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Abstract. Several animal species (e.g., bats, dolphins, and whales) and
even visually impaired humans have the remarkable ability to perform
echolocation: a biological sonar used to perceive spatial layout and locate
objects in the world. We explore the spatial cues contained in echoes and
how they can benefit vision tasks that require spatial reasoning. First we
capture echo responses in photo-realistic 3D indoor scene environments.
Then we propose a novel interaction-based representation learning frame-
work that learns useful visual features via echolocation. We show that
the learned image features are useful for multiple downstream vision
tasks requiring spatial reasoning—monocular depth estimation, surface
normal estimation, and visual navigation—with results comparable or
even better than heavily supervised pre-training. Our work opens a new
path for representation learning for embodied agents, where supervision
comes from interacting with the physical world.

1 Introduction

The perceptual and cognitive abilities of embodied agents are inextricably
tied to their physical being. We perceive and act in the world by making use
of all our senses—especially looking and listening. We see our surroundings to
avoid obstacles, listen to the running water tap to navigate to the kitchen, and
infer how far away the bus is once we hear it approaching.

By using two ears, we perceive spatial sound. Not only can we identify the
sound-emitting object (e.g., the revving engine corresponds to a bus), but also
we can determine that object’s location, based on the time difference between
when the sound reaches each ear (Interaural Time Difference, ITD) and the dif-
ference in sound level as it enters each ear (Interaural Level Difference, ILD).
Critically, even beyond objects, audio is also rich with information about the
environment itself. The sounds we receive are a function of the geometric struc-
ture of the space around us and the materials of its major surfaces [5]. In fact,
some animals capitalize on these cues by using echolocation—actively emitting
sounds to perceive the 3D spatial layout of their surroundings [68].

We propose to learn image representations from echoes. Motivated by how
animals and blind people obtain spatial information from echo responses, first
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we explore to what extent the echoes of chirps generated in a scanned 3D envi-
ronment are predictive of the depth in the scene. Then, we introduce VisualE-
choes, a novel image representation learning method based on echolocation.
Given a first-person RGB view and an echo audio waveform, our model is trained
to predict the correct camera orientation at which the agent would receive those
echoes. In this way, the representation is forced to capture the alignment between
the sound reflections and the (visually observed) surfaces in the environment. At
test time, we observe only pixels—no audio. Our learnedVisualEchoes encoder
better reveals the 3D spatial cues embedded in the pixels, as we demonstrate in
three downstream tasks.

Our approach offers a new way to learn image representations without man-
ual supervision by interacting with the environment. In pursuit of this high-level
goal there is exciting—though limited—prior work that learns visual features by
touching objects [59,63,2,62] or moving in a space [45,1,27]. Unlike mainstream
“self-supervised” feature learning work that crafts pretext tasks for large static
repositories of human-taken images or video (e.g., colorization [88], jigsaw puz-
zles [57], audio-visual correspondence [50,6]), in interaction-based feature learn-
ing an embodied agent1 performs physical actions in the world that dynamically
influence its own first-person observations and possibly the environment itself.
Both paths have certain advantages: while conventional self-supervised learning
can capitalize on massive static datasets of human-taken photos, interaction-
based learning allows an agent to “learn by acting” with rich multi-modal sens-
ing. This has the advantage of learning features adaptable to new environments.
Unlike any prior work, we explore feature learning from echoes.

Our contributions are threefold: 1) We explore the spatial cues contained in
echoes, analyzing how they inform depth prediction; 2) We propose VisualE-
choes, a novel interaction-based feature learning framework that uses echoes
to learn an image representation and does not require audio at test time; 3)
We successfully validate the learned spatial representation for the fundamental
downstream vision tasks of monocular depth prediction, surface normal estima-
tion, and visual navigation, with results comparable to or even outperforming
heavily supervised pre-training baselines.

2 Related Work

Auditory Scene Analysis using Echoes Previous work shows that using
echo responses only, one can predict 2D [5] or 3D [14] room geometry and object
shape [22]. Additionally, echoes can complement vision, especially when vision-
based depth estimates are not reliable, e.g., on transparent windows or feature-
less walls [49,86]. In dynamic environments, autonomous robots can leverage
echoes for obstacle avoidance [77] or mapping and navigation [17] using a bat-
like echolocation model. Concurrently with our work, a low-cost audio system
called BatVision is used to predict depth maps purely from echo responses [12].
Our work explores a novel direction for auditory scene analysis by employing

1 person, robot, or simulated robot
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echoes for spatial visual feature learning, and unlike prior work, the resulting
features are applicable in the absence of any audio.

