Support Vectors, Duals, and the Kernel Trick

Machine Learning
Fall 2023
Support vector machines

• Training by maximizing margin

• The SVM objective

• Solving the SVM optimization problem

• Support vectors, duals and kernels
This lecture

1. Dual forms, and support vectors
2. Kernels & kernel trick
3. Properties of kernels
4. Nonlinear SVM
This lecture

1. Dual forms, and support vectors
2. Kernels & kernel trick
3. Properties of kernels
4. Nonlinear SVM
So far we have seen

- Support vector machines
- Hinge loss and optimizing the regularized loss

More broadly, different algorithms for learning linear classifiers
So far we have seen

• Support vector machines

• Hinge loss and optimizing the regularized loss

More broadly, different algorithms for learning linear classifiers

What about non-linear models?
One way to learn non-linear models

Explicitly introduce non-linearity into the feature space

If the true separator is quadratic
One way to learn non-linear models

Explicitly introduce non-linearity into the feature space

If the true separator is quadratic

Transform all input points as

\[\phi(x_1, x_2) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix} \]
One way to learn non-linear models

Explicitly introduce non-linearity into the feature space

If the true separator is quadratic

Transform all input points as

\[\phi(x_1, x_2) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix} \]

Now, we can try to find a weight vector in this higher dimensional space

That is, predict using \(w^T \phi(x_1, x_2) + b \geq 0 \)
Primal and dual forms: constraint optimization

Primal: general constraint optimization problem

\[
\min_{\mathbf{x}} \quad f(\mathbf{x}) \\
\text{s.t.} \quad g_1(\mathbf{x}) \leq 0, \ldots, g_m(\mathbf{x}) \leq 0
\]
Primal and dual forms: constraint optimization

Primal: general constraint optimization problem

\[
\min_x f(x) \quad \text{s.t.} \quad g_1(x) \leq 0, \ldots, g_m(x) \leq 0
\]

Lagrange form

\[
L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)
\]
Primal and dual forms: constraint optimization

Primal: general constraint optimization problem

\[
\min_{\mathbf{x}} \quad f(\mathbf{x}) \\
\text{s.t.} \quad g_1(\mathbf{x}) \leq 0, \ldots, g_m(\mathbf{x}) \leq 0
\]

Lagrange form

\[
L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})
\]

Equivalent formulation, removing constraints on \(\mathbf{x} \)

\[
\min_{\mathbf{x}} \max_{\lambda} \quad L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) \\
\text{s.t.} \quad \lambda_1 \geq 0, \ldots, \lambda_m \geq 0
\]
Primal and dual forms: constraint optimization

Primal: general constraint optimization problem

\[
\min_x f(x) \\
\text{s.t. } g_1(x) \leq 0, \ldots, g_m(x) \leq 0
\]

Lagrange form

\[L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \]

Equivalent formulation, removing constraints on \(x \)

\[
\min \max_{x} \min_{\lambda \geq 0} L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)
\]
Primal and dual forms: constraint optimization

Primal: general constraint optimization problem

\[
\begin{align*}
\min_{\mathbf{x}} & \quad f(\mathbf{x}) \\
\text{s.t.} & \quad g_1(\mathbf{x}) \leq 0, \ldots, g_m(\mathbf{x}) \leq 0
\end{align*}
\]

Why equivalent?

\[
\begin{align*}
\max_{\lambda \geq 0} & \quad f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \text{ satisfy all the constraints} \\ \infty & \text{otherwise} \end{cases}
\end{align*}
\]
Primal and dual forms: constraint optimization

Primal: general constraint optimization problem

\[
\begin{align*}
\min_{\mathbf{x}} & \quad f(\mathbf{x}) \\
\text{s.t.} & \quad g_1(\mathbf{x}) \leq 0, \ldots, g_m(\mathbf{x}) \leq 0
\end{align*}
\]

Why equivalent?

\[
\begin{align*}
\max_{\lambda \geq 0} & \quad f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \text{ satisfy all the constraints} \\ \infty & \text{otherwise} \end{cases} \\
& \quad \lambda_1 = \ldots = \lambda_m = 0 \\
& \quad \text{some } g_i(\mathbf{x}) > 0
\end{align*}
\]
Primal and dual forms: constraint optimization

Primal: general constraint optimization problem

\[
\max_{\lambda \geq 0} \quad f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) = \begin{cases} f(x) & \text{if } x \text{ satisfy all the constraints} \\ \infty & \text{otherwise} \end{cases}
\]

Outer minimization:
Search \(x \) over constraint space
To minimize \(f(x) \)

\[
\min_{x} \max_{\lambda \geq 0} \quad L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)
\]
Primal and dual forms: constraint optimization

Primal: general constraint optimization problem

\[
\min_{\mathbf{x}} \max_{\lambda \geq 0} \quad L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})
\]

Totally equivalent!

\[
\min_{\mathbf{x}} \quad f(\mathbf{x})
\]

s.t. \quad g_1(\mathbf{x}) \leq 0, \ldots, g_m(\mathbf{x}) \leq 0

It is very trial to incorporate equality constraints! How?
Primal and dual forms: constraint optimization

We focus on this primal form

\[
\min_x \max_{\lambda \geq 0} L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)
\]
Primal and dual forms: constraint optimization

Primal form

\[
\min_{x} \max_{\lambda \geq 0} \quad L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_{i}g_{i}(x)
\]

Dual Form

\[
\max_{\lambda \geq 0} \min_{x} \quad L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_{i}g_{i}(x)
\]

Just switch min and max!
Primal and dual forms: constraint optimization

Generally, Dual \leq Primal (Why?)

$$\max_{\lambda \geq 0} \min_{x} L(x, \lambda) \leq \min_{x} \max_{\lambda \geq 0} L(x, \lambda)$$
Primal and dual forms: constraint optimization

