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In this supplementary material we provide additional de-
tails about:
• Video (with audio) for qualitative illustration of our task

and qualitative assessment of our view predictions (Sec. 1),
as referenced in ‘Qualitative examples’ in Sec. 4.2 in main
in main

• Additional ablations of our model components (Sec. 2), as
mentioned ‘Ablations’ in Sec. 4.2 in main

• Analysis of the view-specificity of our model’s learned
visual features (Sec. 3), as noted in ‘Ablations’ in Sec. 4.2
in main

• Analysis of the impact of rank our selector’s sampled view
on view selection performance (Sec. 4), as mentioned in
‘Ablations’ in Sec. 4.2 in main

• Examples of our view selector’s attention heatmaps
(Sec. 5), as noted in ‘Ablations’ in Sec. 4.2 in main

• Analysis of our pseudo-labeler (Sec. 6), as referenced in
‘Ablations’ in Sec. 4.2 in main

• View selection results on Ego-Exo4D [9] with a single exo
camera (Sec. 7), as mentioned in ‘Automatic evaluation’
in Sec. 4.2 in main

• 3-fold evaluation of our view selector on Ego-Exo4D [9],
as noted in ‘Automatic evaluation’ in Sec. 4.2 in main

• Analysis of the relation between our model performance
and the distribution of different concepts in the grount-
turth train narrations (Sec. 10)

• Our pseudo-labeling cost (Sec. 9)
• Dataset details (Sec. 11) in addition to what is provided in

‘Dataset’ in Sec. 4.1 in main
• Implementation details (Sec. 12), as noted in ‘Implemen-

tation’ in Sec. 4.1 in main

1. Supplementary video

The supplementary video, available at https : / /
vision . cs . utexas . edu / projects / which -
view-shows-it-best, qualitatively depicts our task
of view-selection in multi-view instructional videos. More-
over, we qualitatively illustrate our key idea, Language for
Weakly Supervising View Selection, show our model’s view

selection quality at the level of both individual clips and long
videos (comprising multiple clips), and compare our predic-
tions with those of two best-performing baselines. Some
long videos also have the audio commentary of the partici-
pant. Please use headphones to hear the audio correctly.

2. Additional ablations
In ‘Ablations’ in Sec. 4.2 of main, we ablate different model
components to understand their contribution to our view
selection performance. Here, we provide additional abla-
tions to further analyze our model. Table 1 shows the re-
sults. Upon keeping the off-the-shelf captioners [15, 27]
frozen when generating our best view pseudo-labels using
our pseudo-labeler L (Sec. 3.2 in main), the performance
declines drastically, indicating that the generic captions gen-
erated by frozen off-the-shelf captioners are not at all suit-
able for activity understanding in instructional videos. Upon
predicting the exact displacement of one camera center rela-
tive to another, instead of the rough direction between them,
when predicting the inter-view relative poses using our rela-
tive camera pose predictor P (Sec. 3.3 in main), we against
observe a significant drop in view selection performance.
This happens possibly because predicting the exact differ-
ence in locations between two camera centers can be in-
tractable in our setting, due to the unknown scale of objects
and background.

3. View dependence of visual features
Fig. 1 shows the t-SNE visualizations of the visual fea-
tures corresponding to the exo views of videos from dif-
ferent scenarios–basketball, dance, bike repair and cooking.
The scenarios have varying levels of motion of the cam-
era wearer’s body and relevant objects–whereas basketball
and dance involve moving large and fast movements of the
full body and salient objects, bike repair and cooking pri-
marily just involve hands and need less body and object
motion. Our learned visual features for the exo cameras
when grouped on the basis of the camera ID, produce tighter
clusters across samples from different scenarios, compared
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Captioning Actions and objects
Model CIDEr [25] METEOR [2] V-IoU N-IoU NC-IoU

Ours w/o captioner finetuning in our pseudo-labeler L 0.4 12.2 1.4 6.5 4.8
Ours w/o direction prediction between camera centers in our relative camera pose predictor P 12.9 48.1 32.5 36.8 31.6
Ours 13.5 48.4 33.7 39.2 32.9