Self-Supervised Image Representation Learning Self-supervised image
feature learning methods leverage structured information within the data it-
self to generate labels for representation learning [69,38]. To this end, many
“pretext” tasks have been explored—for example, predicting the rotation ap-
plied to an input image [35,1], discriminating image instances [19], colorizing
images [52,88], solving a jigsaw puzzle from image patches [57], predicting un-
seen views of 3D objects [44], or multi-task learning using synthetic imagery [66].
Temporal information in videos also permits self-supervised tasks, for example,
by predicting whether a frame sequence is in the correct order [55,20] or ensur-
ing visual coherence of tracked objects [82,31,43]. Whereas these methods aim to
learn features generically useful for recognition, our objective is to learn features
generically useful for spatial estimation tasks. Accordingly, our echolocation ob-
jective is well-aligned with our target family of spatial tasks (depth, surfaces,
navigation), consistent with findings that task similarity is important for posi-
tive transfer [87]. Furthermore, unlike any of the above, rather than learn from
massive repositories of human-taken photos, the proposed approach learns from
interactions with the scene via echolocation.

Feature Learning by Interaction Limited prior work explores feature learn-
ing through interaction. Unlike the self-supervised methods discussed above, this
line of work fosters agents that learn from their own observations in the world,
which can be critical for adapting to new environments and to realize truly
“bottom-up” learning by experience. Existing methods explore touch and mo-
tion interactions. In [59], objects are struck with a drumstick to facilitate learning
material properties when they sound. In [63], the trajectory of a ball bouncing
off surfaces facilitates learning physical scene properties. In [62,2], a robot learns
object properties by poking or grasping at objects. In [27], a drone learns not
to crash after attempting many crashes. In [45,1], an agent tracks its egomo-
tion in concert with its visual stream to facilitate learning visual categories. In
contrast, our idea is to learn visual features by emitting audio to acoustically
interact with the scene. Our work offers a new perspective on interaction-based
feature learning and has the advantages of not disrupting the scene physically
and being ubiquitously available, i.e., reaching all surrounding surfaces.

Audio-Visual Learning Inspiring recent work integrates sound and vision
in joint learning frameworks that synthesize sounds for video [59,93], spatialize
monaural sounds from video [29,56], separate sound sources [58,18,28,89,30,24],
perform cross-modal feature learning [8,60], track audio-visual targets [34,9,3,26],
segment objects with multi-channel audio [42], direct embodied agents to nav-
igate in indoor environments [11,25], recognize actions in videos [32,48], and
localize pixels associated with sounds in video frames [75,71,7,40]. None of the
prior methods pursues echoes for visual learning. Furthermore, whereas nearly
all existing audio-visual methods operate in a passive manner, observing inciden-
tal sounds within a video, in our approach the system learns by actively emitting
sound—a form of interaction with the physical environment.
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Monocular Depth Estimation To improve monocular depth estimation, re-
cent methods focus on improving neural network architectures [23] or graphical
models [81,53,84], employing multi-scale feature fusion and multi-task learn-
ing [15,41], leveraging motion cues from successive frames [76], or transfer learn-
ing [47]. However, these approaches rely on depth-labeled data that can be ex-
pensive to obtain. Hence, recent approaches leverage scenes’ spatial and tem-
poral structure to self-supervise depth estimation, by using the camera motion
between pairs of images [33,36] or frames [92,80,37,46], or consistency cues be-
tween depth and features like surface normals [85] or optical flow [65]. Unlike any
of these existing methods, we show that audio in the form of an echo response
can be effectively used to recover depth, and we develop a novel feature learning
method that benefits a purely visual representation (no audio) at test time.

3 Approach

Our goals are to show that echoes convey spatial information, to learn visual
representations by echolocation, and to leverage the learned representations for
downstream tasks. In the following, we first describe how we simulate echoes in
3D environments (Sec. 3.1). Then we perform a case study to demonstrate how
echoes can benefit monocular depth prediction (Sec. 3.2). Next, we present Vi-
sualEchoes, our interaction-based feature learning formulation to learn image
representations (Sec. 3.3). Finally, we exploit the learned visual representation
for monocular depth, surface normal prediction, and visual navigation (Sec. 3.4).