Generally, Dual ≤ Primal (Why?)

\[
\max_{\lambda \geq 0} \min_x L(x, \lambda) \leq \min_x \max_{\lambda \geq 0} L(x, \lambda)
\]

Denote \(L(x^*, \lambda^*) = \min_{x} \max_{\lambda \geq 0} L(x, \lambda) \)
Primal and dual forms: constraint optimization

Generally, Dual ≤ Primal (Why?)

\[
\max_{\lambda \geq 0} \min_x L(x, \lambda) \leq \min_x \max_{\lambda \geq 0} L(x, \lambda)
\]

Denote \(L(x^*, \lambda^*) = \min_x \max_{\lambda \geq 0} L(x, \lambda) \)

\[
\forall \lambda \geq 0 \quad L(x^*, \lambda) \leq L(x^*, \lambda^*)
\]
Primal and dual forms: constraint optimization

Generally, Dual \leq Primal (Why?)

$$\max_{\lambda \geq 0} \min_x L(x, \lambda) \leq \min_x \max_{\lambda \geq 0} L(x, \lambda)$$

Denote $L(x^*, \lambda^*) = \min_x \max_{\lambda \geq 0} L(x, \lambda)$

$$\forall \lambda \geq 0 \quad L(x^*, \lambda) \leq L(x^*, \lambda^*)$$

$$\forall \lambda \geq 0 \quad \min_x L(x, \lambda) \leq L(x^*, \lambda)$$
Primal and dual forms: constraint optimization

Generally, Dual \leq Primal (Why?)

$$\max_{\lambda \geq 0} \min_x L(x, \lambda) \leq \min_x \max_{\lambda \geq 0} L(x, \lambda)$$

Denote $L(x^*, \lambda^*) = \min_x \max_{\lambda \geq 0} L(x, \lambda)$

$$\forall \lambda \geq 0 \quad L(x^*, \lambda) \leq L(x^*, \lambda^*)$$

$$\forall \lambda \geq 0 \quad \min_x L(x, \lambda) \leq L(x^*, \lambda) \leq L(x^*, \lambda^*)$$
Primal and dual forms: constraint optimization

Generally, Dual \(\leq \) Primal \(\text{(Why?)} \)

\[
\max_{\lambda \geq 0} \min_x L(x, \lambda) \leq \min_x \max_{\lambda \geq 0} L(x, \lambda)
\]

Denote \(L(x^*, \lambda^*) = \min_x \max_{\lambda \geq 0} L(x, \lambda) \)

\[
\forall \lambda \geq 0 \quad L(x^*, \lambda) \leq L(x^*, \lambda^*)
\]

\[
\forall \lambda \geq 0 \quad \min_x L(x, \lambda) \leq L(x^*, \lambda) \leq L(x^*, \lambda^*)
\]
Primal and dual forms: constraint optimization

Generally, Dual ≤ Primal (Why?)

\[
\max_{\lambda \geq 0} \min_x L(x, \lambda) \leq \min_x \max_{\lambda \geq 0} L(x, \lambda)
\]

Denote \(L(x^*, \lambda^*) = \min_x \max_{\lambda \geq 0} L(x, \lambda) \)

\forall \lambda \geq 0 \quad L(x^*, \lambda) \leq L(x^*, \lambda^*)

\forall \lambda \geq 0 \quad \min_x L(x, \lambda) \leq L(x^*, \lambda) \leq L(x^*, \lambda^*)

\max_{\lambda, x} L(x, \lambda) \leq L(x^*, \lambda^*)
Primal and dual forms: constraint optimization

Generally, Dual \leq Primal (Why?)

$$\max_{\lambda \geq 0} \min_x L(x, \lambda) \leq \min_x \max_{\lambda \geq 0} L(x, \lambda)$$

Fortunately, for SVM, Dual $=$ Primal!
SVM: Primal and dual

The soft SVM objective

\[
\min_{\mathbf{w}, \{\xi_i\}} \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i
\]

s.t. \forall i, \quad y_i (\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 - \xi_i

\xi_i \geq 0
SVM: Primal and dual

Primal:

\[
\min_{\mathbf{w}, b, \{\xi_i\}} \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i
\]

\[
\text{s.t. } \forall i, \quad y_i (\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 - \xi_i
\]

\[
\xi_i \geq 0
\]

Dual:

\[
\min_{\mathbf{w}, b, \{\xi_i\}} \quad \max \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 + \xi_i)
\]

\[
\text{s.t. } \forall i, \quad \alpha_i \geq 0, \beta_i \geq 0
\]

\[
\alpha_i \geq 0
\]
Let us look at the dual form of SVM

Primal:

\[
\begin{align*}
\min_{w,b,\{\xi_i\}} & \quad \max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} & \frac{1}{2} w^T w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (w^T x_i + b) - 1 + \xi_i) \\
\end{align*}
\]

Dual:

\[
\begin{align*}
\max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} & \quad \min_{w,b,\{\xi_i\}} & \frac{1}{2} w^T w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (w^T x_i + b) - 1 + \xi_i) \\
\end{align*}
\]

According to Slater’s condition for convex optimization, they have the same solution! Solving Dual = Solving Primal!
Let us look at the dual form of SVM

\[
\begin{align*}
\max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} & \quad \min_{\mathbf{w}, b, \{\xi_i\}} \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 + \xi_i) \\
& \quad L
\end{align*}
\]

Let us fix Lagrangian multipliers, solve the \textit{inner} optimization

\[
\begin{align*}
\frac{\partial L}{\partial \mathbf{w}} &= 0 \\
\frac{\partial L}{\partial b} &= 0 \\
\frac{\partial L}{\partial \xi_i} &= 0
\end{align*}
\]

