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Abstract. State-of-the-art navigation methods leverage a spatial mem-
ory to generalize to new environments, but their occupancy maps are lim-
ited to capturing the geometric structures directly observed by the agent.
We propose occupancy anticipation, where the agent uses its egocentric
RGB-D observations to infer the occupancy state beyond the visible re-
gions. In doing so, the agent builds its spatial awareness more rapidly,
which facilitates efficient exploration and navigation in 3D environments.
By exploiting context in both the egocentric views and top-down maps
our model successfully anticipates a broader map of the environment,
with performance significantly better than strong baselines. Further-
more, when deployed for the sequential decision-making tasks of explo-
ration and navigation, our model outperforms state-of-the-art methods
on the Gibson and Matterport3D datasets. Our approach is the win-
ning entry in the 2020 Habitat PointNav Challenge. Project page: http:
// vision. cs. utexas. edu/ projects/ occupancy_ anticipation/

1 Introduction

In visual navigation, an agent must move intelligently through a 3D environ-
ment in order to reach a goal. Visual navigation has seen substantial progress
in the past few years, fueled by large-scale datasets and photo-realistic 3D en-
vironments [4,9,67,62], simulators [67,31,3,35], and public benchmarks [12,3,35].
Whereas traditionally navigation was attempted using purely geometric repre-
sentations (i.e., SLAM), recent work shows the power of learned approaches
to navigation that integrate both geometry and semantics [72,19,50,38,70,11].
Learned approaches operating directly on pixels and/or depth as input can be ro-
bust to noise [11,10] and can generalize well on unseen environments [19,35,70,10]
—even outperforming pure SLAM given sufficient experience [35].

One of the key factors for success in navigation has been the movement
towards complex map-based architectures [19,41,11,10] that capture both ge-
ometry [19,11,10] and semantics [19,41,18,22], thereby facilitating efficient pol-
icy learning and planning. These learned maps allow an agent to exploit prior
knowledge from training scenes when navigating in novel test environments.

Despite such progress, state-of-the-art approaches to navigation are limited to
encoding what the agent actually sees in front of it. In particular, they build maps
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Fig. 1: Occupancy anticipation: A robot’s perception of the 3D world is limited
by its field-of-view and obstacles (the visible map). We propose to anticipate occu-
pancy for unseen regions (anticipated map) by exploiting the context from egocentric
views. We then train a deep reinforcement learning agent to move intelligently in a 3D
environment, rewarding movements that improve the anticipated map.

of the environment using only the observed regions, whether via geometry [11,22]
or learning [19,41,18,10]. Thus, while promising, today’s models suffer from an
important inefficiency: to map a space in the 3D environment as free or occupied,
the agent must directly see evidence thereof in its egocentric camera.

Our key idea is to anticipate occupancy. Rather than wait to directly observe
a more distant or occluded region of the 3D environment to declare its occupancy
status, the proposed agent infers occupancy for unseen regions based on the vi-
sual context in its egocentric views. For example, in Fig. 1, with only the partial
observation of the scene, the agent could infer that it is quite likely that the wall
extends to its right, a corridor is present on its left, and the region immediately
in front of it is free space. Such intelligent extrapolation beyond the observed
space would lead to more efficient exploration and navigation. To achieve this
advantage, we introduce a model that anticipates occupancy maps from normal
field-of-view RGB(D) observations, while aggregating its predictions over time in
tight connection with learning a navigation policy. Furthermore, we incorporate
the anticipation objective directly into the agent’s exploration policy, encour-
aging movements in the 3D space that will efficiently yield broader and more
accurate inferred occupancy maps.

We validate our approach on Gibson [67] and Matterport3D [9], two 3D envi-
ronment datasets spanning over 170 real-world spaces with a variety of obstacles
and floor plans. Using only RGB(D) inputs to anticipate occupancy, the pro-
posed agent learns to explore intelligently, achieving faster and more accurate
maps compared to a state-of-the-art approach for neural SLAM [10], and navi-
gating more efficiently than strong baselines. Furthermore, for navigation under
noisy actuation and sensing, our agent improves the state of the art, winning
the 2020 Habitat PointNav Challenge [1] by a margin of 6.3 SPL points.