3.1 Echolocation Simulation

Our echolocation simulation is based on recent work on audio-visual naviga-
tion [11], which builds a realistic acoustic simulation on top of the Habitat [70]
platform and Replica environments [73]. Habitat [70] is an open-source 3D sim-
ulator that supports efficient RGB, depth, and semantic rendering for multiple
datasets [73,10,83]. Replica is a dataset of 18 apartment, hotel, ofce, and room
scenes with 3D meshes and high denition range (HDR) textures and renderable
reector information. The platform in [11] simulates acoustics by pre-computing
room impulse responses (RIR) between all pairs of possible source and receiver
locations, using a form of audio ray-tracing [79]. An RIR is a transfer function
between the sound source and the sound microphone, and it is influenced by
the room geometry, materials, and the sound source location [51]. The sound
received at the listener location is computed by convolving the appropriate RIR
with the waveform of the source sound.

We use the binaural RIRs for all Replica environments to generate echoes
for our approach. As the source audio “chirp” we use a sweep signal from 20Hz-
20kHz (the human-audible range) within a duration of 3ms. While technically
any emitted sound could provide some echo signal from which to learn, our
design (1) intentionally provides the response for a wide range of frequencies
and (2) does so in a short period of time to avoid overlap between echoes and
direct sounds. We place the source at the same location as the receiver and
convolve the RIR for this source-receiver pair with the sweep signal. In this way,
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Fig. 1: Echolocation simulation in real-world scanned environments. During
training, the agent goes to the densely sampled locations marked with yellow
dots. The left bottom figure illustrates the top-down view of one Replica scene
where the agent’s location is marked. The agent actively emits 3 ms omnidi-
rectional sweep signals to get echo responses from the room. The right column
shows the corresponding RGB and depth of the agent’s view as well as the echoes
received in the left and right ears when the agent faces each of the four directions.

we compute the echo responses that would be received at the agent’s microphone
locations. We place the agents at all navigable points on the grid (every 0.5m [11])
and orient the agent in four cardinal directions (0◦, 90◦, 180◦, 270◦) so that the
rendered egocentric views (RGB and depth) and echoes capture room geometry
from different locations and orientations.

Fig. 1 illustrates how we perform echolocation for one scene environment.
The agent goes to the densely sampled navigable locations marked with yellow
dots and faces four orientations at each location. It actively emits omnidirec-
tional chirp signals and records the echo responses received when facing each
direction. Note that the spectrograms of the sounds received at the left (L) and
right (R) ears reveal that the agent first receives the direct sound (strong bright
curves), and then receives different echoes for the left and right microphones due
to ITD, ILD, and pinnae reflections. The subtle difference in the two spectro-
grams conveys cues about the spatial configuration of the environment, as can
be observed in the last column of Fig. 1.

3.2 Case Study: Spatial Cues in Echoes

With the synchronized egocentric views and echo responses in hand, we now
conduct a case study to investigate the spatial cues contained in echo responses
in these realistic indoor 3D environments. We have two questions: (1) can we
directly predict depth maps purely from echoes? and (2) can we use echoes to
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$SDUWPHQW������������Fig. 2: Our RGB+Echo2Depth network takes the echo responses and the cor-
responding egocentric RGB view as input, and performs joint audio-visual anal-
ysis to predict the depth map for the input image. The injected echo response
provides additional cues of the spatial layout of the scene. Note: in later sections
we define networks that do not have access to the audio stream at test time.

augment monocular depth estimation from RGB? Answering these questions
will inform our ultimate goal of devising a interaction-supervised visual feature
learning approach leveraging echoes only at training time (Sec. 3.3). Further-
more, it can shed light on the extent to which low-cost audio sensors can replace
depth sensors, which would be especially useful for navigation robots under se-
vere bandwidth or sensing constraints, e.g., nano drones [61,54].

Note that these two goals are orthogonal to that of prior work performing
depth prediction from a single view [16,53,84,23,41]. Whereas they focus on
developing sophisticated loss functions and architectures, here we explore how
an agent actively interacting with the scene acoustically may improve its depth
predictions. Our findings can thus complement existing monocular depth models.