Table 1. Ablation results on the large-scale Ego-Exo4D [9] dataset, in addition to what is provided in ‘Ablations’ in Sec. 4.2 in main. For
the ablation that does not predict the direction between camera centers during relative pose prediction, we predict the exact differences in
locations between camera centers instead. Significance, p ≤ 0.05.
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Figure 1. t-SNE [23] plots of exo visual features of sample Ego-Exo4D [9] videos from basketball, bike repair, dance and cooking scenarios.
Our model, when trained with the relative camera pose predictor, produces visual features that form neater clusters when grouped on the
basis of different exo views, highlighting their improved view sensitivity.

to the model variant trained without our relative camera pose
estimation loss (‘View selector training’ in Sec. 3.4 in main).
This demonstrates that our model’s superior ability to learn
view-dependent features cuts across different types of activ-
ity and different levels of body and object motion, which
consequently leads to a stronger view selection performance.

4. Sampled view rank

Table 2 shows the impact of the rank of our sampled view
on view selection performance. We observe that the lower
the rank of our sampled view is, within our model’s learned
view order, the worse our view selection performance is.
This shows that our model’s learned ranking of views is
highly correlated with the view quality, which indicates that

Captioning Actions and objects
Model CIDEr [25] METEOR [2] V-IoU N-IoU NC-IoU

Worst 10.9 45.1 29.2 35.8 30.7
Second best 11.9 46.4 30.9 35.8 30.6
Best (Ours) 13.5 48.4 33.7 39.2 32.9

Table 2. Effect of the rank of our sampled view on the view
selection performance on Ego-Exo4D [9]. Significance, p ≤ 0.05.

our model successfully builds an implicit understanding of
which views are more informative.

5. Attention heatmaps of our view selector
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Figure 2. Our model’s attention heatmaps on two best view clips
from Ego-Exo4D [9]. Yellow patches indicate highest attention.

Ego-Exo4D [9] LEMMA [12]
Ego Exo 1 Exo 2 Exo 3 Exo 4 Ego Exo

20.4 19.8 20.3 19.6 19.9 63.6 36.4

Table 3. Probability distribution in % of our best view pseudo-
labels.

Model CIDEr METEOR V-IoU N-IoU NC-IoU

Ours w/ 2 captioners 13.3 48.4 34.2 38.1 32.5
Ours (w/ 3 captioners) 13.5 48.4 33.7 39.2 32.9

Table 4. Impact of captioner count on view selection performance,
evaluated with Ego-Exo4D [9]. Significance, p ≤ 0.05. See row 3
of Table 3, and Sec. 4.2, in main, for results with 1 captioner.

In Fig. 2, we provide examples of our model’s attention
heatmaps on Ego-Exo4D [9]. Our model tends to focus on
the salient objects for an activity, even if they are dynamic,
indicating its strong activity understanding ability.

6. Analysis of our best view pseudo-labeler
Here, we analyze different aspects of our pseudo-labeler L
(Sec. 3.2 in main).

In Table 3, we report the distribution of our selected
views for both Ego-Exo4D [9] and LEMMA [12] datasets.
For Ego-Exo4D, our model produces a more or less uniform
distribution over all views, indicating that depending on
the activity and its level of body and object motion, our
model can prefer the ego view or one of the exo views with
almost equal likelihood. However, for LEMMA, our model
tends to prefer the ego view much more than the exo view,
re-emphasizing the prevalence of household activities that
largely require the ego view for capturing their informative

aspects (‘Dataset’ in Sec. 4.1 in main).
In addition to the ones provided in Fig. 2b in main, we

show more pseudo-labeler outputs, comprising view ranks
and predicted narrations, alongside the ground-truth narra-
tions, in Fig. 3. In Fig. 4, we provide more such examples
without narrations. We see very similar patterns in these
additional samples—the better our pseudo-labeler considers
a view to be, the more accurate the narration predicted from
the view, is, in terms of capturing important activity details.

