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Abstract

What is the future of fashion? Tackling this question from
a data-driven vision perspective, we propose to forecast vi-
sual style trends before they occur. We introduce the first
approach to predict the future popularity of styles discov-
ered from unlabeled images. Using these styles as a ba-
sis, we train a forecasting model to represent their trends
over time. The resulting model can hypothesize new mix-
tures of styles that will become popular in the future, dis-
cover style dynamics (trendy vs. classic), and name the
key visual attributes that will dominate tomorrow’s fash-
ion. We demonstrate our idea applied to three datasets en-
capsulating 80,000 fashion products sold across six years
on Amazon. Results indicate that fashion forecasting bene-
fits greatly from visual analysis, much more than textual or
meta-data cues surrounding products.

1. Introduction
“The customer is the final filter. What survives the whole

process is what people wear.” – Marc Jacobs

Fashion is a fascinating domain for computer vision.
Not only does it offer a challenging testbed for fundamen-
tal vision problems—human body parsing [41, 42], cross-
domain image matching [27, 19, 17, 11], and recogni-
tion [5, 28, 9, 20]—but it also inspires new problems that
can drive a research agenda, such as modeling visual com-
patibility [18, 37], interactive fine-grained retrieval [23, 43],
or reading social cues from what people choose to wear [25,
34, 10, 32]. At the same time, the space has potential for
high impact: the global market for apparel is estimated at
$3 Trillion USD [1]. It is increasingly entwined with online
shopping, social media, and mobile computing—all arenas
where automated visual analysis should be synergetic.

In this work, we consider the problem of visual fashion
forecasting. The goal is to predict the future popularity of
fine-grained fashion styles. For example, having observed
the purchase statistics for all women’s dresses sold on Ama-
zon over the last N years, can we predict what salient vi-
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Figure 1: We propose to predict the future of fashion based on
visual styles.

sual properties the best selling dresses will have 12 months
from now? Given a list of trending garments, can we predict
which will remain stylish into the future? Which old trends
are primed to resurface, independent of seasonality?

Computational models able to make such forecasts
would be critically valuable to the fashion industry, in terms
of portraying large-scale trends of what people will be buy-
ing months or years from now. They would also benefit
individuals who strive to stay ahead of the curve in their
public persona, e.g., stylists to the stars. However, fash-
ion forecasting is interesting even to those of us unexcited
by haute couture, money, and glamour. This is because
wrapped up in everyday fashion trends are the effects of
shifting cultural attitudes, economic factors, social sharing,
and even the political climate. For example, the hard-edged
flapper style during the prosperous 1920’s in the U.S. gave
way to the conservative, softer shapes of 1930’s women’s
wear, paralleling current events such as women’s right to
vote (secured in 1920) and the stock market crash 9 years
later that prompted more conservative attitudes [12]. Thus,
beyond the fashion world itself, quantitative models of style
evolution would be valuable in the social sciences.

While structured data from vendors1 is relevant to fash-
ion forecasting, we hypothesize that it is not enough. Fash-
ion is visual, and comprehensive fashion forecasting de-

1i.e., recording purchase rates for clothing items accompanied by meta-
data labels
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mands actually looking at the products. Thus, a key tech-
nical challenge in forecasting fashion is how to repre-
sent visual style. Unlike articles of clothing and their at-
tributes (e.g., sweater, vest, striped), which are well-defined
categories handled readily by today’s sophisticated visual
recognition pipelines [5, 9, 28, 33], styles are more dif-
ficult to pin down and even subjective in their definition.
In particular, two garments that superficially are visually
different may nonetheless share a style. Furthermore, as
we define the problem, fashion forecasting goes beyond
simply predicting the future purchase rate of an individ-
ual item seen in the past. So, it is not simply a regres-
sion problem from images to dates. Rather, the forecaster
must be able to hypothesize styles that will become popular
in the future—i.e., to generate yet-unseen compositions of
styles. The ability to predict the future of styles rather than
merely items is appealing for applications that demand in-
terpretable models expressing where trends as a whole are
headed, as well as those that need to capture the life cycle
of collective styles, not individual garments. Despite some
recent steps to qualitatively analyze past fashion trends in
hindsight [40, 32, 10, 38, 15], to our knowledge no existing
work attempts visual fashion forecasting.