Solve

What can you get?
Let us look at the dual form of SVM

\[
\begin{align*}
\max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} \quad & \min_{w, b, \{\xi_i\}} \quad \frac{1}{2} w^T w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (w^T x_i + b) - 1 + \xi_i) \\
L
\end{align*}
\]

Let us fix Lagrangian multipliers, solve the *inner* optimization

\[
\frac{\partial L}{\partial w} = 0 \implies w = \sum_i \alpha_i y_i x_i
\]

\[
\frac{\partial L}{\partial b} = 0 \implies \sum_i \alpha_i y_i = 0
\]

\[
\frac{\partial L}{\partial \xi_i} = 0 \implies \alpha_i + \beta_i = C
\]
Let us look at the dual form of SVM

$$\max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} \min w, b, \{\xi_i\} \quad \frac{1}{2}w^T w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (w^T x_i + b) - 1 + \xi_i)$$

Let us fix Lagrangian multipliers, solve the inner optimization

$$\frac{\partial L}{\partial w} = 0 \implies w = \sum_i \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial b} = 0 \implies \sum_i \alpha_i y_i = 0$$

Substitute them into L

$$\frac{\partial L}{\partial \xi_i} = 0 \implies \alpha_i + \beta_i = C$$
Let us look at the dual form of SVM

\[
\max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} \min_{w, b, \{\xi_i\}} \frac{1}{2} w^T w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (w^T x_i + b) - 1 + \xi_i)
\]

\[
\max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} -\frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j x_i^T x_j + \sum_i \alpha_i
\]

s.t. \[\sum_i \alpha_i y_i = 0,\]
\[\forall i, \alpha_i + \beta_i = C\]
Let us look at the dual form of SVM

\[
\begin{align*}
\max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} \quad \min_{w, b, \{\xi_i\}} & \quad \frac{1}{2} w^T w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i \left(y_i (w^T x_i + b) - 1 + \xi_i \right) \\
\text{s.t.} & \quad \sum_i \alpha_i y_i = 0, \\
& \quad \forall i, \alpha_i + \beta_i = C
\end{align*}
\]

Note we can remove \(\beta_i\) by constraining that \(\alpha_i \leq C\)
Let us look at the dual form of SVM

Finally, we can solve the dual form by

$$
\min_{\{0 \leq \alpha_i \leq C\}, \sum_i \alpha_i y_i = 0} \; \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j x_i^T x_j - \sum_i \alpha_i
$$

Quadratic convex optimization problem!
Let us look at the dual form of SVM

Finally, we can solve the dual form by

$$\min_{\{0 \leq \alpha_i \leq C\}, \sum_i \alpha_i y_i = 0} \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j x_i^T x_j - \sum_i \alpha_i$$

Quadratic convex optimization problem!

Why would like to solve the dual form?

As we will see, it will enable kernel trick and nonlinear classification in infinite dimensional space!
It will also save the model storage through support vectors!
Let us look at the dual form of SVM

Let us first solve the dual

\[
\min_{\{0 \leq \alpha_i \leq C\}, \sum \alpha_i y_i = 0} \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j - \sum \alpha_i
\]

After we obtain the optimal Lagrangian multipliers \(\alpha^*_1, \ldots, \alpha^*_N \)

How to obtain optimal \(w, b \)?
Let us look at the dual form of SVM

Let us first solve the dual

\[
\min_{\{0 \leq \alpha_i \leq C\}, \sum_i \alpha_i y_i=0} \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j \mathbf{x}_i^\top \mathbf{x}_j - \sum_i \alpha_i
\]

After we obtain the optimal Lagrangian multipliers \(\alpha_1^*, \ldots, \alpha_N^* \)

\[
\frac{\partial L}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i
\]

\[
\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i
\]
Let us look at the dual form of SVM

Let us first solve the dual

\[
\min_{\{0 \leq \alpha_i \leq C\}, \sum_i \alpha_i y_i = 0} \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j \mathbf{x}_i^\top \mathbf{x}_j - \sum_i \alpha_i
\]

After we obtain the optimal Lagrangian multipliers \(\alpha_1^*, \ldots, \alpha_N^* \)

\[
\frac{\partial L}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i
\]

\[
\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i
\]

How to get \(b \)?
The Karush-Kuhn-Tucker (KKT) conditions

KKT (inequality only)
The KKT conditions for the convex program

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \quad \text{subject to} \quad f_1(x) \leq 0 \\
& \quad f_2(x) \leq 0 \\
& \quad \vdots \\
& \quad f_M(x) \leq 0
\end{align*}
\]

in \(x \in \mathbb{R}^N \) and \(\lambda \in \mathbb{R}^M \) are

\[
\begin{align*}
& \quad f_m(x) \leq 0, \quad m = 1, \ldots, M, \quad (K1) \\
& \quad \lambda \geq 0, \quad (K2) \\
& \quad \lambda_m f_m(x) = 0, \quad m = 1, \ldots, M, \quad (K3) \\
& \quad \nabla f_0(x) + \sum_{m=1}^{M} \lambda_m \nabla f_m(x) = 0, \quad (K4)
\end{align*}
\]

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 9:52, February 22, 2017
The Karush-Kuhn-Tucker (KKT) conditions

KKT (inequality only)

The KKT conditions for the convex program

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \quad \text{subject to} & \quad f_1(x) & \leq 0 \\
& & f_2(x) & \leq 0 \\
& & \vdots \\
& & f_M(x) & \leq 0
\end{align*}
\]

in \(x \in \mathbb{R}^N \) and \(\lambda \in \mathbb{R}^M \) are

\[
\begin{align*}
f_m(x) & \leq 0, \quad m = 1, \ldots, M, & \quad (K1) \\
\lambda & > 0, & \quad (K2) \\
\lambda_m f_m(x) & = 0, \quad m = 1, \ldots, M, & \quad (K3) \\
\nabla f_0(x) + \sum_{m=1}^{M} \lambda_m \nabla f_m(x) & = 0, & \quad (K4)
\end{align*}
\]

Complementary Slackness
The Karush-Kuhn-Tucker (KKT) conditions

Sufficient condition

If the KKT conditions hold for \mathbf{x}^* and some $\lambda^* \in \mathbb{R}^M$, then \mathbf{x}^* is a solution to the program (1).