In Table 4, we compare our view selection performance
on Ego-Exo4D [9], when using 3 vs. 2 captioners—see row
3 of Table 3, and Sec. 4.2, in main for results with 1 cap-
tioner, in our pseudo-labeler (Sec. 3.3 in main). Our view
selection performance general improves with the increase
in the captioner count in our pseudo-labeler, possibly be-
cause having more captioners vote on the best view reduces
captioning noise and improves pseudo-label quality.

7. Ego-Exo4D with single exo camera

Here, we evaluate our view selector on the single exo camera
variant of Ego-Exo4D [9] in order to emulate more typical
instructional settings [12, 20] that consist of a single exo
camera, but also retain the challenges in the Ego-Exo4D
data arising from the diversity in scenarios, varying degrees
of body and object motion, etc. Table 5 shows the results,
where all metrics are first computed separately for each
possible ego-exo view pair and then averaged over all pairs.
Our model significantly outperforms all baselines across
metrics, showing that it is robust to different camera setups
even on challenging datasets with diverse activity scenarios
and varying levels of motion of the objects and body parts
involved in the activity.

8. 3-fold evaluation on Ego-Exo4D

In Table 6, we report the results from 3-fold evaluation with
Ego-Exo4D [9]. Our model significantly outperforms Body-
Area, the best baseline. This shows that our model’s im-
provement over the baselines sustains across multiple test
datasets.

9. Pseudo-labeling cost

We use 8 NVIDIA V100 GPUs for training and performing
inference with the captioners in our pseudo-labeler (Sec. 3.2
in main). When pseudo-labeling Ego-Exo4D [9], it takes
∼2.5 days with VideoLlama captioners, and 3 hours with
VideoChat2. For LEMMA [12], the same takes 1 hour per
captioner. Importantly, this is a one-time cost since we
pseudo-label only once per dataset, and we do not use any
captioner when training or evaluating our view selector.



Predicted narration,
and view rank and score

Ground-truth 
narration
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shot	at	the	hoop	
with	both	hands

Best (0.32) Worst (0.09)
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C	shoots	the	ball	
at	the	hoop.

1

C	moves	the	
cucumber	on	the	
board	with	a	knife	
in	his	right	hand. Best (0.44) Worst (0.01)

C	moves	the	
cucumber	to	the	
right	with	a	knife.
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2
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with	man	X	while	
holding	hands.

Best (0.36) Worst (0.03)

C	holds	the	hands	
of	a	man	and	

moves	on	the	floor.

C	starts	dancing	
with	a	man.
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Predicted narration,
and view rank and score
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narration
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small	red	foothold.
Best (0.48) Worst (0.05)

C	places	his	right	
foot	on	a	red	
foothold.

C	puts	a	hand	on	
a	yellow	grip.
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Figure 3. Examples of predicted narrations, and the ranks and scores of the views, per our pseudo-labeler L, shown alongside ground-truth
narrations, in addition to what is provided in Fig. 2 in main.
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Figure 4. Additional examples of best and worst views, and their scores, per our pseudo-labeler L.

10. Model performance vs. distribution of con-
cepts in ground-truth train narrations

Fig. 5 plots our test gains over Body-area [13], the strongest
baseline, versus the frequency (most to least) of occurrence
of different concepts in the ground-truth train narrations.
The lack of a strong correlation demonstrates that our view
selection is not biased by the dominant concepts in the train-
ing narrations.