Our main contributions are: (1) a novel occupancy anticipation framework
that leverages visual context from egocentric RGB(D) views; (2) a novel explo-
ration approach that incorporates intelligent anticipation for efficient environ-
ment mapping, providing better maps in less time; and (3) successful navigation
results that improve the state of the art.
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2 Related work

Navigation Classical approaches to visual navigation perform passive or active
SLAM to reconstruct geometric point-clouds [64,21] or semantic maps [5,49],
facilitated by loop closures or learned odometry [7,36,8]. More recent work
uses deep learning to learn navigation [72,19,50,38,70,68,53,57] or exploration
[42,6,51,26,45] policies in an end-to-end fashion. Explicit map-based navigation
models [20,41,18,11] usually outperform their implicit counterparts by being
more sample-efficient, generalizing well to unseen environments, and even trans-
ferring from simulation to real robots [19,10]. However, existing approaches only
encode visible regions for mapping (i.e., the ground plane projection of the ob-
served or inferred depth). In contrast, our model goes beyond the visible cues
and anticipates maps for unseen regions to accelerate navigation.

Layout estimation Recent work predicts 3D Manhattan layouts of indoor scenes
given 360 panoramas [73,69,63,66,14]. These methods predict structured out-
puts such as layout boundaries [73,63], corners [73], and floor/ceiling probability
maps [69]. However, they do not extrapolate to unseen regions. FloorNet [33]
and Floor-SP [27] use walkthroughs of previously scanned buildings to recon-
struct detailed floorplans that may include predictions for the room type, doors,
objects, etc. However, they assume that the layouts are polygonal, the scene is
fully explored, and that detailed human annotations are available. Our occu-
pancy map representation can be seen as a new way for the agent to infer the
layout of its surroundings. Unlike any of the above approaches, our model does
not make strict assumptions on the scene structure, nor does it require detailed
semantic annotations. Furthermore, the proposed anticipation model is learned
jointly with the exploration policy and without human guidance. Finally, unlike
prior work, our goal is to accelerate navigation and map creation.

Scene completion Past work in scene completion focuses on pixelwise reconstruc-
tion of 360 panoramas with limited glimpses [26,44,45,55], inpainting [43,24,32],
and inferring unseen 3D structure and semantics [61,71]. While some methods al-
low pixelwise extrapolation outside the current field of view (FoV) [45,61,71,25],
they do not permit inferences about occluded regions in the scene. Our re-
sults show that this limitation is detrimental to successful occupancy estimation
(cf. our view extrapolation baseline). SSCNet [60] performs voxelwise geometric
and semantic predictions for unseen 3D structures; however, it is computationally
expensive, requires voxelwise semantic labels, limits predictions to the agent’s
FoV, and needs carefully curated viewpoints for training. In contrast, our ap-
proach predicts 2D occupancy from egocentric RGB(D) views, and it learns to
do so in an active perception setting. Since the agent controls its own camera,
the viewpoints tend to be more challenging than those in curated datasets of
human-taken photos used in the scene completion literature [60,61,26,44,71].

Occupancy maps In robotics, methods for occupancy focus on building con-
tinuous representations of the world [40,47,56], mapping for autonomous driv-
ing [23,37,59,34,39], and indoor robot navigation [29,15,58]. Prior extrapolation
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methods assume wide FoV LIDAR inputs, only exploit geometric cues from top-
down views, and demonstrate results in relatively simple 2D floorplans devoid
of non-wall obstacles [30,29,15,58]. In contrast, our approach does not require
expensive LIDAR sensors. It operates with standard RGB(D) camera inputs,
and it exploits both semantic and geometric context from those egocentric views
to perform accurate occupancy anticipation. Furthermore, we demonstrate ef-
ficient navigation in visually rich 3D environments with challenging obstacles
other than walls. Finally, unlike prior work, our anticipation models are learned
jointly with a navigation policy that rewards accurate anticipatory mapping.