Necessary condition

Suppose \mathbf{x}^* is a solution to a convex program with affine inequality constraints:

$$\min_{\mathbf{x} \in \mathbb{R}^N} f_0(\mathbf{x}) \quad \text{subject to} \quad A\mathbf{x} \leq \mathbf{b}.$$

Then there exists a λ^* such that \mathbf{x}^*, λ^* obey the KKT conditions.
The Karush-Kuhn-Tucker (KKT) conditions

Sufficient condition

If the KKT conditions hold for \mathbf{x}^* and some $\lambda^* \in \mathbb{R}^M$, then \mathbf{x}^* is a solution to the program (1).

Necessary condition

Suppose \mathbf{x}^* is a solution to a convex program with affine inequality constraints:

$$\min_{\mathbf{x} \in \mathbb{R}^N} f_0(\mathbf{x}) \quad \text{subject to} \quad A\mathbf{x} \leq \mathbf{b}. $$

Then there exists a λ^* such that \mathbf{x}^*, λ^* obey the KKT conditions.

We can use KKT condition to analyze our solution! Both sufficient and necessary! Why?

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 9:52, February 22, 2017
SVM: Primal and dual

Primal:

\[
\begin{align*}
\min_{\mathbf{w}, b, \{\xi_i\}} & \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i \\
\text{s.t.} & \quad \forall i, \quad y_i (\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 - \xi_i \\
& \quad \xi_i \geq 0
\end{align*}
\]

\[
\begin{align*}
\min_{\mathbf{w}, b, \{\xi_i\}} \max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} & \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (\mathbf{w}^\top \mathbf{x}_i + b) - 1 + \xi_i)
\end{align*}
\]
Optimal solution: KKT condition

$$\min_{w,b,\{\xi_i\}} \max_{\alpha_i \geq 0, \beta_i \geq 0} \frac{1}{2} w^T w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (w^T x_i + b) - 1 + \xi_i)$$

Complementary Slackness

$$\forall i, \beta_i^* \xi_i^* = 0$$

$$\forall i, \alpha_i^* (y_i (w^*^T x_i + b^*) - 1 + \xi_i^*) = 0$$
Let us look at the dual form of SVM

\[
\begin{align*}
\max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} \min_{w, b, \{\xi_i\}} & \quad \frac{1}{2} w^T w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (w^T x_i + b) - 1 + \xi_i) \\
\end{align*}
\]

Let us fix Lagrangian multipliers, solve the \textit{inner} optimization

\[
\frac{\partial L}{\partial w} = 0 \implies w = \sum_i \alpha_i y_i x_i
\]

\[
\frac{\partial L}{\partial b} = 0 \implies \sum_i \alpha_i y_i = 0
\]

\[
\frac{\partial L}{\partial \xi_i} = 0 \implies \alpha_i + \beta_i = C
\]
Optimal solution: KKT condition

\[
\min_{w, b, \{\xi_i\}} \max_{\{\alpha_i \geq 0, \beta_i \geq 0\}} \frac{1}{2} w^\top w + C \sum_i \xi_i - \sum_i \beta_i \xi_i - \sum_i \alpha_i (y_i (w^\top x_i + b) - 1 + \xi_i)
\]

Complementary Slackness

\[
\forall i, \beta_i^\ast \xi_i^\ast = 0
\]

\[
\forall i, \alpha_i^\ast (y_i (w^\ast^\top x_i + b^\ast) - 1 + \xi_i^\ast) = 0
\]

When solving the dual, we have

\[
\forall i, \alpha_i^\ast + \beta_i^\ast = C
\]
Optimal solution: KKT condition

\[
\forall i, \beta_i^* \xi_i^* = 0 \quad \forall i, \alpha_i^* (y_i (w^*^\top x_i + b^*) - 1 + \xi_i^*) = 0
\]

\[
\forall i, \alpha_i^* + \beta_i^* = C
\]

Let us find some j, 0 < \alpha_j^* < C, what can we get?
Optimal solution: KKT condition

\[\forall i, \beta_i^* \xi_i^* = 0 \quad \forall i, \alpha_i^* (y_i(w^*^\top x_i + b^*) - 1 + \xi_i^*) = 0 \]

\[\forall i, \alpha_i^* + \beta_i^* = C \]

Let us find some \(j \), \(0 < \alpha_j^* < C \), what can we get?

\[\beta_j^* > 0 \implies \xi_j^* = 0 \]

\[\alpha_j^* > 0 \implies y_j(w^*^\top x_j + b^*) - 1 + \xi_j^* = 0 \]

\[\implies y_j(w^*^\top x_j + b^*) - 1 = 0 \]

\[\implies w^*^\top x_j + b^* = y_j \]

\[\implies b^* = y_j - w^*^\top x_j \]
Optimal solution: KKT condition

$$\forall i, \beta_i^* \xi_i^* = 0 \quad \forall i, \alpha_i^* (y_i (\mathbf{w}^* \mathbf{x}_i + b^*) - 1 + \xi_i^*) = 0$$

$$\forall i, \alpha_i^* + \beta_i^* = C$$

Let us find some j, $0 < \alpha_j^* < C$, what can we get?