We devise an RGB+Echo2Depth network (and its simplified variants us-
ing only RGB or echo) to test the settings of interest. The RGB+Echo2Depth
network predicts a depth map based on the agent’s egocentric RGB input and
the echo response it receives when it emits a chirp standing at that position and
orientation in the 3D environment. The core model is a multi-modal U-Net [67];
see Fig. 2. To directly measure the spatial cues contained in echoes alone, we also
test a variant called Echo2Depth. Instead of performing upsampling based on
the audio-visual representation, this model drops the RGB input, reshapes the
audio feature, and directly upsamples from the audio representation. Similarly,
to measure the cues contained in the RGB alone, a variant called RGB2Depth
drops the echoes and predicts the depth map purely based on the visual fea-
tures. The RGB2Depth model represents existing monocular depth prediction
approaches that predict depth from a single RGB image, in the context of the
same architecture design as RGB+Echo2Depth to allow apples-to-apples cal-
ibration of our findings. We use RGB images of spatial dimension 128×128. See
Supp. for network details and loss functions used to train the three models.

Table 1 shows the quantitative results of predicting depth from only echoes,
only RGB, or their combination. We evaluate on a heldout set of three Replica
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Fig. 3: Qualitative results of our case study on monocular depth estimation in un-
seen environments using echoes. Together with the quantitative results (Tab. 1),
these examples show that echoes contain useful spatial cues that inform a vi-
sual spatial task. For example, in row 1, the RGB+Echo model better infers the
depth of the column on the back wall, whereas the RGB-Only model mistakenly
infers the strong contours to indicate a much closer surface. The last row shows
a typical failure case (see text). See Supp. for more examples.

RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Average 1.070 0.791 0.230 0.235 0.509 0.750

Echo2Depth 0.713 0.347 0.134 0.580 0.772 0.868

RGB2Depth 0.374 0.202 0.076 0.749 0.883 0.945

RGB+Echo2Depth 0.346 0.172 0.068 0.798 0.905 0.950

Table 1: Case study depth prediction results. ↓ lower better, ↑ higher better.

environments (comprising 1,464 total views) with standard metrics: root mean
squared error (RMS), mean relative error (REL), mean log 10 error (log 10),
and thresholded accuracy [41,16]. We can see that depth prediction is possible
purely from echoes. Augmenting traditional single-view depth estimation with
echoes (bottom row) achieves the best performance by leveraging the additional
acoustic spatial cues. Echoes alone are naturally weaker than RGB alone, yet
still better than the simple Average baseline that predicts the average depth
values in all training data.

Fig. 3 shows qualitative examples. It is clear that echo responses indeed
contain cues of the spatial layout; the depth map captures the rough room layout,
especially its large surfaces. When combined with RGB, the predictions are more
accurate. The last row shows a typical failure case, where the echoes alone cannot
capture the depth as well due to far away surfaces with weaker echo signals.
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3.3 VisualEchoes Spatial Representation Learning Framework

Having established the scope for inferring depth from echoes, we now present
our VisualEchoes model to leverage echoes for visual representation learning.
We stress that our approach assumes audio/echoes are available only during
training; at test time, an RGB image alone is the input.

The key insight of our approach is that the echoes and visual input should
be consistent. This is because both are functions of the same latent variable—
the 3D shape of the environment surrounding the agent’s co-located camera and
microphones. We implement this idea by training a network to predict their
correct association.

In particular, as described in Sec. 3.1, at any position in the scene, we suppose
the agent can face four orientations, i.e., at an azimuth angle of 0◦, 90◦, 180◦,
and 270◦. When the agent emits the sweep signal (chirp) at a certain position,
it will hear different echo responses when it faces each different orientation. If
the agent correctly interprets the spatial layout of the current view from visual
information, it should be able to tell whether that visual input is congruous with
the echo response it hears. Furthermore, and more subtly, to the extent the agent
implicitly learns about probable views surrounding its current egocentric field
of view (e.g., what the view just to its right may look like given the context of
what it sees in front of it), it should be able to tell which direction the received
echo would be congruous with, if not the current view.

We introduce a representation learning network to capture this insight. See
Fig. 4. The visual stream takes the agent’s current RGB view as input, and the
audio stream takes the echo response received from one of the four orientations—
not necessarily the one that coincides with the visual stream orientation. The
fusion layer fuses the audio and visual information to generate an audio-visual
feature of dimension D. A final fully-connected layer is used to make the final
prediction among four classes. See Supp. and Sec. 4 for architecture details.