3 Approach

We propose an occupancy anticipation approach for efficient exploration and
navigation. Our model anticipates areas not directly visible to the agent because
of occlusion (e.g., behind a table, around a corner) or due to being outside its
FoV. The agent’s first-person view is provided in the form of RGB-D images (see
Fig. 2 left). The goal is to anticipate the occupancy for a fixed region in front of
the agent, and integrate those predictions over time as the agent moves about.

Next, we define the task setup and notation, followed by our approach for
occupancy anticipation (Sec. 3.1) and a new formulation for exploration that
rewards correctly anticipated regions (Sec. 3.2). Then, we explain how our occu-
pancy anticipation model can be integrated into a state-of-the-art approach [10]
for autonomous exploration and navigation in 3D environments (Sec. 3.3).

3.1 Occupancy anticipation model

We formulate occupancy anticipation as a pixelwise classification task. The ego-
centric occupancy is represented as a two-channel top-down map p ∈ [0, 1]2×V×V

which comprises a local area of V × V cells in front of the camera. Each cell in
the map represents a 25mm× 25mm region. The two channels contain the prob-
abilities (confidence values) of the cell being occupied and explored, respectively.
A cell is considered to be occupied if there is an obstacle, and it is explored if
we know whether it is occupied or free. For training, we use the 3D meshes of
indoor environments (Sec. 4.1) to obtain the ground-truth local occupancy of a
V ×V region in front of the camera, which includes parts that may be occluded
or outside the field of view (Fig. 2, bottom right).

Our occupancy anticipation model consists of three main components (Fig. 2):
(1) Feature extraction: Given egocentric RGB-D inputs, we compute:
RGB CNN features: We encode the RGB images using blocks 1 and 2 of a
ResNet-18 that is pre-trained on ImageNet, followed by three additional convo-
lution layers that prepare these features to be passed forward with the visible
occupancy map. This step extracts a mixture of textural and semantic features.
Depth projection: We estimate a map of occupied, free, and unknown space by
setting height thresholds on the point cloud obtained from depth and camera in-
trinsics [11]. Consistent with past work [11,10], we restrict the projection-based
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Fig. 2: Our occupancy anticipation model uses RGB(D) inputs to extract features, and
processes them using a UNet to anticipate the occupancy. The depth map is projected
to the ground plane to obtain the preliminary visible occupancy map. See text.

estimates to points within ∼ 3m, the range at which modern depth sensors would
provide reliable results. This yields the initial visible occupancy map.

(2) Feature encoding: Given the RGB-D features, we independently encode
them using UNet [48] encoders and project them to a common feature space. We
encode the depth projection features using a stack of five convolutional blocks
which results in features fd = fd1:5. Since the RGB features are already at a
lower resolution, we use only three convolutional blocks to encode them, which
results in features fr = fr3:5. We then combine these features using the Merge
module which contains layer-specific convolution blocks to merge each [fr

i ,f
d
i ]:

f = merge(fd,fr). (1)

For experiments with only the depth modality, we skip the RGB feature extrac-
tor and Merge layer and directly use the occupancy features obtained from the
depth image. For experiments with only the RGB modality, we learn a model
to infer the visible occupancy features from RGB (to be defined at the end of
Sec. 4.1) and use that instead of the features computed from the depth image.

(3) Anticipation decoding: Given the encoded features f , we use a UNet
decoder that outputs a 2× V × V tensor of probabilities:

p̂ = σ(Decode(f)), (2)

where p̂ ∈ [0, 1]2×V×V is the estimated egocentric occupancy and σ is the sigmoid
activation function. For training the occupancy anticipation model, we use binary
cross entropy loss per pixel and per channel:

L =

V 2∑
i=1

2∑
j=1

−
[
pij log p̂ij + (1− pij)log(1− p̂ij)

]
, (3)
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where p is the ground-truth (GT) occupancy map that is derived from the 3D
mesh of training environments (see Sec. S5 in Supp. for details).

So far, we have presented our occupancy anticipation approach supposing a
single RGB-D observation as input. However, our model is ultimately used in
the context of an embodied agent that moves in the environment and actively
collects a sequence of RGB-D views to build a complete map of the environment.
Next, we introduce a new reward function that utilizes the agent’s anticipation
performance to guide its exploration during training.