$$\beta_j^* > 0 \implies \xi_j^* = 0$$

$$\alpha_j^* > 0 \implies y_j (\mathbf{w}^* \mathbf{x}_j + b^*) - 1 + \xi_j^* = 0$$

$$\implies y_j (\mathbf{w}^* \mathbf{x}_j + b^*) - 1 = 0$$

$$\implies \mathbf{w}^* \mathbf{x}_j + b^* = y_j$$

$$\implies b^* = y_j - \mathbf{w}^* \mathbf{x}_j$$

For robustness, we often average the results over all such j
Optimal solution: KKT condition

\[\forall i, \beta_i^* \xi_i^* = 0 \quad \forall i, \alpha_i^* (y_i (w^* \mathbf{1} \mathbf{x}_i + b^*) - 1 + \xi_i^*) = 0 \]

\[\forall i, \alpha_i^* + \beta_i^* = C \]

What if some \(\alpha_j^* = 0 \)?

\[w^* = \sum_i \alpha_i^* y_i \mathbf{x}_i \]

\((\mathbf{x}_j, y_j) \) will not affect the weight vector!
Optimal solution: KKT condition

\[\forall i, \beta_i^* \xi_i^* = 0 \quad \forall i, \alpha_i^* (y_i (w^* \mathbf{^T} x_i + b^*) - 1 + \xi_i^*) = 0 \]

\[\forall i, \alpha_i^* + \beta_i^* = C \]

What if some \(\alpha_j^* = 0 \)?

\[w^* = \sum_i \alpha_i^* y_i x_i \]

(\(x_j, y_j \)) will not affect the weight vector!

The weight vector is only determined by samples with nonzero \(\alpha_j^* \)!
Optimal solution: KKT condition

\[
\forall i, \beta_i^* \xi_i = 0 \quad \forall i, \alpha_i^* (y_i (w^* \mathbf{x}_i + b^*) - 1 + \xi_i^*) = 0
\]

\[
\forall i, \alpha_i^* + \beta_i^* = C
\]

What if some \(\alpha_j^* = 0 \)?

\[
w^* = \sum_{i} \alpha_i^* y_i \mathbf{x}_i
\]

\((x_j, y_j) \) will not affect the weight vector!

The weight vector is only determined by samples with **nonzero** \(\alpha_j^* \)!

We call these subset of samples as **Support Vectors**!
Where are the support vectors?

\[S = \{ x_j \mid \alpha_j^* > 0 \} \quad \text{and} \quad w^* = \sum_{j \in S} \alpha_j^* y_j x_j \]

For support vector \(x_j \), according to Complementary Slackness

\[\alpha_j^* (y_j (w^* \top x_j + b^*) - 1 + \xi_j^*) = 0 \]

We must have

\[y_j (w^* \top x_j + b^*) = 1 - \xi_j^* \leq 1 \]
Where are the support vectors?

\[S = \{ x_j | \alpha_j^* > 0 \} \quad \Rightarrow \quad w^* = \sum_{j \in S} \alpha_j^* y_j x_j \]

For support vector \(x_j \), according to Complementary Slackness

\[\alpha_j^* (y_j (w^* \mathbf{x}_j + b^*) - 1 + \xi_j^*) = 0 \]

We must have

\[y_j (w^* \mathbf{x}_j + b^*) = 1 - \xi_j^* \leq 1 \]

Support vectors must be on the margin/inside the margin!
Where are the support vectors?

\[S = \{ x_j | \alpha_j^* > 0 \} \quad \Rightarrow \quad w^* = \sum_{j \in S} \alpha_j^* y_j x_j \]

For support vector \(x_j \), according to Complementary Slackness

\[\alpha_j^* (y_j (w^* \mathbf{^T} x_j + b^*) - 1 + \xi_j^*) = 0 \]

We must have

\[y_j (w^* \mathbf{^T} x_j + b^*) = 1 - \xi_j^* \leq 1 \]

Support vectors must be on the margin/inside the margin!

Question: what if a support vector stays inside the margin?
Support Vectors

\[
\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i
\]

The solution tends to be sparse

Most \(\alpha_i^* = 0 \)

No need to store those points to Computer weights/make predictions

Non-support vectors
\(\alpha_i^* = 0 \)

Support vectors
\(\alpha_i^* > 0 \)
This lecture

✓ Dual forms, and support vectors

2. Kernels & kernel trick

3. Properties of kernels

4. Nonlinear SVM
Predicting with SVM dual solution

- Prediction = \(sgn(w^* \mathbf{x} + b^*) \), and \(w^* = \sum_i \alpha_i^* y_i \mathbf{x}_i \)
Predicting with SVM dual solution

- Prediction $= sgn \left(\mathbf{w}^* \mathbf{x} + b^* \right)$, and $\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i$

- That is, we just showed that $\mathbf{w}^* \mathbf{x} = \sum_i \alpha_i^* y_i \mathbf{x}_i \mathbf{x}$
Predicting with SVM dual solution

• Prediction = \(sgn(\mathbf{w}^* \mathbf{x} + b^*) \), and \(\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i \)

• That is, we just showed that \(\mathbf{w}^* \mathbf{x} = \sum \alpha_i^* y_i \mathbf{x}_i \mathbf{x} \)

– We only need to compute dot products between training examples (that are support vectors) and the new example \(\mathbf{x} \)
Predicting with SVM dual solution

- Prediction = \(\text{sgn}(\mathbf{w}^* \mathbf{x} + b^*) \), and \(\mathbf{w}^* = \sum_i \alpha_i^* y_i \mathbf{x}_i \)

- That is, we just showed that \(\mathbf{w}^* \mathbf{x} = \sum \alpha_i^* y_i \mathbf{x}_i^\top \mathbf{x} \)

 - We only need to compute dot products between training examples (that are support vectors) and the new example \(\mathbf{x} \)
 - This is true even if we map examples to a high dimensional space

\[
\mathbf{w}^* = \sum \alpha_i^* y_i \phi(\mathbf{x}_i) \\
\mathbf{w}^* \mathbf{\phi}^\top(\mathbf{x}) = \sum \alpha_i^* y_i \phi(\mathbf{x}_i) \mathbf{\phi}(\mathbf{x})
\]
Predicting with SVM dual solution

- Prediction:
 - That is, we just showed that

- This is true even if we map examples to a high dimensional space

That is we only need to compute dot products between training examples and the new example.