To tackle the problem, we introduce an approach that
forecasts the popularity of visual styles discovered in un-
labeled images. Given a large collection of unlabeled fash-
ion images, we first discover a “vocabulary” of latent styles
using non-negative matrix factorization. The discovered
styles account for the attribute combinations observed in the
individual garments or outfits. They have a mid-level granu-
larity: they are more general than individual attributes (pas-
tel, black boots), but more specific than typical style classes
defined in the literature (preppy, Goth, etc.) [20, 37, 33]. We
further show how to augment the visual elements with text
data, when available, to discover fashion styles. We then
train a forecasting model to represent trends in the latent
styles over time and to predict their popularity in the future.
Building on this, we show how to extract style dynamics
(trendy vs. classic vs. outdated), and forecast the key visual
attributes that will play a role in tomorrow’s fashion—all
based on learned visual models.

We apply our method to three datasets covering six years
of fashion sales data from Amazon for about 80,000 unique
products. We validate the forecasted styles against a held-
out future year of purchase data. Our experiments analyze
the tradeoffs of various forecasting models and represen-
tations, the latter of which reveals the advantage of unsu-
pervised style discovery based on visual semantic attributes
compared to off-the-shelf CNN representations, including
those fine-tuned for garment classification. Overall, an im-
portant finding is that visual content is crucial for securing
the most reliable fashion forecast. Purchase meta-data, tags,
etc., are useful, but insufficient when taken alone.

2. Related work
Retrieval and recommendation There is strong practical
interest in matching clothing seen on the street to an online
catalog, prompting methods to overcome the street-to-shop
domain shift [27, 19, 17]. Beyond exact matching, recom-
mendation systems require learning when items “go well”
together [18, 37, 32] and capturing personal taste [7] and
occasion relevance [26]. Our task is very different. Rather
than recognize or recommend garments, our goal is to fore-
cast the future popularity of styles based on visual trends.

Attributes in fashion Descriptive visual attributes are
naturally amenable to fashion tasks, since garments are of-
ten described by their materials, fit, and patterns (denim,
polka-dotted, tight). Attributes are used to recognize arti-
cles of clothing [5, 28], retrieve products [17, 13], and de-
scribe clothing [9, 11]. Relative attributes [31] are explored
for interactive image search with applications to shoe shop-
ping [23, 43]. While often an attribute vocabulary is defined
manually, useful clothing attributes are discoverable from
noisy meta-data on shopping websites [4] or neural activa-
tions in a deep network [39]. Unlike prior work, we use in-
ferred visual attributes as a conduit to discover fine-grained
fashion styles from unlabeled images.

Learning styles Limited work explores representations of
visual style. Different from recognizing an article of cloth-
ing (sweater, dress) or its attributes (blue, floral), styles
entail the higher-level concept of how clothing comes to-
gether to signal a trend. Early methods explore supervised
learning to classify people into style categories, e.g., biker,
preppy, Goth [20, 37]. Since identity is linked to how a
person chooses to dress, clothing can be predictive of oc-
cupation [34] or one’s social “urban tribe” [25, 30]. Other
work uses weak supervision from meta-data or co-purchase
data to learn a latent space imbued with style cues [33, 37].
In contrast to prior work, we pursue an unsupervised ap-
proach for discovering visual styles from data, which has
the advantages of i) facilitating large-scale style analysis,
ii) avoiding manual definition of style categories, iii) allow-
ing the representation of finer-grained styles (e.g., discov-
ered styles may distinguish between bohemian looks com-
prised of flowing skirts and boots versus bohemian looks
comprised of upper-body layers and denim), and iv) allow-
ing a single outfit to exhibit multiple styles.

Discovering trends Beyond categorizing styles, a few
initial studies analyze fashion trends. A preliminary exper-
iment plots frequency of attributes (floral, pastel, neon) ob-
served over time [40]. Similarly, a visualization shows the
frequency of garment meta-data over time in two cities [32].
The system in [38] predicts when an object was made.The
collaborative filtering recommendation system of [15] is en-
hanced by accounting for the temporal dynamics of fashion,
with qualitative evidence it can capture popularity changes



of items in the past (i.e., Hawaiian shirts gained popularity
after 2009). A study in [10] looks for correlation between
attributes popular in New York fashion shows versus what
is seen later on the street.

Whereas all of the above center around analyzing past
(observed) trend data, we propose to forecast the future
(unobserved) styles that will emerge. To our knowledge,
our work is the first to tackle the problem of visual style
forecasting, and we offer objective evaluation on large-scale
datasets.
Text as side information Text surrounding fashion im-
ages can offer valuable side information. Tag and gar-
ment type data can serve as weak supervision for style
classifiers [33, 32]. Purely textual features (no visual
cues) are used to discover the alignment between words for
clothing elements and styles on the fashion social website
Polyvore [36]. Similarly, extensive tags from experts can
help learn a representation to predict customer-item match
likelihood for recommendation [7]. Our method can aug-
ment its visual model with text, when available. While
adding text improves our forecasting, we find that text alone
is inadequate; the visual content is essential.