3.2 Anticipation reward for exploration policy learning

In visual exploration, an agent must quickly map a new environment without
having a specified target. Prior work on exploration [11,16,10,46] often uses
area-coverage—the area seen in the environment during navigation—as a re-
ward function to guide exploration. However, the traditional area-coverage ap-
proach is limited to rewarding the agent only for directly seeing areas. Arguably,
an ideal exploration agent would obtain an accurate and complete map of the
environment without necessarily directly observing all areas.

Thus, we propose to encourage exploratory behaviors that yield a correctly
anticipated map. In this case, the occupancy entries in the map need not be
obtained via direct agent observations to register a reward; it is sufficient to
correctly infer them. In particular, we reward agent actions that yield accurate
occupancy predictions for the global environment map, i.e., the number of grid
cells where the predicted occupancy matches the layout of the environment.

More concretely, let m̂t ∈ [0, 1]2×G×G be the global environment map ob-
tained by anticipating occupancy for the RGB-D observations {xr1:t, xd1:t} from
time 1 to t, and then geometrically registering the predictions to a single global
map based on the agent’s pose estimates at each time step (see Fig. 3). Note
G > V . Let m be the ground-truth layout of the environment. Then, the unnor-
malized accuracy of a map prediction m̂ is measured as follows:

Accuracy(m̂,m) =

G2∑
i=1

2∑
j=1

1[m̂ij = mij ], (4)

where 1[m̂ij = mij ] is an indicator function that returns one if m̂ij = mij and
zero otherwise. We reward the increase in map accuracy from time t− 1 to t:

Ranticp
t = Accuracy(m̂t,m)−Accuracy(m̂t−1,m). (5)

This function rewards actions leading to correct global map predictions, ir-
respective of whether the agent actually observed those locations. For example,
if the agent correctly anticipates free space behind a table and is rewarded for
that, it then learns to avoid spending additional time around tables in the fu-
ture to observe that space directly. Resources can be instead allocated to visiting
more interesting regions that are harder to anticipate. Additionally, this reward
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Fig. 3: Exploration with occupancy anticipation: We introduce two key upgrades
to the original Active Neural SLAM (ANS) model [10] (see text): (1) We replace the
projection unit in the mapper with our occupancy anticipation model (see Fig. 2). (2)
We replace the area-coverage reward function with the proposed reward (Eqn. 5), which
encourages the agent to efficiently explore and build accurate maps through occupancy
anticipation. Note that the reward signals (in red) are provided only during training.

provides a better learning signal while training under noisy conditions by ac-
counting for mapping errors arising from noisy pose and map predictions. Thus,
our approach encourages more intelligent exploration behavior by injecting our
anticipated occupancy idea directly into the agent’s sequential decision-making.

3.3 Exploration and navigation with occupancy anticipation

Having defined the core occupancy anticipation components, we now demon-
strate how our model can be used to benefit embodied navigation in 3D environ-
ments. We consider both exploration (discussed above) and PointGoal naviga-
tion [52,2], a.k.a PointNav, where the agent must navigate efficiently to a target
specified by a displacement vector from the agent’s starting position.

For both tasks, we adapt the state-of-the-art Active Neural SLAM (ANS)
architecture [10] that previously achieved the best exploration results in the
literature and was the winner of the 2019 Habitat PointNav challenge. However,
our anticipation model is generic and can be easily integrated with most map-
based embodied navigation models [19,11,17].

The ANS model is a hierarchical, modular policy for exploration that consists
of a mapper, a planner, a local policy, and a global policy (shown in Fig. 3). Given
RGB images, the mapper estimates the egocentric occupancy and agent pose,
and then temporally aggregates the maps into a global top-down map using the
pose estimates. At regular time intervals ∆, the global policy picks a location
on the global map to explore. A shortest-path planner decides what trajectory
to take from the current position to the target and picks an intermediate goal
(within 1.25m) to navigate to. The local policy then selects actions that lead
to the intermediate goal; it gets another intermediate goal upon reaching the
current goal. See [10] for details. Critically, and like other prior work, the model
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of [10] is supervised to generate occupancy estimates based solely on the visible
occupancy obtained from the egocentric views.