One way to learn non-linear models

Explicitly introduce non-linearity into the feature space

If the true separator is quadratic

Transform all input points as

\[\phi(x_1, x_2) = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \end{bmatrix} \]

Now, we can try to find a weight vector in this higher dimensional space

That is, predict using \(\mathbf{w}^T \phi(x_1, x_2) + b \geq 0 \)
Dot products in high dimensional spaces

Let us define a dot product in the high dimensional space

\[K(x, z) = \phi(x)^T \phi(z) \]
Dot products in high dimensional spaces

Let us define a dot product in the high dimensional space

\[K(x, z) = \phi(x)^T \phi(z) \]

So prediction with this \textit{high dimensional lifting map} is

\[\text{sgn}(w^T \phi(x) + b) = \text{sgn}(\sum_i \alpha_i y_i K(x_i, x) + b) \]

because \(w^T \phi(x) = \sum \alpha_i y_i \phi(x_i)^T \phi(x) \)
Kernel based methods

\[K(x, z) = \phi(x)^T \phi(z) \]

Predict using

\[\text{sgn}(w^T \phi(x) + b) = \text{sgn}\left(\sum_{i} \alpha_i y_i K(x_i, x) + b \right) \]

What does this new formulation give us?

If we have to compute \(\phi \) every time anyway, we gain nothing
Kernel based methods

\[K(x, z) = \phi(x)^T \phi(z) \]

Predict using

\[\text{sgn}(w^T \phi(x) + b) = \text{sgn}(\sum_i \alpha_i y_i K(x_i, x) + b) \]

What does this new formulation give us?

If we have to compute \(\phi \) every time anyway, we gain nothing.

If we can compute the value of \(K \) without explicitly writing the blown up representation, then we will have a computational advantage.
Example: Polynomial Kernel

- Given two examples x and z we want to map them to a high dimensional space [for example, quadratic]

$$
\phi(x_1, x_2, \ldots, x_n) = [1, x_1, x_2, \ldots, x_n, x_1^2, x_2^2, \ldots x_n^2, x_1 x_2, \ldots, x_{n-1} x_n]^T
$$
Example: Polynomial Kernel

• Given two examples \mathbf{x} and \mathbf{z} we want to map them to a high dimensional space [for example, quadratic]

$$\phi(x_1, x_2, \cdots, x_n) = [1, x_1, x_2, \cdots, x_n, x_1^2, x_2^2, \cdots, x_n^2, x_1x_2, \cdots, x_{n-1}x_n]^T$$

All degree zero terms
Example: Polynomial Kernel

- Given two examples x and z we want to map them to a high dimensional space [for example, quadratic]

$$\phi(x_1, x_2, \cdots, x_n) = [1, x_1, x_2, \cdots, x_n, x_1^2, x_2^2, \cdots x_n^2, x_1x_2, \cdots, x_{n-1}x_n]^T$$

- All degree zero terms
- All degree one terms
Example: Polynomial Kernel

- Given two examples x and z we want to map them to a high dimensional space [for example, quadratic]

$$
\phi(x_1, x_2, \cdots, x_n) = [1, x_1, x_2, \cdots, x_n, x_1^2, x_2^2, \cdots, x_n^2, x_1x_2, \cdots, x_{n-1}x_n]^T
$$

- All degree zero terms
- All degree one terms
- All degree two terms
Example: Polynomial Kernel

Given two examples x and z we want to map them to a high dimensional space [for example, quadratic]

$$\phi(x_1, x_2, \cdots, x_n) = [1, x_1, x_2, \cdots, x_n, x_1^2, x_2^2, \cdots, x_n^2, x_1x_2, \cdots, x_{n-1}x_n]^T$$

- All degree zero terms
- All degree one terms
- All degree two terms

and compute the dot product $A = \phi(x)^T \phi(z)$ [takes time]
Example: Polynomial Kernel

- Given two examples x and z we want to map them to a high dimensional space [for example, quadratic]

$$
\phi(x_1, x_2, \cdots, x_n) = [1, x_1, x_2, \cdots, x_n, x_1^2, x_2^2, \cdots x_n^2, x_1x_2, \cdots, x_{n-1}x_n]^T
$$

and compute the dot product $A = \phi(x)^\top \phi(z)$ [takes time]
Example: Polynomial Kernel

- Given two examples x and z we want to map them to a high dimensional space [for example, quadratic]

$$
\phi(x_1, x_2, \cdots, x_n) = [1, x_1, x_2, \cdots, x_n, x_1^2, x_2^2, \cdots x_n^2, x_1x_2, \cdots, x_{n-1}x_n]^T
$$

and compute the dot product $A = \phi(x)^T \phi(z)$ [takes time]

- Instead, in the original space, compute
Example: Polynomial Kernel

• Given two examples x and z we want to map them to a high dimensional space [for example, quadratic]

$$
\phi(x_1, x_2, \cdots, x_n) = [1, x_1, x_2, \cdots, x_n, x_1^2, x_2^2, \cdots x_n^2, x_1 x_2, \cdots, x_{n-1} x_n]^T
$$

and compute the dot product $A = \phi(x)^T \phi(z)$ [takes time]

• Instead, in the original space, compute a simple function

$$
B = K(x, z) = (1 + x^T z)^2
$$
Example: Polynomial Kernel

- Given two examples \(x \) and \(z \) we want to map them to a high dimensional space [for example, quadratic]

\[
\phi(x_1, x_2, \cdots, x_n) = [1, x_1, x_2, \cdots, x_n, x_1^2, x_2^2, \cdots x_n^2, x_1x_2, \cdots, x_{n-1}x_n]^T
\]

and compute the dot product \(A = \phi(x)^T \phi(z) \) [takes time]