3. Learning and forecasting fashion style
We propose an approach to predict the future of fashion

styles based on images and consumers’ purchase data. Our
approach 1) learns a representation of fashion images that
captures the garments’ visual attributes; then 2) discovers
a set of fine-grained styles that are shared across images
in an unsupervised manner; finally, 3) based on statistics
of past consumer purchases, constructs the styles’ temporal
trajectories and predicts their future trends.

3.1. Elements of fashion

In some fashion-related tasks, one might rely solely on
meta information provided by product vendors, e.g., to an-
alyze customer preferences. Meta data such as tags and
textual descriptions are often easy to obtain and interpret.
However, they are usually noisy and incomplete. For exam-
ple, some vendors may provide inaccurate tags or descrip-
tions in order to improve the retrieval rank of their products,
and even extensive textual descriptions fall short of commu-
nicating all visual aspects of a product.

On the other hand, images are a key factor in a product’s
representation. It is unlikely that a customer will buy a gar-
ment without an image no matter how expressive the textual
description is. Nonetheless, low level visual features are
hard to interpret. Usually, the individual dimensions are not
correlated with a semantic property. This limits the ability
to analyze and reason about the final outcome and its rela-
tion to observable elements in the image. Moreover, these
features often reside in a certain level of granularity. This
renders them to be ill-suited to capture the fashion elements
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Figure 2: The architecture of our deep attribute CNN model.

which usually span the granularity space from the most fine
and local (e.g. collar) to the coarse and global (e.g. cozy).

Semantic attributes serve as an elegant representation
that is both interpretable and detectable in images. Addi-
tionally, they express visual properties at various levels of
granularity. Specifically, we are interested in attributes that
capture the diverse visual elements of fashion, like: Colors
(e.g. blue, pink); Fabric (e.g. leather, tweed); Shape (e.g.
midi, beaded); Texture (e.g. floral, stripe); and Parts (e.g.
side-slit, sleeves). These attributes constitute a natural vo-
cabulary to describe styles in clothing and apparel. As dis-
cussed above, some prior work considers fashion attribute
classification [28, 17], though none for capturing higher-
level visual styles.

To that end, we train a deep convolutional model for
attribute prediction using the DeepFashion dataset [28].
The dataset contains more than 200,000 images labeled
with 1,000 semantic attributes collected from online fash-
ion websites. Our deep attribute model has an AlexNet-like
structure [24]. Fig. 2 shows the details of the network ar-
chitecture for our attribute prediction model. The model is
composed of 5 convolutional layers with decreasing filter
sizes from 11 × 11 to 3 × 3 followed by 3 fully connected
layers and 2 dropout layers with probability of 0.5. Ad-
ditionally, each convolutional layer and the first two fully
connected layers in our model are followed by a batch nor-
malization layer and a rectified linear unit (ReLU). The last
attribute prediction layer is followed by a sigmoid activation
function. We use the cross entropy loss to train the network
for binary attribute prediction. The network is trained using
Adam [21] for stochastic optimization with an initial learn-
ing rate of 0.001 and a weight decay of 5e-4.

With this model we can predict the presence of M =
1, 000 attributes in new images:

ai = fa(xi|θ), (1)

such that θ is the model parameters, and ai ∈ RM where the
mth element in ai is the probability of attribute am in image
xi, i.e., ami = p(am|xi). fa(·) provides us with a detailed
visual description of a garment that, as results will show,
goes beyond meta-data typically available from a vendor.



3.2. Fashion style discovery

For each genre of garments (e.g., Dresses or T-Shirts),
we aim to discover the set of fine-grained styles that emerge.
That is, given a set of images X = {xi}Ni=1 we want to
discover the set of K latent styles S = {sk}Kk=1 that are
distributed across the items in various combinations.

We pose our style discovery problem in a nonnega-
tive matrix factorization (NMF) framework that maintains
the interpretability of the discovered styles and scales effi-
ciently to large datasets. First we infer the visual attributes
present in each image using the classification network de-
scribed above. This yields an M × N matrix A ∈ RM×N

indicating the probability that each of the N images con-
tains each of the M visual attributes. Given A, we infer the
matrices W ∈ RM×K and H ∈ RK×N with nonnegative
entries such that:

A ≈WH. (2)

We consider a low rank factorization of A, such that A is
estimated by a weighted sum of K rank-1 matrices:

A ≈
K∑

k=1

λk.wk ⊗ hk, (3)

where ⊗ is the outer product of the two vectors and λk is
the weight of the kth factor [22].