The four classes are defined as follows:

↑ : The echo is received from the same orientation as the agent’s current view.
→ : The echo is received from the orientation if the agent turns right by 90◦.
↓ : The echo is received from the orientation opposite the agent’s current view.

← : The echo is received from the orientation if the agent turns left by 90◦.

The network is trained with cross-entropy loss. Note that although the emit-
ted source signal is always the same (3 ms omnidirectional sweep signal, cf. Sec. 3.1),
the agent hears different echoes when facing the four directions because of the
shape of the ears and the head shadowing effect modeled in the binaural head-
related transfer function (HRTF). Since the classes above are defined relative to
the agent’s current view, it can only tell the orientation for which it is receiving
the echoes if it can correctly interpret the 3D spatial layout within the RGB
input. In this way, the agent’s aural interaction with the scene enhances spatial
feature learning for the visual stream.

The proposed idea generalizes trivially to use more than four discrete orientations—
and even arbitrary orientations if we were to use regression rather than classifi-
cation. The choice of four is simply based on the sound simulations available in
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Fig. 4: OurVisualEchoes network takes the agent’s current RGB view as visual
input, and the echo responses from one of the four orientations as audio input.
The goal is to predict the orientation at which the agent would receive the
input echoes based on analyzing the spatial layout in the image. After training
with RGB and echoes, the VisualEchoes-Net is a pre-trained encoder ready to
extract spatially enriched features from novel RGB images, as we validate with
multiple downstream tasks (cf. Sec. 3.4).

existing data [11], though we anticipate it is a good granularity to capture the
major directions around the agent. Our training paradigm requires the represen-
tation to discern mismatches between the image and echo using echoes generated
from the same physical position on the ground plane but different orientations.
This is in line with our interactive embodied agent motivation, where an agent
can look ahead, then turn and hear echoes from another orientation at the same
place in the environment, and learn their (dis)association. In fact, ecological
psychologists report that humans can perform more accurate echolocation when
moving, supporting the rationale of our design [74,68]. Furthermore, our design
ensures the mismatches are “hard” examples useful for learning spatial features
because the audio-visual data at offset views will naturally be related to one
another (as opposed to views or echoes from an unrelated environment).

3.4 Downstream Tasks for the Learned Spatial Representation

Having introduced our VisualEchoes feature learning framework, next we
describe how we repurpose the learned visual representation for three fundamen-
tal downstream tasks that require spatial reasoning: monocular depth prediction,
surface normal estimation, and visual navigation. For each task, we adopt strong
models from the literature and swap in our pre-trained encoder VisualEchoes-
Net for the RGB input.

Monocular depth prediction: We explore how our echo-based pre-training
can benefit performance for traditional monocular depth prediction. Note that
unlike the case study in Sec. 3.2, in this case there are no echo inputs at test
time, only RGB. To evaluate the quality of our learned representation, we adopt
a strong recent approach for monocular depth prediction [41] consisting of several
novel loss functions and a multi-scale network architecture that is based on a



10 Gao et al.

backbone network. We pre-train ResNet-50 [39] using VisualEchoes and use
it as the backbone for comparison with [41].

Surface normal estimation: We also evaluate the learned spatial represen-
tation to predict surface normals from a single image, another fundamental
mid-level vision task that requires spatial understanding of the geometry of the
surfaces [21]. We adopt the the state-of-the-art pyramid scene parsing network
PSPNet architecture [90] for surface normal prediction, again swapping in our
pre-trained VisualEchoes network for the RGB feature backbone.

Visual navigation: Finally, we validate on an embodied visual navigation task.
In this task, the agent receives a sequence of RGB images as input and a point
goal defined by a displacement vector relative to the starting position of the
agent [4]. The agent is spawned at random locations and must navigate to the
target location quickly and accurately. This entails reasoning about 3D spatial
configurations to avoid obstacles and find the shortest path. We adopt a state-
of-the-art reinforcement learning-based PointGoal visual navigation model [70].
It consists of a three-layer convolutional network and a fully-connected layer to
extract visual feature from the RGB images. We pre-train its visual network
using VisualEchoes, then train the full network end to end.