We adapt ANS by modifying the mapper and the reward function. For the
mapper, we replace the projection unit from ANS with our anticipation model
(see Fig. 3). Additionally, we account for incorrect occupancy estimates in two
ways: (1) we filter out high entropy predictions and (2) we maintain a moving
average estimate of occupancy at each location in the global map (see Sec. S7 in
Supp.). For the reward function, we use the anticipation-based reward presented
in Sec. 3.2.

We train the exploration policy with our anticipation model end-to-end, as
this allows adapting to the changing distribution of the agent’s inputs. Both the
local and the global reinforcement learning policies are trained with Proximal
Policy Optimization (PPO) [54]. In our model, the reward of the global policy
is our anticipation-based reward defined in Eqn. 5. This replaces the traditional
area-coverage reward used in ANS and other current models [11,10,46], which
rewards the increment in the actual area seen, not the correctly registered area
in the map. The reward for the local policy is simply based on the reduction
in the distance to the local goal: Rlocal

t = dt−1 − dt, where d is the Euclidean
distance between the current position and the local goal.

4 Experiments

In the following experiments we demonstrate that 1) our occupancy anticipation
module can successfully infer unseen parts of the map (Sec. 4.2) and 2) trained
together with an exploration and navigation policy, it accelerates active mapping
and navigation in new environments (Sec. 4.3 and Sec. 4.4).

4.1 Experimental setup

We use the Habitat [35] simulator along with Gibson [67] and Matterport3D [9]
environments. Each dataset contains around 90 challenging large-scale photo-
realistic 3D indoor environments such as houses and office buildings. On aver-
age, the Matterport3D environments are larger. Our observation space consists
of 128 × 128 RGB-D observations and odometry sensor readings that denote
the change in the agent’s pose x, y, θ. Our action space consists of three ac-
tions: move-forward by 25cm, turn-left by 10◦, turn-right by 10◦. For
navigation, we add a stop action, which the agent emits when it believes it
has reached the goal. We simulate noisy actuation and odometer readings for
realistic evaluation (see Sec. S6 in Supp.).

We train our exploration models on Gibson, and then transfer them to Point-
Goal navigation on Gibson and exploration on Matterport3D. We use the default
train/val/test splits provided for both datasets [35] with disjoint environments
across the splits. For evaluation on Gibson, we divide the validation environ-
ments into small (area less than 36m2) and large (area greater than 36m2) to
observe the influence of environment size on results. For policy learning, we use
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Method
IoU % F1 score %

free occ. mean free occ. mean

all-free 30.1 0 15.1 43.6 0 21.8
all-occupied 0 25.1 12.6 0 39.2 19.6
ANS(rgb) 12.1 14.9 13.5 19.6 24.9 22.5
ANS(depth) 14.5 24.1 19.3 23.1 37.6 30.4
View-extrap. 15.5 26.4 21.0 25.0 40.4 32.7

OccAnt(rgb) 44.4 47.9 46.1 58.2 62.9 60.6
OccAnt(depth) 50.4 61.9 56.1 63.8 75.0 69.4
OccAnt(rgbd) 51.5 61.5 56.5 64.9 74.8 69.8

Table 1: Occupancy anticipation results on the Gibson validation set. Our models,
OccAnt(·), substantially improve the map quality and extent, showing the advantage
of learning to anticipate 3D structures beyond those directly observed.

the Adam optimizer and train on episodes of length 1000 for 1.5 − 2 million
frames of experience. Please see Sec. S8 in Supp. for more details.

Baselines: We define baselines based on prior work:

– ANS(rgb) [10]: This is the state-of-the-art Active Neural SLAM approach
for exploration and navigation. We use the original mapper architecture [10],
which infers the visible occupancy from RGB.3

– ANS(depth): We use depth projection to infer the visible occupancy (sim-
ilar to [11]) instead of predicting it from RGB.

– View-extrap.: We extrapolate an 180◦ FoV depth map from 90◦ FoV RGB-
D and project it to the top-down view. This is representative of scene com-
pletion approaches [61,71]. See Sec. S11 in Supp. for network details.

– OccAnt(GT): This is an upper bound that cheats by using the ground-
truth anticipation maps for exploration and navigation.