11. Dataset details

Here, we provide additional dataset details. For both
Ego-Exo4D [9] and LEMMA [12], we uniformly sam-
ple 8 frames from each clip and resize each frame to
224 × 224. Further, we normalize each pixel in a frame
by first dividing it by 255 so that its value lies in [0, 1],
then subtracting the pixel mean and finally dividing by the
pixel standard deviation, where the pixel mean and stan-
dard deviation are channel-specific. We set the mean and
standard deviation to [0.48145466, 0.4578275, 0.40821073]
and [0.26862954, 0.26130258, 0.27577711], respectively,
for our view selector and Video-Llama [27] captioners, and



Captioning Actions and objects
Model CIDEr [25] METEOR [2] V-IoU N-IoU NC-IoU

Ego 10.2 45.2 30.2 34.1 29.1
Random 9.8 44.5 29.0 34.9 28.5
Random-exo 9.6 43.8 28.0 34.2 27.4
Hand-object [5] 11.5 46.8 32.2 36.8 30.5
Body-area [13] 10.3 45.4 30.2 34.4 28.4
Joint-count [13] 9.9 44.6 28.6 34.1 28.1
Pixel-objectness [4, 26] 11.2 46.1 30.9 35.9 29.4
Longest-caption 0.0 0.0 0.0 0.0 0.0
Ours 12.7 47.1 32.7 37.3 30.9

Table 5. View selection with Ego-Exo4D, when the candidate viewpoints comprise the ego view and one exo view. All metrics, expressed in
% are averaged over all possible ego-exo view pairs. Significance, p ≤ 0.05.
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Figure 5. Test CIDEr difference between our model and the Body-area [13] baseline vs. verb-noun pair frequency in train narrations, sorted
in decreasing order

Model CIDEr METEOR V-IoU N-IoU NC-IoU

Body-area 10.5 46.6 30.0 35.2 30.4
Ours 11.4 46.9 31.2 37.0 31.9

Table 6. Average view selection results over three disjoint test
splits from Ego-Exo4D [9]. Significance, p ≤ 0.05.

[0.485, 0.456, 0.406] and [0.229, 0.224, 0.225], respectively,
for our VideoChat2 [15] captioner, where the channels fol-
low the RGB order.

We split the Ego-Exo4D videos into sequences of clips,
each coupled with a narration, by adopting the “contextual
variable length clip pairing strategy" strategy [16, 22], which
generates temporal windows for extracting clip-narration
pairs. To split the LEMMA videos into clips, we group
contiguous frames using their verb and noun annotations
(‘Dataset’ in Sec. 4.1 in main).

For Ego-Exo4D, we preprocess each narration by denot-

ing each activity participant mentioned in the narration using
‘Xi’, where i is the participant’s position in the sequence in
which the participants appear in the time-sorted narrations
for each full video (a take in Ego-Exo4D). The value of i
starts from 0. We produce narrations for LEMMA by append-
ing the verb and object annotations, where each narration
has the following structure: ‘verb1: object1_1, object1_2,
...; verb2: object2_1, object2_2, ...; ...’ .

12. Implementation details
Here, we provide additional implementation details for
different components of our framework, and our Pixel-
objectness [4, 26] baseline.

12.1. Captioner
For our VideoLlama [27] and VideoChat2 [15] captioners,
we use a model with the same architecture as proposed in the
original paper and initialize the parameters from the check-



points released by the authors. We freeze the ViT [8] encoder
and LLM (without LoRA [10], wherever it is used) in all
captioners, and train all other modules with an AdamW [19]
optimizer for a maximum of 1.6 million iterations. We use
a cosine annealing learning rate schedule [18] with a lin-
ear warmup over 5000 iterations, where we set the starting
learning rate to 10−6, the peak learning rate to 3 × 10−5,
and the minimum learning rate during cosine annealing to
1× 10−5. We set the total batch size to 8, and the (β1, β2)
and weight decay in AdamW to (0.9, 0.999) and 5× 10−2,
respectively. Furthermore, for VideoChat2, we turn off flash
attention [6, 7]. Finally, we set the LLM prompt to ‘What
is the person wearing smart glasses doing in the video?’ for
Ego-Exo4D [9] and ‘What is the person wearing a head-
mounted camera in the video doing?’ for LEMMA [12].