While other architectures are certainly possible for each task, our choices are
based on both on the methods’ effectiveness in practice, their wide use in the
literature, and code availability. Our contribution is feature learning from echoes
as a pre-training mechanism for spatial tasks, which is orthogonal to advances on
architectures for each individual task. In fact, a key message of our results is that
the VisualEchoes-Net encoder boosts multiple spatial tasks, under multiple
different architectures, and on multiple datasets.

4 Experiments

We present experiments to validate VisualEchoes for three tasks and three
datasets (Replica [73], NYU-V2 [72], and DIODE [78]). The goal is to examine
the impact of our features compared to either learning features for that task
from scratch or learning features with manual semantic supervision. See Supp.
for details of the three datasets.

Implementation Details: All networks are implemented in PyTorch. For the
echoes, we use the first 60 ms, which allows most of the room echo responses
following the 3 ms chirp to be received. We use an audio sampling rate of 44.1
kHz. STFT is computed using a Hann window of length 64, hop length of 16,
and FFT size of 512. The audio-visual fusion layer (see Fig. 4) concatenates the
visual and audio feature, and then uses a fully-connected layer to reduce the
feature dimension to D = 128. See Supp. for details of the network architectures
and optimization hyperparameters.

Evaluation Metrics: We report standard metrics for the downstream tasks.
1) Monocular Depth Prediction: RMS, REL, and others as defined above, fol-
lowing [41,16]. 2) Surface Normal Estimation: mean and median of the angle
distance and the percentage of good pixels (i.e., the fraction of pixels with cosine
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RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

S
u
p ImageNet Pre-trained 0.356 0.203 0.076 0.748 0.891 0.948

MIT Indoor Scene Pre-trained 0.334 0.196 0.072 0.770 0.897 0.950
U
n
su

p Scratch 0.360 0.214 0.078 0.747 0.879 0.940

VisualEchoes (Ours) 0.332 0.195 0.070 0.773 0.899 0.951

(a) Replica

RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

S
u
p ImageNet Pre-trained 0.812 0.249 0.102 0.589 0.855 0.955

MIT Indoor Scene Pre-trained 0.776 0.239 0.098 0.610 0.869 0.959

U
n
su

p Scratch 0.818 0.252 0.103 0.586 0.853 0.950

VisualEchoes (Ours) 0.797 0.246 0.100 0.600 0.863 0.956

(b) NYU-V2

RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

S
u
p ImageNet Pre-trained 2.250 0.453 0.199 0.336 0.591 0.766

MIT Indoor Scene Pre-trained 2.218 0.424 0.198 0.363 0.632 0.776

U
n
su

p Scratch 2.352 0.481 0.214 0.321 0.581 0.742

VisualEchoes (Ours) 2.223 0.430 0.198 0.340 0.610 0.769

(c) DIODE

Table 2: Depth prediction results on the Replica, NYU-V2, and DIODE datasets.
We use the RGB2Depth network from Sec. 3.2 for all models. Our VisualE-
choes pre-training transfers well, consistently predicting depth better than the
model trained from scratch. Furthermore, it is even competitive with the super-
vised models, whether they are pre-trained for ImageNet or MIT Indoor Scenes
(1M/16K manually labeled images). ↓ lower better, ↑ higher better. (Un)sup =
(un)supervised. We boldface the best unsupervised method.

distance to ground-truth less than t) with t = 11.25◦, 22.5◦, 30◦, following [21].
3) Visual Navigation: success rate normalized by inverse path length (SPL), the
distance to the goal at the end of the episode, and the distance to the goal
normalized by the trajectory length, following [4].

4.1 Transferring VisualEchoes Features for RGB2Depth

Having confirmed echoes reveal spatial cues in Sec. 3.2, we now examine the
effectiveness of VisualEchoes, our learned representation. Our model achieves
66% test accuracy on the orientation prediction pretext task, while chance per-
formance is only 25%; this shows learning the visual-echo consistency task itself
is possible.