By placing a Dirichlet prior on wk and hk, we insure
the nonnegativity of the factorization. Moreover, since
||wk||1 = 1, the result can be viewed as a topic model with
the styles learned by Eq. 2 as topics over the attributes. That
is, the vectors wk denote common combinations of selected
attributes that emerge as the latent style “topics”, such that
wm

k = p(am|sk). Each image is a mixture of those styles,
and the combination weights in hk, when H is column-wise
normalized, reflect the strength of each style for that gar-
ment, i.e., hik = p(sk|xi).

Note that our style model is unsupervised which makes
it suitable for style discovery from large scale data. Further-
more, we employ an efficient estimation for Eq. 3 for large
scale data using an online MCMC based approach [16]. At
the same time, by representing each latent style sk as a mix-
ture of attributes [a1k, a

2
k, . . . , a

M
k ], we have the ability to

provide a semantic linguistic description of the discovered
styles in addition to image examples. Figure 4 shows exam-
ples of styles discovered for two datasets (genres of prod-
ucts) studied in our experiments.

Finally, our model can easily integrate multiple repre-
sentations of fashion when it is available by adjusting the
matrix A. That is, given an additional view (e.g., based on
textual description) of the images U ∈ RL×N , we augment
the attributes with the new modality to construct the new
data representation Á = [A;U] ∈ R(M+L)×N . Then Á is
factorized as in Eq. 2 to discover the latent styles.

3.3. Forecasting visual style

We focus on forecasting the future of fashion over a 1-
2 year time course. In this horizon, we expect consumer
purchase behavior to be the foremost indicator of fashion
trends. In longer horizons, e.g., 5-10 years, we expect more
factors to play a role in shifting general tastes, from the
social, political, or demographic changes to technological
and scientific advances. Our proposed approach could po-
tentially serve as a quantitative tool towards understanding
trends in such broader contexts, but modeling those factors
is currently out of the scope of our work.
The temporal trajectory of a style In order to predict
the future trend of a visual style, first we need to recover the
temporal dynamics which the style went through up to the
present time. We consider a set of customer transactions Q
(e.g., purchases) such that each transaction qi ∈ Q involves
one fashion item with image xqi ∈ X . Let Qt denote the
subset of transactions at time t, e.g., within a period of one
month. Then for a style sk ∈ S, we compute its temporal
trajectory yk by measuring the relative frequency of that
style at each time step:

ykt =
1

|Qt|
∑

qi∈Qt

p(sk|xqi), (4)

for t = 1, . . . , T . Here p(sk|xqi) is the probability for style
sk given image xqi of the item in transaction qi.
Forecasting the future of a style Given the style tempo-
ral trajectory up to time n, we predict the popularity of the
style in the next time step in the future ŷn+1 using an expo-
nential smoothing model [8]:

ŷn+1|n = ln

ln = αyn + (1− α)ln−1

ŷn+1|n =

n∑
t=1

α(1− α)n−tyt + (1− α)nl0

(5)

where α ∈ [0, 1] is the smoothing factor, ln is the smoothing
value at time n, and l0 = y0. In other words, our forecast
ŷn+1 is an estimated mean for the future popularity of the
style given its previous temporal dynamics.

The exponential smoothing model (EXP), with its ex-
ponential weighting decay, nicely captures the intuitive no-
tion that the most recent observed trends and popularities of
styles have higher impact on the future forecast than older
observations. Furthermore, our selection of EXP combined
with K independent style trajectories is partly motivated by
practical matters, namely the public availability of product
image data accompanied by sales rates. EXP is defined with
only one parameter (α) which can be efficiently estimated
from relatively short time series. In practice, as we will
see in results, it outperforms several other standard time se-
ries forecasting algorithms, specialized neural network so-
lutions, and a variant that models all K styles jointly (see



Dataset #Items #Transaction

Dresses 19,582 55,956
Tops & Tees 26,848 67,338
Shirts 31,594 94,251

Table 1: Statistics of the three datasets from Amazon.

Text
Amanda Uprichard Women's 
Kiana Dress, Royal, Small

Tags
- Women 
- Clothing 
- Dresses 
- Night Out & Cocktail 
- Women's Luxury Brands

Text
Women's Stripe Scoop Tunic 
Tank, Coral, Large

Tags
- Women 
- Clothing 
- Tops & Tees 
- Tanks & Camis

Text
The Big Bang Theory DC 
Comics Slim-Fit T-Shirt 

Tags
- Men
- Clothing
- T-Shirts

Figure 3: The fashion items are represented with an image, a tex-
tual description, and a set of tags.