We implement all baselines on top of the ANS framework. Our goal is to
show the impact of our occupancy model, while fixing the backbone navigation
architecture and policy learning approach across methods for a fair comparison.
We consider three versions of our models based on the input modality:

– OccAnt(depth): anticipate occupancy given the visible occupancy map.
– OccAnt(rgb): anticipate occupancy given only the RGB image. We replace

the depth projections in Fig. 2 with the pre-trained ANS(rgb) estimates (kept
frozen throughout training).

– OccAnt(rgbd): anticipate occupancy given the full RGB-D inputs.

By default, our methods use the proposed anticipation reward from Sec. 3.2. We
denote ablations without this reward as “w/o AR”.

3 We use our own implementation of ANS since authors’ code was unavailable at the time of our
experiments. See Sec. S7 in Supp. for details.
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4.2 Occupancy anticipation results

First we evaluate the per-frame prediction accuracy of the mapping models
trained during exploration. We evaluate on a separate dataset of images sampled
from validation environments in Gibson at uniform viewpoints from discrete lo-
cations on a 1m grid, a total of 1, 034 (input, output) samples. This allows
standardized evaluation of the mapper, independent of the exploration policy.

To quantify the local occupancy maps’ accuracy, we compare the predicted
maps to the ground truth. We report the Intersection over Union (IoU) and F1
scores for the “free” and “occupied” classes independently. In addition to the
baselines from Sec. 4.1, we add two naive baselines that classify all locations as
free (all-free), or occupied (all-occupied).

Table 1 shows the results. Our anticipation models OccAnt are substantially
better than all the baselines. Comparing different modalities, OccAnt(depth) is
much better than OccAnt(rgb) under all the metrics. This makes sense, as visible
occupancy is directly computable from the depth input, but must be inferred
for RGB (see Fig. 4). Interestingly, the rgbd models are not better than the
depth-only models, likely because (1) geometric cues are more easily learned
from depth than RGB, and (2) the RGB encoder contains significantly more
parameters and could lead to overfitting. See Table S5 in Supp. for network sizes.
Overall, Table 1 demonstrates our occupancy anticipation models successfully
broaden the coverage of the map beyond the visible regions.

4.3 Exploration results

Next we deploy our models for visual exploration. The agent is given a lim-
ited time budget (T=1000) to intelligently explore and build a 2D top-down
occupancy map of a previously unseen environment.

To quantify exploration, we measure both map quality and speed (number
of agent actions): (1) Map accuracy (m2): the area in the global map built
during exploration (both free and occupied) that matches with the ground-truth
layout of the environment. The map is built using predicted occupancy maps
which are registered using estimated pose (may be noisy). Note that this is
an unnormalized accuracy measure (see Eqn. 4). (2) IoU: the intersection over
union between that same global map and the ground-truth layout of the envi-
ronment. (3) Area seen (m2): the amount of free and occupied regions directly
seen during exploration. The map for this metric is built using ground-truth
pose and depth-projections (similar to [11,10]). (4) Episode steps: the number
of actions taken by the agent. While the first two metrics measure the quality
of the created map, the latter two are a function of how (and how long) the
agent moved to get that map. Higher accuracy in fewer steps or lower area-seen
is better.

All agents are trained on 72 scenes from Gibson under noisy odometry and
actuation (see Sec. 4.1), and evaluated on Gibson and Matterport3D under both
noisy and noise-free conditions.
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RGB-D ANS(rgb) ANS(depth) OccAnt(rgb)View-extrap. Ground truthOccAnt(depth)

Occupied
Free
Unknown

Fig. 4: Per-frame local occupancy predictions: First and last columns show the
RGB-D input and anticipation ground-truth, respectively. ANS(*) are restricted to
only predicting occupancy for visible regions. View-extrap. extrapolates, but is unable
to predict occupancy for occluded regions (first row) and struggles to make correct
predictions in cluttered scenes (second row). Our model successfully anticipates with
either RGB or depth. For example, in the first row, we successfully predict the presence
of a corridor and another room on the left. In the second row, we successfully predict
the presence of navigable space behind the table. In the third row, we are able to
correctly anticipate the free space behind the chair and the corridor to the right.