- Instead, in the original space, compute a simple function

\[
B = K(x, z) = (1 + x^T z)^2
\]

Claim: \(A = B \) (Coefficients do not really matter)
Example: Two dimensions, quadratic kernel

\[A = \phi(x)^T \phi(z) \quad \quad B = K(x, z) = (1 + x^T z)^2 \]

\[\phi(x_1, x_2) = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_2^2 \\ x_1 x_2 \end{bmatrix} \]
The Kernel Trick

Suppose we wish to compute $K(x, z) = \phi(x)^T \phi(z)$

Here ϕ maps x and z to a high dimensional space

\textbf{The Kernel Trick}: Save time/space by computing the value of $K(x, z)$ by performing operations in the original space (without a feature transformation!)
Computing dot products efficiently

Kernel Trick: You want to work with degree 2 polynomial features, $\phi(x)$. Then, your dot product will be operate using vectors in a space of dimensionality $1 + n + \frac{n(n+1)}{2}$.

The kernel trick allows you to save time/space and compute dot products in an n dimensional space. *(Not just for degree 2 polynomials)*
This lecture

✓ Dual forms, and support vectors

✓ Kernels and kernel trick

3. Properties of kernels

4. Nonlinear SVM
Which functions are kernels?

Kernel Trick: You want to work with degree 2 polynomial features, \(\phi(x) \). Then, your dot product will be operate using vectors in a space of dimensionality \(1 + n + \frac{n(n+1)}{2} \).

The kernel trick allows you to save time/space and compute dot products in an \(n \) dimensional space. *(Not just for degree 2 polynomials)*

- Can we use any function \(K(.,.) \)?
Which functions are kernels?

Kernel Trick: You want to work with degree 2 polynomial features, $\phi(x)$. Then, your dot product will be operate using vectors in a space of dimensionality $1 + n + n(n+1)/2$.

The kernel trick allows you to save time/space and compute dot products in an n dimensional space.

(Not just for degree 2 polynomials)

- **Can we use any function $K(.,.)$?**
 - **No!** A function $K(x,z)$ is a valid kernel if it corresponds to an inner product in some (perhaps infinite dimensional) feature space.
Which functions are kernels?

Kernel Trick: You want to work with degree 2 polynomial features, \(\phi(x) \). Then, your dot product will be operate using vectors in a space of dimensionality \(1 + n + \frac{n(n+1)}{2} \).

The kernel trick allows you to save time/space and compute dot products in an \(n \) dimensional space. *(Not just for degree 2 polynomials)*

• **Can we use any function \(K(.,.) \)?**
 – *No!* A function \(K(x,z) \) is a valid kernel if it corresponds to an inner product in some (perhaps infinite dimensional) feature space.

• **General condition:** construct the Gram matrix \(\{K(x_i,z_j)\} \); check that it’s positive semi definite.
Reminder: Positive semi-definite matrices

A symmetric matrix M is positive semi-definite if it is

- For any vector non-zero z, we have $z^T M z \geq 0$

(A useful property characterizing many interesting mathematical objects)
The Kernel Matrix

• The **Gram matrix** of a set of \(n \) vectors \(S = \{x_1...x_n\} \) is the \(n \times n \) matrix \(G \) with
 \[G_{ij} = x_i^T x_j \]
 - the Gram matrix of \(\{\phi(x_1), ..., \phi(x_n)\} \)
 - (size depends on the # of examples, not dimensionality)
 - Gram matrix is positive semidefinite
The Kernel Matrix

• The **Gram matrix** of a set of n vectors $S = \{x_1...x_n\}$ is the $n \times n$ matrix G with $G_{ij} = x_i^T x_j$

 – the Gram matrix of $\{\phi(x_1), ..., \phi(x_n)\}$

 – (size depends on the # of examples, not dimensionality)

 – Gram matrix is positive semidefinite

• Showing that a function K is a valid kernel

 – Direct approach: If you have the $\phi(x_i)$

 – **Indirect**: Write down the Kernel matrix $K_{ij} = k(x_i, x_j)$ and show that it is a legitimate kernel, without an explicit construction of $\phi(x_i)$
Mercer’s condition

Let $K(\mathbf{x}, \mathbf{z})$ be a function that maps two n dimensional vectors to a real number.

K is a valid kernel if for every finite set $\{x_1, x_2, \cdots \}$, for any choice of real valued c_1, c_2, \cdots, we have

$$\sum \sum c_i c_j K(\mathbf{x}_i, \mathbf{x}_j) \geq 0$$
Polynomial kernels

• Linear kernel: \(k(x, z) = x^Tz \)

• Polynomial kernel of degree \(d \): \(k(x, z) = (x^Tz)^d \)
 – only \(d \)th-order interactions

• Polynomial kernel up to degree \(d \): \(k(x, z) = (x^Tz + c)^d \) \((c>0) \)
 – all interactions of order \(d \) or lower
Gaussian Kernel
(or the radial basis function kernel)

\[K_{rbf}(\mathbf{x}, \mathbf{z}) = \exp \left(-\frac{||\mathbf{x} - \mathbf{z}||^2}{c} \right) \]

- \(||\mathbf{x} - \mathbf{z}||^2\): squared Euclidean distance between \(\mathbf{x}\) and \(\mathbf{z}\)
- \(c = \sigma^2\): a free parameter
- very small \(c\): \(K \approx\) identity matrix (every item is different)
- very large \(c\): \(K \approx\) unit matrix (all items are the same)