Sec. 4.2). While some styles’ trajectories exhibit seasonal
variations (e.g. T-Shirts are sold in the summer more than
in the winter), such changes are insufficient with regard of
the general trend of the style. As we show later, the EXP
model outperforms models that incorporate seasonal varia-
tions or styles’ correlations for our datasets.

4. Evaluation
Our experiments evaluate our model’s ability to forecast

fashion. We quantify its performance against an array of al-
ternative models, both in terms of forecasters and alternative
representations. We also demonstrate its potential power for
providing interpretable forecasts, analyzing style dynamics,
and forecasting individual fashion elements.

Datasets We evaluate our approach on three datasets col-
lected from Amazon by [29]. The datasets represent three
garment categories for women (Dresses and Tops&Tees)
and men (Shirts). An item in these sets is represented with
a picture, a short textual description, and a set of tags (see
Fig. 3). Additionally, it contains the dates each time the
item was purchased.

These datasets are a good testbed for our model since
they capture real-world customers’ preferences in fashion
and they span a fairly long period of time. For all experi-
ments, we consider the data in the time range from January
2008 to December 2013. We use the data from the years
2008 to 2011 for training, 2012 for validation, and 2013 for
testing. Table 1 summarizes the dataset sizes.

4.1. Style discovery

We use our deep model trained on DeepFashion [28]
(cf. Sec. 3.1) to infer the semantic attributes for all items in
the three datasets, and then learn K = 30 styles from each.
We found that learning around 30 styles within each cat-
egory is sufficient to discover interesting visual styles that

are not too generic with large within-style variance nor too
specific, i.e., describing only few items in our data. Our
attribute predictions average 83% AUC on a held-out Deep-
Fashion validation set; attribute ground truth is unavailable
for the Amazon datasets themselves.

Fig. 4 shows 15 of the discovered visual styles in the
three datasets along with the 3 top ranked items based on the
likelihood of that style in the items p(sk|xi), and the most
likely attributes per style (p(am|sk)). As anticipated earlier,
our model automatically finds the fine-grained styles within
each genre of clothing. While some styles vary across cer-
tain dimensions, there are a certain set of attributes that
identify the style signature. For example, color is not a
significant factor in the 1st and 3ed styles (indexed from
left to right) of Dresses. It is the mixture of shape, design,
and structure that defines these styles (sheath, sleeveless and
bodycon in 1st, and chiffon, maxi and pleated in 3ed). On
the other hand, the clothing material might dominate certain
styles, like leather and denim in the 11th and 15th style of
Dresses, respectively. Having a Dirichlet prior for the style
distribution over the attributes induces sparsity. Hence, our
model focuses on the most distinctive attributes for each
style. A naive approach (e.g., clustering) could be distracted
by the many visual factors and become biased towards cer-
tain properties like color, e.g., by grouping all black clothes
in one style while ignoring the subtle differences in shape
and material.

4.2. Style forecasting

Having discovered the latent styles in our datasets, we
construct their temporal trajectories as in Sec. 3.3 using a
temporal resolution of months. We compare our approach
to several well-established forecasting baselines2, which we
group in three main categories:

Naı̈ve These methods rely on the general properties of the
trajectory: 1) mean: it forecasts the future values to be equal
to the mean of the observed series; 2) last: it assumes the
forecast to be equal to the last observed value; 3) drift: it
considers the general trend of the series.

Autoregression These are linear regressors based on the
last few observed values’ “lags”. We consider several vari-
ations [6]: 1) The standard linear autoregression model
(AR); 2) the autoregression model that accounts for season-
ality (AR+S); 3) the vector autoregression (VAR) that con-
siders the correlations between the different styles’ trajec-
tories; 4) and the autoregressive integrated moving average
model (ARIMA).

Neural Networks Similar to autoregression, the neural
models rely on the previous lags to predict the future;
however these models incorporate nonlinearity which make

2See appendix for more details



(a) Dresses

(b) Tops & Tees

(c) Shirts
Figure 4: The discovered visual styles on (a) Dresses, (b) Tops & Tees and (c) Shirts datasets. Our model captures the fine-grained
differences among the styles within each genre and provides a semantic description of the style signature based on visual attributes.



them more suitable to model complex time series. We con-
sider two architectures with sigmoid non-linearity: 1) The
feed forward neural network (FFNN); 2) and the time
lagged neural network (TLNN) [14].