OccAnt(depth) ANS(depth)
Exploration trajectory Map created Exploration trajectoryMap created

t = 0 t = 1000

UnknownOccupied FreeCorrect: Incorrect: Occupied Free
Map prediction color scheme

Fig. 5: Exploration examples: We compare OccAnt with ANS [10] in Gibson under
noisy actuation and odometry. The exploration trajectories and the corresponding maps
are shown at the extremes and center, respectively. Row 1: Both methods cover similar
area, but our method better anticipates the unseen parts with fewer registration errors.
Row 2: Our method achieves better area coverage and mapping quality whereas the
baseline gets stuck in a small room for extended periods of time. Row 3: A failure case
for our method, where it gets stuck in one part of the house after anticipating that a
narrow corridor leading to a different room was occupied.
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Fig. 6: Exploration results: Map accuracy (m2) as a function of episode duration (top
row) and area seen (bottom row) for Gibson (small and large splits) and Matterport3D
under noisy conditions (see Sec. S1 in Supp. for noise-free). Higher and steeper curves
are better. Top: Our OccAnt approach rapidly attains higher map accuracy than the
baselines (dotted lines). Bottom: OccAnt achieves higher map accuracy for the same
area seen (we show the best variants here to avoid clutter). These results show the
agent actively moves better to explore the environment with occupancy anticipation.

Noisy test conditions Noise-free test conditions

Gibson small Gibson large Matterport3D Gibson small Gibson large Matterport3D

Method Map acc. IoU Map acc. IoU Map acc. IoU Map acc. IoU Map acc. IoU Map acc. IoU

ANS(rgb) [10] 18.5 55 35.0 47 44.7 18 22.4 76 43.4 64 53.4 23
ANS(depth) 18.5 56 39.4 53 72.5 26 21.4 74 48.0 72 85.9 34
View-extrap. 12.0 26 28.1 27 39.4 14 12.1 27 26.5 27 33.9 13

OccAnt(rgb) w/o AR 21.8 66 44.2 57 65.8 23 22.6 71 45.2 60 64.4 24
OccAnt(depth) w/o AR 20.2 58 44.2 54 92.7 29 24.9 84 54.1 75 . 104.7 38.
OccAnt(rgbd) w/o AR 16.9 45 35.6 40 76.3 23 24.8 84 52.0 71 98.7 34
OccAnt(rgb) 20.9 62 42.1 54 66.2 22 22.3 70 43.5 58 64.4 22
OccAnt(depth) 22.7 71 50.3 67 94.1 33 24.8 83 53.1 74 96.5 35
OccAnt(rgbd) 22.7 71 48.4 62 99.9 32 24.5 82 51.0 69 100.3 34

OccAnt(GT) 21.7 67 51.9 63 - - 26.1 93 65.4 91 - -

Table 2: Timed exploration results: Map quality at T=500 for all models and
datasets. See text for details.

Fig. 6 shows the exploration results. Our approach generally outperforms
the baselines, improving the map quality more rapidly, whether in terms of time
(top row) or area seen (bottom row). When compared on a same-modality ba-
sis, we see that OccAnt(rgb) converges much faster than ANS(rgb). Similarly,
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OccAnt(depth) is able to rapidly improve the map quality and outperforms
ANS(depth) on all cases. This apples-to-apples comparison shows that antici-
pating occupancy leads to much more efficient mapping in unseen environments.
Again, using depth generally provides more reliable mapping than pure RGB.

Furthermore, the proposed anticipation reward generally provides significant
benefits to map accuracy in the noisy setting (compare our full model to the
“w/o AR” models in Fig. 6). While map accuracy generally increases over time
for noise-free conditions (see Sec. S1 in Supp.), it sometimes saturates early
or even declines slightly over time in the noisy setting as noisy pose estimates
accumulate and hurt map registration accuracy. This is most visible in Gibson
small (top left plot). However, our anticipatory reward alleviates this decline.