- \(k(\mathbf{x}, \mathbf{z}) \approx 1\) when \(\mathbf{x}, \mathbf{z}\) close
- \(k(\mathbf{x}, \mathbf{z}) \approx 0\) when \(\mathbf{x}, \mathbf{z}\) dissimilar
Gaussian Kernel
(or the radial basis function kernel)

\[K_{rbf}(x, z) = \exp \left(-\frac{||x - z||^2}{c} \right) \]

- \(||x - z||^2 \): squared Euclidean distance between \(x \) and \(z \)
- \(c = \sigma^2 \): a free parameter
- very small \(c \): \(K \approx \) identity matrix (every item is different)
- very large \(c \): \(K \approx \) unit matrix (all items are the same)

- \(k(x, z) \approx 1 \) when \(x, z \) close
- \(k(x, z) \approx 0 \) when \(x, z \) dissimilar

Exercises:
1. Prove that this is a kernel.
2. What is the “blown up” feature space for this kernel?
Constructing New Kernels

You can construct new kernels $k'(\mathbf{x}, \mathbf{x}')$ from existing ones:

- Multiplying $k(\mathbf{x}, \mathbf{x}')$ by a positive constant c

 $$ck(\mathbf{x}, \mathbf{x}')$$

- Multiplying $k(\mathbf{x}, \mathbf{x}')$ by a function f applied to \mathbf{x} and \mathbf{x}'

 $$f(\mathbf{x})k(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

- Applying a polynomial (with non-negative coefficients) to $k(\mathbf{x}, \mathbf{x}')$

 $$P(k(\mathbf{x}, \mathbf{x}')) \text{ with } P(z) = \sum_i a_i z^i \text{ and } a_i \geq 0$$

- Exponentiating $k(\mathbf{x}, \mathbf{x}')$

 $$\exp(k(\mathbf{x}, \mathbf{x}'))$$
Constructing New Kernels (2)

- You can construct $k'(x, x')$ from $k_1(x, x')$, $k_2(x, x')$ by:
 - Adding $k_1(x, x')$ and $k_2(x, x')$:
 $$k_1(x, x') + k_2(x, x')$$
 - Multiplying $k_1(x, x')$ and $k_2(x, x')$:
 $$k_1(x, x')k_2(x, x')$$
Constructing New Kernels (2)

• You can construct $k'(\mathbf{x}, \mathbf{x}')$ from $k_1(\mathbf{x}, \mathbf{x}')$, $k_2(\mathbf{x}, \mathbf{x}')$ by:

 – Adding $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$:

 $$k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

 – Multiplying $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$:

 $$k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$

• Also:

 – If $\phi(\mathbf{x}) \in \mathbb{R}^m$ and $k_m(\mathbf{z}, \mathbf{z}')$ a valid kernel in \mathbb{R}^m, $k(\mathbf{x}, \mathbf{x}') = k_m(\phi(\mathbf{x}), \phi(\mathbf{x}'))$ is also a valid kernel

 – If \mathbf{A} is a symmetric positive semi-definite matrix, $k(\mathbf{x}, \mathbf{x}') = \mathbf{xA}\mathbf{x}'$ is also a valid kernel
This lecture

✓ Support vectors

✓ Kernels & kernel trick

✓ Properties of kernels

4. Nonlinear SVM
How to implement nonlinear SVM with kernels?

• Learning: plug the kernel in the dual form

\[
\min_{\{0 \leq \alpha_i \leq C\}, \sum_i \alpha_i y_i = 0} \left\{ \frac{1}{2} \sum_i \sum_j y_i y_j \alpha_i \alpha_j \mathbf{x}_i^\top \mathbf{x}_j - \sum_i \alpha_i \right\}
\]

Still a quadratic convex optimization problem!
How to implement nonlinear SVM with kernels?

• Prediction

\[
sgn\left(\mathbf{w}^\top \phi(\mathbf{x}) + b\right) = sgn\left(\sum_i \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}) + b\right)
\]

\[
\mathbf{w}^* = \sum_i \alpha_i^* y_i \phi(\mathbf{x}_i)
\]

\[
\mathbf{w}^* \top \phi(\mathbf{x}) = \sum_i \alpha_i^* y_i \phi(\mathbf{x}_i) \top \phi(\mathbf{x})
\]

Support vectors now are on/within nonlinear “margin” (in the original space)!
Optimal solution: KKT condition

\[\forall i, \beta_i^* \xi_i^* = 0 \quad \forall i, \alpha_i^* (y_i (w^* \mathbf{x}_i + b^*) - 1 + \xi_i^*) = 0 \]

\[\forall i, \alpha_i^* + \beta_i^* = C \]

Let us find some j, \(0 < \alpha_j^* < C \), what can we get?

\[\beta_j^* > 0 \implies \xi_j^* = 0 \]

\[\alpha_j^* > 0 \implies y_j (w^* \mathbf{x}_j + b^*) - 1 + \xi_j^* = 0 \]

\[\implies y_j (w^* \mathbf{x}_j + b^*) - 1 = 0 \]

\[\implies w^* \mathbf{x}_j + b^* = y_j \]

\[\implies b^* = y_j - w^* \mathbf{x}_j \]

For robustness, we often average the results over all such j

For kernel case

\[w^* \mathbf{\phi}(\mathbf{x}) = \sum_i \alpha_i^* y_i \mathbf{\phi}(\mathbf{x}_i)^\top \mathbf{\phi}(\mathbf{x}) = \sum_i \alpha_i y_k K(\mathbf{x}_i, \mathbf{x}) \]
Nonlinear SVM example: Gaussian kernel

Level sets, i.e. $w^T \phi(x) + b = r$ for some r

From David Sontag
Summary

- Dual form of SVM leads to the concept of support vectors

- To make the final prediction, we are computing dot products

- The kernel trick is a computational trick to compute dot products in higher dimensional spaces

- This is applicable not just to SVMs. The same idea can be extended to Perceptron too: the Kernel Perceptron