All hyperparameters (α for ours, number of lags for the
autoregression, and hidden neurons for neural networks) are
estimated over the validation split of the dataset. We com-
pare the models based on two metrics: The mean absolute
error MAE = 1

n

∑n
t=1 |et|, and the mean absolute percent-

age error MAPE = 1
n

∑n
t=1 |

et
yt
|×100. Where et = ŷt−yt

is the error in predicting yt with ŷt.

Forecasting results Table 2 shows the forecasting per-
formance of all models on the test data. Here, all mod-
els use the identical visual style representation, namely our
attribute-based NMF approach. Our exponential smoothing
model outperforms all baselines across the three datasets.
Interestingly, the more involved models like the VAR,
ARIMA, and the neural networks do not perform better.
This may be due to their larger number of parameters and
the relatively short style trajectories. Furthermore, model-
ing seasonality (AR+S) does not improve the performance
of the linear autoregression model. We notice that the
Dresses dataset is more challenging than the other two. The
styles there exhibit more temporal variations compared to
the ones in Tops&Tees and Shirts, which may explain the
larger forecast error in general. Nonetheless, our model
generates a reliable forecast of the popularity of the styles
for a year ahead across all data sets. The forecasted style
trajectory by our approach is within a close range to the ac-
tual one (only 3 to 6 percentage error based on MAPE).

Fig. 5 visualizes our model’s predictions on four styles
from the Tops&Tees dataset. For trajectories in Fig. 5a and
Fig. 5b, our approach successfully captures the popularity
of styles in year 2013. Styles in Fig. 5c and Fig. 5d are
much more challenging. Both of them experience a reflec-
tion point at year 2012, from a declining popularity to an
increase and vice versa. Still, the predictions made by our
model forecast this change in direction correctly and the er-
ror in the estimated popularity is minor. Moreover, Fig. 6
shows the style popularity forecasts estimated by baselines
from the three forecasting groups in comparison to our ap-
proach. The Naive and NN based forecast models seem to
produce larger prediction errors. Our model performs the
best followed by the Autoregressor (AR).

4.3. Fashion representation

Thus far we have shown the styles discovered by our ap-
proach as well as our ability to forecast the popularity of
visual styles in the future. Next we examine the impact of
our representation compared to both textual meta-data and
CNN-based alternatives.

Meta Information Fashion items are often accompa-
nied by information other than the images. We consider

Model Dresses Tops & Tees Shirts
MAE MAPE MAE MAPE MAE MAPE

Naı̈ve
mean 0.0345 25.50 0.0513 17.61 0.0155 6.14
last 0.0192 8.38 0.0237 8.66 0.0160 5.50
drift 0.0201 9.17 0.0158 5.70 0.0177 6.50

Autoregression
AR 0.0174 9.65 0.0148 5.20 0.0120 4.45
AR+S 0.0210 12.78 0.0177 6.41 0.0122 4.51
VAR 0.0290 20.36 0.0422 14.61 0.0150 5.92
ARIMA 0.0186 13.04 0.0154 5.45 0.0092 3.41

Neural Network
TLNN 0.0833 35.45 0.0247 8.49 0.0124 4.24
FFNN 0.0973 41.18 0.0294 10.26 0.0109 3.97

Ours 0.0146 6.54 0.0145 5.36 0.0088 3.16

Table 2: The forecast error of our approach compared to several
baselines on three datasets.

 

(a) (b)

(c) (d)

Figure 5: The forecasted popularity estimated by our model for
4 styles from the Tops & Tees dataset. Our model successfully
predicts the popularity of styles in the future and performs well
even with challenging trajectories that experience a sudden change
in direction like in (c) and (d).

two types of meta information supplied with the Amazon
datasets (Fig. 3): 1) Tags: which identify the categories, the
age range, the trademark, the event, etc.; 2) Text: which pro-
vides a description of the item in natural language. For both,
we learn a unique vocabulary of tags and words across the
dataset and represent each item using a bag of words rep-
resentation. From thereafter, we can employ our NMF and
forecasting models just as we do with our visual attribute-
based vocabulary. In results, we consider a text-only base-
line as well as a multi-modal approach that augments our
attribute model with textual cues.

Visual Attributes are attractive in this problem setting for
their interpretability, but how fully do they capture the vi-
sual content? To analyze this, we implement an alternative
representation based on deep features extracted from a pre-
trained convolutional neural network (CNN). In particular,
we train a CNN with an AlexNet-like architecture on the
DeepFashion dataset to perform clothing classification. The
ClothingNet model is similar to our attribute model archi-
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Figure 6: The forecasted popularity of the visual styles in (a) Dresses, (b) Tops&Tees and (c) Shirts. Our model (EXP) successfully
captures the popularity of the styles in year 2013 with minor errors in comparison to the baselines.

tecture with the last sigmoid layer replaced with a softmax.
The network is trained to distinguish 50 categories of gar-
ments (e.g. Sweater, Skirt, Jeans and Jacket) from the Deep-
Fashion dataset. On a held-out test set on DeepFashion, the
ClothingNet achieves 86.5% Top-5 accuracy.