First, we use the same RGB2Depth network from our case study in Sec. 3.2
as a testbed to demonstrate the learned spatial features can be successfully
transferred to other domains. Instead of randomly initializing the RGB2Depth
UNet encoder, we initialize with an encoder 1) pre-trained for our visual-echo
consistency task, 2) pre-trained for image classification using ImageNet [13], or
3) pre-trained for scene classification using the MIT Indoor Scene dataset [64].
Throughout, aside from the standard ImageNet pre-training baseline, we also
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RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Scratch 0.360 0.214 0.078 0.747 0.879 0.940

SimpleVisualEchoes 0.340 0.198 0.073 0.763 0.892 0.948

BinaryMatching 0.345 0.199 0.074 0.760 0.889 0.944

VisualEchoes (Ours) 0.332 0.195 0.070 0.773 0.899 0.951

Table 3: Ablation study on Replica. See Supp. for results on NYU-V2 and Diode.

include MIT Indoor Scenes pre-training, in case it strengthens the baseline due
to its domain alignment with the indoor scenes in Replica, DIODE, and NYU-2.2

Table 2 shows the results on all three datasets: Replica, NYU-V2, and DIODE.
The model initialized with our pre-trained VisualEchoes network achieves
much better performance compared to the model trained from scratch. More-
over, it even outperforms the supervised model pre-trained on scene classifica-
tion in some cases. The ImageNet pre-trained model performs much worse; we
suspect that the UNet encoder does not have sufficient capacity to handle Ima-
geNet classification, and also the ImageNet domain is much different than indoor
scene environments. This result accentuates that task similarity promotes pos-
itive transfer [87]: our unsupervised spatial pre-training task is more powerful
for depth inference than a supervised semantic category pre-training task. See
Supp. for low-shot experiments varying the amount of training data.

We also perform an ablation study to demonstrate that the design of our
spatial representation learning framework is essential and effective. We compare
with the following two variants: SimpleVisualEchoes, which simplifies our
orientation prediction task to two classes; and BinaryMatching, which mimics
prior work [6] that leverages the correspondence between images and audio as
supervision by training a network to decide if the echo and RGB are from the
same environment. As shown in Table 3, our method performs much better than
both baselines. See Supp. for details.

4.2 Evaluating on Downstream Tasks

Next we evaluate the impact of our learned VisualEchoes representation
on all three downstream tasks introduced in Sec. 3.4.

Monocular depth prediction: Table 4a shows the results.3 All methods use
the same settings as [41], where they evaluate and report results on NYU-V2. We
use the authors’ publicly available code4 and use ResNet-50 as the encoder. See
Supp. for details. With this apples-to-apples comparison, the difference in per-
formance can be attributed to whether/how the encoder is pre-trained. Although
our VisualEchoes features are learned from Replica, they transfer reasonably
well to NYU-V2, outperforming models trained from scratch by a large margin.

2 Like the test datasets, MIT Indoor Scenes contains indoor scenes. Performance is similar when
pre-training on Places [91], which is larger but contains diverse indoor and outdoor scenes.

3 We evaluate on NYU-V2, the most widely used dataset for the task of single view depth prediction
and surface normal estimation. The authors’s code [41,38] is tailored to this dataset.

4 https://github.com/JunjH/Revisiting_Single_Depth_Estimation

https://github.com/JunjH/Revisiting_Single_Depth_Estimation
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RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

S
u
p ImageNet Pre-trained [41] 0.555 0.126 0.054 0.843 0.968 0.991

MIT Indoor Scene Pre-trained 0.711 0.180 0.075 0.730 0.925 0.979
U
n
su

p Scratch 0.804 0.209 0.086 0.676 0.897 0.967

VisualEchoes (Ours) 0.683 0.165 0.069 0.762 0.934 0.981

(a) Depth prediction results on NYU-V2.

Mean Dist. ↓ Median Dist. ↓ t < 11.25◦ ↑ t < 22.5◦ ↑ t < 30◦ ↑

S
u
p ImageNet Pre-trained 26.4 17.1 36.1 59.2 68.5

MIT Indoor Scene Pre-trained 25.2 17.5 36.5 57.8 67.2

U
n
su

p Scratch 26.3 16.1 37.9 60.6 69.0

VisualEchoes (Ours) 22.9 14.1 42.7 64.1 72.4

(b) Surface normal estimation results on NYU-V2. The results for the ImageNet Pre-
trained baseline and the Scratch baseline are directly quoted from [38].

SPL ↑ Distance to Goal ↓ Normalized Distance to Goal ↓

S
u
p ImageNet Pre-trained 0.833 0.663 0.081

MIT Indoor Scene Pre-trained 0.798 1.05 0.124

U
n
su

p Scratch 0.830 0.728 0.096

VisualEchoes (Ours) 0.856 0.476 0.061

(c) Visual navigation performance in unseen Replica environments.

