. Empirical Evaluation of Rectified Activations in
Convolutional Network. arXiv preprint arXiv:1505.00853,
2015. 4

[58] Chenyu Yang, Yuntao Chen, Hao Tian, Chenxin Tao, Xizhou
Zhu, Zhaoxiang Zhang, Gao Huang, Hongyang Li, Yu Qiao,
Lewei Lu, et al. Bevformer v2: Adapting modern image
backbones to bird’s-eye-view recognition via perspective su-
pervision. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 17830–17839,
2023. 5, 7


	Introduction
	Related Works
	Material-Controlled RIR Generation
	Task Definition
	Acoustic Wonderland Dataset
	M-CAPA Model

	Experiments
	Target RIR Generation Results
	Model Analysis
	User Study on Real-World Data

	Conclusion
	Supplementary Material
	Supplementary Video
	Ablations On Other Test Splits
	Real-World Generalization
	Loss Ablations
	Computational Cost
	Performance Analysis on Dus and Duk
	Evaluation Results on Seen Environments
	Noise Experiments
	Acoustic Wonderland Dataset
	Model Architecture Details
	Evaluation Setup