Since fashion elements can be local properties (e.g., v-
neck) or global (e.g., a-line), we use the CNN to extract two
representations at different abstraction levels: 1) FC7: fea-
tures extracted from the last hidden layer; 2) M3: features
extracted from the third max pooling layer after the last con-
volutional layer. We refer to these as ClothingNet-FC7 and
ClothingNet-M3 in the following.

Forecasting results The textual and visual cues inher-
ently rely on distinct vocabularies, and the metrics ap-
plied for Table 2 are not comparable across representations.
Nonetheless, we can gauge their relative success in forecast-
ing by measuring the distribution difference between their
predictions and the ground truth styles, in their respective
feature spaces. In particular, we apply the experimental
setup of Sec. 4.2, then record the Kullback-Leibler diver-
gences (KL) between the forecasted distribution and the ac-
tual test set distribution. For all models, we apply our best
performing forecaster from Table 2 (EXP).

Table 3 shows the effect of each representation on fore-
casting across all three datasets. Among all single modality
methods, our approach is the best. Compared to the Cloth-
ingNet CNN baselines, our attribute styles are much more
reliable. Upon visual inspection of the learned styles from

Model Dresses Tops & Tees Shirts
KL IMP(%) KL IMP(%) KL IMP(%)

Meta Information
Tags 0.0261 0 0.0161 0 0.0093 0
Text 0.0185 29.1 0.0075 53.4 0.0055 40.9
Visual
ClothingNet-FC7 0.0752 -188.1 0.25 -1452.8 0.1077 -1058.1
ClothingNet-M3 0.0625 -139.5 0.0518 -221.7 0.0177 -90.3
Attributes 0.0105 59.8 0.0049 69.6 0.0035 62.4

Multi-Modal
Attributes+Tags 0.0336 -28.7 0.0099 38.5 0.0068 26.9
Attributes+Text 0.0051 80.5 0.0053 67.1 0.0014 84.9
Attr+Tags+Text 0.0041 84.3 0.0052 67.7 0.0014 84.9

Table 3: Forecast performance for various fashion representations
in terms of KL divergence (lower is better) and the relative im-
provement (IMP) over the Tags baseline (higher is better). Our
attribute-based visual styles lead to much more reliable forecasts
compared to meta data or other visual representations.

the CNNs, we find out that they are sensitive to the pose
and spatial configuration of the item and the person in the
image. This reduces the quality of the discovered styles
and introduces more noise in their trajectories. Compared
to the tags alone, the textual description is better, likely be-
cause it captures more details about the appearance of the
item. However, compared to any baseline based only on
meta data, our approach is best. This is an important find-
ing: predicted visual attributes yield more reliable fashion
forecasting than strong real-world meta-data cues. To see
the future of fashion, it pays off to really look at the images
themselves.



The bottom of Table 3 shows the results when we extend
our model to be multi-modal, using various combinations
of text and tags. We see that our model is even stronger,
arguing for including meta-data with visual data whenever
it is available.

4.4. Style dynamics

Having established the ability to forecast visual fashions,
we now turn to demonstrating some suggestive applications.
Fashion is a very active domain with styles and designs go-
ing in and out of popularity at varying speeds and stages.
The life cycle of fashion goes through four main stages
[35]: 1) introduction; 2) growth; 3) maturity; and finally
4) decline. Knowing which style is at which level of its
lifespan is of extreme importance for the fashion industry.
Understanding the style dynamics helps companies to adapt
their strategies and respond in time to accommodate the cus-
tomers’ needs. Our model offers the opportunity to inspect
visual style trends and lifespans. In Fig. 7, we visualize the
temporal trajectories computed by our model for 6 styles
from Dresses. The trends reveal several categories of styles:
– Out of fashion: styles that are losing popularity at a rapid

rate (Fig. 7a).
– Classic: styles that are relatively popular and show little

variations through the years (Fig. 7b).
– Trending: styles that are trending and gaining popularity

at a high rate (Fig. 7c and d).
– Unpopular: styles that are currently at a low popularity

rate with no sign of improvement (Fig. 7e).
– Re-emerging: styles that were popular in the past,

declined, and then resurface again and start trending
(Fig. 7f).
Our model is in a unique postilion to offer this view point

on fashion. For example, using item popularity and trajec-
tories is not informative about the life cycle of the visual
style. An item lifespan is influenced by many other factors
such as pricing, marketing strategy, and advertising among
many others. By learning the latent visual styles in fashion,
our model is able to capture the collective styles shared by
many articles and, hence, depicts a more realistic popular-
ity trajectory that is less influenced by irregularities experi-
enced by the individual items.