Table 4: Results for three downstream tasks. ↓ lower better, ↑ higher better.

This result is important because it shows that despite training with simulated
audio, our model generalizes to real-world test images. Our features also compare
favorably to supervised models trained with heavy supervision.

Surface normal estimation: Table 4b shows the results. We follow the same
setting as [38] and we use the authors’ publicly available code.5 Our model
performs much better even compared to the ImageNet-supervised pre-trained
model, demonstrating that our interaction-based feature learning framework via
echoes makes the learned features more useful for 3D geometric tasks.

Visual navigation: Table 4c shows the results. By pre-training the visual
network,VisualEchoes equips the embodied agents with a better sense of room
geometry and allows them to learn faster (see Supp. for training curves). Notably,
the agent also ends much closer to the goal. We suspect it can better gauge
the distance because of our VisualEchoes pre-training. Models pre-trained for
classification on MIT Indoor Scenes perform more poorly than Scratch; again,
this suggests features useful for recognition may not be optimal for a spatial task
like point goal navigation.

This series of results on three tasks consistently shows the promise of our
VisualEchoes features. We see that learning from echoes translates into a
strengthened visual encoding. Importantly, while it is always an option to train
multiple representations entirely from scratch to support each given task, our
results are encouraging since they show the same fundamental interaction-based
pre-training is versatile across multiple tasks.
5 https://github.com/facebookresearch/fair_self_supervision_benchmark

https://github.com/facebookresearch/fair_self_supervision_benchmark
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Fig. 5: Qualitative examples of visual navigation trajectories on top-down maps.
Blue square and arrow denote agents starting and ending positions, respectively.
The green path indicates the shortest geodesic path to the goal, and the agent’s
path is in dark blue. Agent path color fades from dark blue to light blue as time
goes by. Note, the agent sees a sequence of egocentric views, not the map.

4.3 Qualitative Results

Fig. 5 shows example navigation trajectories on top-down maps. Our visual-echo
consistency pre-training task allows the agent to better interpret the room’s
spatial layout to find the goal more quickly than the baselines. See Supp. for
qualitative results on depth estimation and surface normal examples. Initializ-
ing with our pre-trained VisualEchoes network leads to much more accurate
depth prediction and surface normal estimates compared to no pre-training,
demonstrating the usefulness of the learned spatial features.

5 Conclusions and Future Work

We presented an approach to learn spatial image representations via echoloca-
tion. We performed an in-depth study on the spatial cues contained in echoes and
how they can inform single-view depth estimation. We showed that the learned
spatial features can benefit three downstream vision tasks. Our work opens a
new path for interaction-based representation learning for embodied agents and
demonstrates the potential of learning spatial visual representations even with
a limited amount of multisensory data.

While our current implementation learns from audio rendered in a simulator,
the results show that the learned spatial features already benefit transfer to
vision-only tasks in real photos outside of the scanned environments (e.g., the
NYU-V2 [72] and DIODE [78] images), indicating the realism of what our system
learned. Nonetheless, it will be interesting future work to capture the echoes on
a real robot. We are also interested in pursuing these ideas within a sequential
model, such that the agent could actively decide when to emit chirps and what
type of chirps to emit to get the most informative echo responses.
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7. Arandjelović, R., Zisserman, A.: Objects that sound. In: ECCV (2018)
8. Aytar, Y., Vondrick, C., Torralba, A.: Soundnet: Learning sound representations

from unlabeled video. In: NeurIPS (2016)
9. Ban, Y., Li, X., Alameda-Pineda, X., Girin, L., Horaud, R.: Accounting for room

acoustics in audio-visual multi-speaker tracking. In: ICASSP (2018)
10. Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., Song,

S., Zeng, A., Zhang, Y.: Matterport3d: Learning from rgb-d data in indoor envi-
ronments. 3DV (2017)

11. Chen, C., Jain, U., Schissler, C., Gari, S.V.A., Al-Halah, Z., Ithapu, V.K., Robin-
son, P., Grauman, K.: Audio-visual embodied navigation. In: ECCV (2020)

12. Christensen, J., Hornauer, S., Yu, S.: Batvision - learning to see 3d spatial layout
with two ears. In: ICRA (2020)

13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)
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