Table 2 summarizes the map accuracy and IoU for all methods at T=500. Our
method obtains significant improvements, supporting our claim that occupancy
anticipation accelerates exploration and mapping. Additionally, perfect antici-
pation with the OccAnt(GT) model gives comparably good noisy exploration,
and good gains in noise-free exploration (+10-20% IoU). This shows that there
is indeed a lot of mileage in anticipating occupancy; our model moves the state-
of-the-art towards this ceiling. Fig. 5 shows example exploration trajectories and
the final global map predictions on Gibson.

4.4 Navigation results

Next we evaluate the utility of occupancy anticipation for quickly reaching a
target. In PointNav [52,2], the agent is given a 2D coordinate (relative to its
position) and needs to reach that target as quickly as possible. Following [10],
we use noise-free evaluation and directly transfer the mapper, planner, and local
policy learned during exploration to this task. In this way, instead of navigating
to a point specified by the global policy, the agent has to navigate to a fixed goal
location. To evaluate navigation, we use the standard metrics—success rate,
success rate normalized by inverse path length (SPL) [2], and time taken. The
agent succeeds if it stops within 0.2m of the target under a time budget of
T = 1000.

Table 3 shows the navigation results on the Gibson validation set. Our ap-
proach outperforms the baselines. Thus, not only does occupancy anticipation
successfully map the environment, but it also allows the agent to move to a spec-
ified goal more quickly by modeling the navigable spaces. This apples-to-apples
comparison shows that our idea improves the state of the art for PointNav. As
with exploration, using ground truth (GT) anticipation leads to good gains in
the navigation performance, and our methods bridge the gap between the prior
state of the art and perfect anticipation.

In concurrent work, the DD-PPO approach [65] obtains 0.96 SPL for Point-
Nav, but it requires 2.5 billion frames of experience to do so (and it fails for noisy
conditions; see below). To achieve the performance of our method (0.8 SPL in 2M
frames), DD-PPO requires more than 50× the experience. Our sample efficiency
can be attributed to explicit mapping along with occupancy anticipation.
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Method SPL % Success % Time taken

ANS(rgb) [10] 66.8 87.9 254.109
ANS(depth) 76.8 86.6 226.161
View-extrap. 10.4 33.3 835.556

OccAnt(rgb) 71.2 88.2 223.411
OccAnt(depth) 77.8 91.3 194.751
OccAnt(rgbd) 80.0 93.0 171.874

OccAnt(GT) 89.5 96.0 125.018

Table 3: PointNav results: Our approach provides more efficient navigation.

Test standard Test challenge

Rank Team SPL % Success % Team SPL % Success %

1 OccupancyAnticipation 19.2 24.8 OccupancyAnticipation 20.9 27.5
2 ego-localization [13] 10.4 13.6 ego-localization [13] 14.6 19.2
3 Information Bottleneck 5.0 7.5 DAN [28] 13.2 25.3
4 cogmodel team 0.8 1.3 Information Bottleneck 6.0 8.8
5 UCULab 0.5 0.8 cogmodel team 0.7 1.2
6 Habitat Team (DD-PPO) [65] 0.0 0.2 UCULab 0.1 0.2

Table 4: Habitat Challenge 2020 results: Our approach is the winning entry.

Finally, we validate our approach on the 2020 Habitat PointNav Challenge [1],
which requires the agent to adapt to noisy RGB-D sensors and noisy actuators,
and to operate without an odometer. This presents a much more difficult evalu-
ation setup than past work which assumes perfect odometry as well as noise-free
sensing and actuation [35,10,65]. See Sec. S13 in Supp. for more details. Table 4
shows the results. Our method won the challenge, outperforming the competing
approaches by large margins. While our approach generalizes well to this setting,
DD-PPO [65] fails (0 SPL) due to its reliance on perfect odometry.

5 Conclusion

We introduced the idea of occupancy anticipation from egocentric views in 3D
environments. By learning to anticipate the navigable areas beyond the agent’s
actual field of view, we obtain more accurate maps more efficiently in novel
environments. We demonstrate our idea both for individual local maps, as well
as integrated within sequential models for exploration and navigation, where the
agent continually refines its (anticipated) map of the world. Our results clearly
demonstrate the advantages on multiple datasets, including improvements to the
state-of-the-art embodied AI model for exploration and navigation.
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