12.2. View selector

We use the EgoVLPv2 [21] vision encoder, pretrained on
Ego-Exo4D [9], to obtain visual features f in our view se-
lector S (Sec. 3.3 in main). The EgoVLPv2 encoder is a
12-layer TimeSformer [3] model, where we set the predic-
tion head (head), prediction logits (pre_logits) and fully-
connected layer (fc) to identity functions from PyTorch. We
attach a shared convolution layer to the encoder for pro-
ducing shared features for both view classification in W
(Sec. 3.3 in main) and pose prediction in P (Sec. 3.3 in
main). The shared convolution has a kernel size, padding
and stride of 1, 768 input channels and 192 output chan-
nels. The output of the shared convolution goes into a view
selection head and a pose prediction head.

The view selection head begins with the following layers:
1) a Batch Normalization [11] layer with 192 input channels,
2) a ReLU [1] activation, 3) a convolution layer with a kernel
size of 4, stride of 2, padding of 1, and 192 and 96 input
and output channels, respectively, 4) a Batch Normalization
layer with 96 input channels, 5) a ReLU activation, and 6) a
convolution layer with a kernel size of 4, stride of 2, padding
of 0, and 96 and 24 input and output channels, respectively.
We feed the output of the last convolution from above to a
a transformer [24] encoder, which comprises 2 layers with
8 heads and 768 channels. Each layer uses a dropout of 0.1
and uses sinusoidal positional encodings [24]. We then feed
the output of the transformer encoder to a 2-layer MLP that
comprises 1) a linear layer with 768 input channels and 128
output channels, 2) a Batch Normalization layer with 128
input channels, 3) a ReLU activation, 4) a dropout layer with
the dropout probability set to 0.1, and 5) a linear layer with
128 input channels and the output channel count set to the
number of views.

The pose prediction head comprises a convolution-only
and linear-layer-only component. The convolution-only com-
ponent comprises 1) a Batch Normalization [11] layer with
192 × 2 = 384 input channels, 2) a ReLU [1] activation, 3)

a dropout layer with the dropout probability set to 0.1, and
4) a convolution layer with a kernel size of 4, stride of 2,
padding of 1, and 384 and 48 input and output channels,
respectively. The linear-layer-only component is comprised
of 1) a Batch Normalization layer with 2352 input channels,
2) a ReLU activation, 3) a dropout layer with the dropout
probability set to 0.1, 3) a linear layer with 2352 input di-
mensions and 53 output dimensions. We feed the outputs
of the convolution-only component to the linear-layer-only
component.

We employ resize and reshape operations from PyTorch
wherever necessary.

We train our view selector using AdamW [19] with a
learning rate of 10−5 for the EgoVLPv2 [21] vision encoder
and 10−4 for the rest of the model. We set the total batch
size to 24, and the (β1, β2) and weight decay in AdamW to
(0.9, 0.999) and 10−5, respectively.

For all our model components, we stop training once the
validation loss starts increasing.

12.3. Baseline: Snap angles [4, 26]
This baseline (‘Baselines’ in Sec. 4.1 in main) is an up-
grade to the most relevant existing methods [4, 26] in the
literature. It predicts the view with the highest count of pix-
els belonging to foreground [4, 26] and salient [4] objects
but not lying near the frame boundaries [26], as the best
view. To do so, we treat the set of all objects mentioned in
the training narrations as foreground and salient, and query
a model composed of GroundingDino [17] and Segment
Anything (SAM) [14] with this set to detect its constituent
pixels. Specifically, we first feed GroundingDino with the
foreground-and-salient object set to compute the correspond-
ing bounding boxes. Next, we feed these bounding boxes
to SAM to mark all pixels of relevance. Finally, for each
view, we compute a score that is a weighted sum of its av-
erage foreground-and-salient pixel count across all frames
and a penalty term that lowers the count by the inverse of the
view’s frame count, for every pixel found within a certain
distance from the frame boundaries. We set the weights on
the foreground-and-salient pixel count to 1.0, and the penalty
term to 0.1 and 0.02 for Ego-Exo4D [9] and LEMMA [12],
respectively, through validation, and the distance for using a
foreground-and-salient pixel in computing the penalty term,
to 6.25% [26] of the frame size.
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