4.5. Forecasting elements of fashion

While so far we focused on visual style forecasting, our
model is capable of inferring the popularity of the individ-
ual attributes as well. Thus it can answer questions like:
what kind of fabric, texture, or color will be popular next
year? These questions are of significant interest in the fash-
ion industry (e.g., see the “fashion oracle” World Global
Style Network [3, 2], which thousands of designers rely on
for trend prediction on silhouettes, palettes, etc.).

We compute the attribute popularity p(am|t) at a certain

(a) (b) (c)

(d) (e)

(f)

Figure 7: Our approach offers the unique opportunity to examine
the life cycle of visual styles in fashion. Some interesting temporal
dynamics of the styles discovered by our model can be grouped
into: (a) out of fashion; (b) classic; (c) in fashion or (d) trending;
(e) unpopular; and (f) re-emerging styles.

GT

(a) Texture

GT

(b) Shape
Figure 8: Our model can predict the popularity of individual fash-
ion attributes using the forecasted styles as a proxy. The forecasted
attributes are shown in color while the ground truth is in black. The
attribute size is relative to its popularity rank.

time t in the future through the forecasted popularity of the
styles:

p(am|t) =
∑
sk∈S

p(am|sk)p(sk|t) (6)

where p(am|sk) is the probability of attribute am given
style sk based on our style discovery model, and p(sk|t)
is the forecated probability of style sk at time t.

For the 1000 attributes in our visual vocabulary, our
model achieves an intersection with ground truth popularity
rank at 90%, 84% and 88% for Top 10, 25 and 50 attributes
respectively. Fig. 8 shows the forecasted texture and shape
attributes for the Dresses test set. Our model successfully
captures the most dominant attributes in both groups of at-
tributes, correctly giving the gist of future styles.

5. Conclusion
In the fashion industry, predicting trends, due to its

complexity, is frequently compared to weather forecasting:
sometimes you get it right and some times you get it wrong.
In this work, we show that using our vision-based fashion



forecasting model we get it right more often than not. We
propose a model that discovers fine-grained visual styles
from large scale fashion data in an unsupervised manner.
Our model is able to identify unique style signatures and
to provide a semantic description for each based on key vi-
sual attributes. Furthermore, based on user consumption
behavior, our model can predict the future popularity of the
styles, and reveal their life cycle and status (e.g. in- or out of
fashion). We show that vision is essential for reliable fore-
casts, outperforming textual-based representations. Finally,
fashion is not restricted to apparel; it is present in acces-
sories, automobiles, and even house furniture. Our model is
generic enough to be employed in different domains where
a notion of visual style is present.
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6. Appendix
6.1. Forecast models
Naı̈ve which includes three simple models:

1) mean: the future values are forecasted to be equal to the
mean of the observed series, i.e. ŷn+1|n = 1

n

∑n
t=1 yt.

2) last: the forecast is equal to the last observed value, i.e.
ŷn+h|n = yn.

3) drift: the forecast follows the general trend of the series,
i.e. ŷn+h|n = yn + h

n−1 (yn−y1) where h is the forecast
horizon.

Autoregressors these linear regressors assume the cur-
rent value to be a linear function of the last observed values
“lags”, i.e. ŷn = b+

∑P
i αiyn−i + ε where b is a constant,

{αi} are the lag coefficients, P is the maximum lag (set by
cross validation in our case) and ε an error term. We con-
sider several variations of the model [6]:

1) AR: the autoregressor in its standard form.

2) AR+S: which further incorporates seasonality, e.g. for a
series with 12 months seasonality the model will also
consider the lag at n− 12 along with most recent lags to
predict the current value.

3) VAR: the vector autoregoressor considers the correla-
tions between the different styles trajectories when pre-
dicting the future.

4) ARIMA: the autoregressive integrated moving average
model which models the temporal trajectory with two
polynomials, one for autoregression and the other for the
moving average. In addition it can handle non-stationary
signals through differencing operations (integration).

Neural Networks (NN) Similar to the autoregressor, the
neural models rely on the previous lags to predict the current
value of the signal; however these models incorporate non-
linearity which make them more suitable to model complex
time series. We consider two architectures with sigmoid
non-linearity:

1) TLNN: the time lagged neural network [14].

2) FFNN: the feed forward neural network.


