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In this supplementary material, we provide additional
details about:

1. Video (with audio) for qualitative assessment of our
agent’s performance. Please listen with headphones to
hear the spatial sound properly.

2. Implementation details and analysis of the baselines
(Sec. 5)

3. Ablation of the policy network

4. Distribution of prediction accuracy over distance to goal
(Sec. 5)

5. Analysis of semantic audio-visual navigation with dis-
tractors

6. On-policy location predictor training (Sec. 4.4)

7. Ablation with true goal category and location

1. Qualitative Video
The supplementary video demonstrates the audio simu-

lation platform that we use and shows the comparison be-
tween our proposed model and the baselines as well as qual-
itative analysis for failure cases. Please listen with head-
phones to hear the binaural audio correctly.

2. Implementation Details and Analysis of the
Baselines

ObjectGoal RL. We implement this baseline by first
feeding the RGB-D observations into a CNN (similar CNN
to fI(·) in our model) and concatenating the visual features
with a one-hot encoding of the target label. A one-layer
GRU memory takes the concatenated feature as input and
outputs a state vector of size 512. Similar to our work,
this state representation is used by an actor-critic network
to predict the action distribution and value of the current
state. Furthermore, we use perfect stopping for this base-
lines since the model performs poorly with a learned stop
action.

Although this baseline has the goal’s ground truth label
and perfect stopping, it fails quite often in reaching the goal.

This shows knowing the category alone is insufficient to
locate the particular object instance and to succeed in this
task. The model needs to leverage both visual and acoustic
cues to find the goal. This experiment also draws attention
to the difference between the proposed semantic AudioGoal
and the existing task of ObjectGoal.

Gan et al. [4] We compare to the model from Gan et
al. [4] , which trains a goal location predictor in an offline
fashion and uses a geometric planner for planning a path
to the predicted goal location. We use the same amount
of training data for our category predictor to train the goal
predictor from [4]. The original model from [4] assumes
a continuous periodic acoustic event and it cannot handle
sporadic or short acoustic events like those considered in
this work. To improve the existing model to perform in this
task, we augment its goal location predictor with our up-
date operation fλ (Sec. 4.2) for transforming the predicted
location when the audio goal becomes silent.

In evaluation, our observations confirm those reported
in [3]. Since the model does not leverage visual cues for
reasoning about the goal location, it does not learn to as-
sociate visual and acoustic cues with scene observations
and goal properties. Therefore, it is more prone to errors
and the agent suffers from backtracking its steps quite often
when the goal location prediction is inaccurate. The model
achieves 15.9% success rate and 12.3% SPL on the un-
heard sound test split, compared to our SAVi model 24.8%
success rate and 17.2% SPL. While [4] leverages external
supervision for training the location predictor, this is not
enough to solve this task efficiently because the agent needs
to fully leverage the semantic and spatial cues from audio
along with its visual perception to locate the sounding ob-
jects.

AV-WaN [3]. While AV-WaN [3] reports large perfor-
mance improvements over Chen et al. [2] on the standard
AudioGoal task (see [3] for details), we do not observe sim-
ilar margins between the two models here. Both models,
AV-WaN [3] and Chen et al. [2], use RNNs to encode the
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Success ↑ SPL ↑ SNA ↑ DTG ↓ SWS ↑
RNN Policy Network
Chen et al. [11] 18.0 13.4 12.9 12.9 6.9
SAVi w/ RNN+MLP (Ours) 21.4 15.4 12.6 9.8 11.2

Transformer Policy Network
SMT [15] + Audio 16.7 11.9 10.0 12.1 8.5
SAVi w/ Transformer (Ours) 24.8 17.2 13.2 9.9 14.7

Table 1: Ablation of our policy network with a typical
RNN+MLP.

state representation; however, AV-WaN accumulates the ob-
servations at the waypoint prediction level while Chen et al.
does so at each step. We speculate that this behavior cre-
ates large temporal gaps in the memory for AV-WaN, which
makes it harder for the model to adapt to the more challeng-
ing task of semantic AudioGoal; the sound may stop at any
moment, and the AV-WaN model may not be able to capture
the last important acoustic cues in between waypoints. Our
model outperforms both since it can keep track of a large set
of observations and leverage this information at each step
while navigating.

3. Ablation of the Policy Network
To analyze the impact of the transformer architecture of

the policy network on our model performance, we include
an additional ablation by replacing the transformer in our
SAVi model with a typical RNN+MLP for action and value
prediction (similar to [2]). Table 1 shows the results in the
unheard sounds setting. We see that a significant part of the
performance improvement comes from our goal descriptor
network (GDN) contribution. Both models (SAVi w/ Trans-
former and SAVi w/ RNN+MLP) benefit significantly from
having our GDN, with the transformer model leading to best
performance since it allows the GDN to attend to longer ob-
servation sequences compared to the RNN.

4. Distribution of Goal Descriptor Accuracy
Figure 1 shows how the location descriptor error and the

category descriptor accuracy change as the agent gets closer
to the goal with and without temporal aggregation. The lo-
cation error is measured as the Euclidean distance between
the predicted and the ground truth goal location. The cat-
egory accuracy is measured by whether the correct goal is
predicted or not. We can see that the error of both predic-
tions get lower as the agent gets closer to the goal location
and the temporal aggregation leads to higher performance.

5. Analysis of Semantic Audio-Visual Naviga-
tion with Distractors

We have evaluated in the main paper the navigation per-
formance of our model in the presence of acoustic distrac-

(a) (b)

Figure 1: Error analysis of the location predictions and the
category predictions in the goal descriptor as a function of
the agent’s geodesic distance to goal.

Beeps Music Creak Horn Telephone

Chair 0.26 0.28 0.20 0.20 0.24
Cabinet 0.25 0.25 0.14 0.12 0.23
Counter 0.28 0.47 0.34 0.25 0.41
Sink 0.03 0.07 0.03 0 0.07
TV 0.14 0.19 0.19 0.14 0.19

Table 2: Success rate of goals (rows) in the presence of var-
ious distractors (columns). We test our model with a single
distractor type in each test run, and normalize the SR by the
number of episodes for each goal type.

tors. The target and distractor sounds are disjoint in this set-
ting and both are unheard at test time, which poses a great
challenge for the agent to clearly separate the mixed audio
signal. We believe this is a main factor in the performance
drop seen by all models, though ours remains best (Table 2
in the main paper).

To further analyze the impact of acoustic dsitractors, we
conduct an ablation of our model by changing the type of
distractors at each test run. Table 2 shows a subset of the
(goal, distractor) combinations. Indeed, when the distractor
sound is sufficiently different from the goal (e.g., Music and
Telephone), the model performs well, but when it is similar
(e.g., Cabinet and Creak) or much louder (e.g., Horn) then it
is harder for the model to extract a clear signal for the goal.

6. On-policy Location Predictor Training

As noted in the main paper, we find training the loca-
tion predictor on-policy and online leads to higher accuracy
compared to using a pretrained model. If we use an off-
policy model in our approach (i.e., similar to the location
predictor trained for Gan et al.), this version underperforms
our model by 4.8% success rate and 4.7% SPL on the un-
heard sound test split.
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7. Ablation with True Goal Category and Lo-
cation

Our SAVi model learns to predict the goal descriptor
(i.e., location and category) based on the heard acoustic
cues while navigating. To show an upper bound perfor-
mance for our goal descriptor network, we supply the model
with the true goal category and location instead of the pre-
dictions. Our model achieves 65% SPL compared to the
24% SPL under the same setting but with predicted descrip-
tors. Note that when the ground truth location of the goal
is available at each step, the task boils down to the common
PointGoal navigation [5, 1].
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