Sample Spaces, Events, Probability

CS 3130/ECE 3530: Probability and Statistics for Engineers

Jan 9, 2025

Definition

A set is a collection of unique objects.

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

$$A = \{3, 8, 31\}$$

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

$$A = \{3, 8, 31\}$$

B = {apple, pear, orange, grape}

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

 $A = \{3, 8, 31\}$ $B = \{\text{apple, pear, orange, grape}\}$ Not a valid set definition: $C = \{1, 2, 3, 4, 2\}$

• Order in a set does not matter! $\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\}$

• Order in a set does not matter! $\{1,2,3\} = \{3,1,2\} = \{1,3,2\}$

When x is an element of A, we denote this by:

 $x \in A$.

• Order in a set does not matter! $\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\}$

When x is an element of A, we denote this by:

 $x \in A$.

If x is not in a set A, we denote this as:

$$x \notin A$$
.

• Order in a set does not matter! $\{1, 2, 3\} = \{3, 1, 2\} = \{1, 3, 2\}$

When x is an element of A, we denote this by:

 $x \in A$.

• If x is not in a set A, we denote this as:

$$x \notin A$$
.

The "empty" or "null" set has no elements:

$$\emptyset = \{ \}$$

Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Integers:

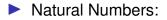
$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Natural Numbers:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

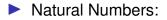


$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

 $\mathbb{R}=$ "any number that can be written in decimal form"

Integers:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$



$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Real Numbers:

 $\mathbb{R}=$ "any number that can be written in decimal form"

$$5 \in \mathbb{R}, \quad 17.42 \in \mathbb{R}, \quad \pi = 3.14159 \ldots \in \mathbb{R}$$

Alternate way to define natural numbers:

$$\mathbb{N} = \{ x \in \mathbb{Z} : x \ge 0 \}$$

Alternate way to define natural numbers:

$$\mathbb{N} = \{ x \in \mathbb{Z} : x \ge 0 \}$$

Set of even integers:

$$\{x \in \mathbb{Z} : x \text{ is divisible by } 2\}$$

Alternate way to define natural numbers:

$$\mathbb{N} = \{ x \in \mathbb{Z} : x \ge 0 \}$$

Set of even integers:

$$\{x \in \mathbb{Z} : x \text{ is divisible by } 2\}$$

Rationals:

$$\mathbb{Q} = \{ p/q : p,q \in \mathbb{Z}, q
eq 0 \}$$

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

Examples: • $\{1,9\} \subseteq \{1,3,9,11\}$

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

$$\{1,9\} \subseteq \{1,3,9,11\}$$
$$\mathbb{Q} \subseteq \mathbb{R}$$

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

- ▶ $\{1,9\} \subseteq \{1,3,9,11\}$
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{R}$
- {apple, pear} \nsubseteq {apple, orange, banana}

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

- ▶ $\{1,9\} \subseteq \{1,3,9,11\}$
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{R}$
- ► $\{apple, pear\} \nsubseteq \{apple, orange, banana\}$
- $\blacktriangleright \ \emptyset \subseteq A \text{ for any set } A$

Definition

A set *A* is a **subset** of another set *B* if every element of *A* is also an element of *B*, and we denote this as $A \subseteq B$.

- ▶ $\{1,9\} \subseteq \{1,3,9,11\}$
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{R}$
- ► $\{apple, pear\} \nsubseteq \{apple, orange, banana\}$
- $\blacktriangleright \ \emptyset \subseteq A \text{ for any set } A$
- $A \subseteq A$ for any set A (but $A \not\subset A$)

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

• Coin flip:
$$\Omega = \{H, T\}$$

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$
- Tossing 2 coins?

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Pick a ball from a bucket of red/black balls: $\Omega = \{R, B\}$
- Tossing 2 coins?
- Shuffling deck of 52 cards?

Definition

An event is a subset of a sample space.

Events

Definition

An event is a subset of a sample space.

Examples:

• You roll a die and get an even number: $\{2,4,6\} \subseteq \{1,2,3,4,5,6\}$

Events

Definition

An event is a subset of a sample space.

- You roll a die and get an even number: $\{2,4,6\} \subseteq \{1,2,3,4,5,6\}$
- You flip a coin and it comes up "heads": $\{H\} \subseteq \{H, T\}$

Events

Definition

An event is a subset of a sample space.

- You roll a die and get an even number: $\{2,4,6\} \subseteq \{1,2,3,4,5,6\}$
- You flip a coin and it comes up "heads": $\{H\} \subseteq \{H, T\}$
- Your code takes longer than 5 seconds to run: $(5,\infty)\subseteq\mathbb{R}$

Set Operations: Union

Definition

The **union** of two sets *A* and *B*, denoted $A \cup B$ is the set of all elements in either *A* or *B* (or both).

Set Operations: Union

Definition

The **union** of two sets *A* and *B*, denoted $A \cup B$ is the set of all elements in either *A* or *B* (or both).

When *A* and *B* are events, $A \cup B$ means that event *A* or event *B* happens (or both).

Set Operations: Union

Definition

The **union** of two sets *A* and *B*, denoted $A \cup B$ is the set of all elements in either *A* or *B* (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example: $A = \{1, 3, 5\}$ "an odd roll" $B = \{1, 2, 3\}$ "a roll of 3 or less"

Set Operations: Union

Definition

The **union** of two sets *A* and *B*, denoted $A \cup B$ is the set of all elements in either *A* or *B* (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example: $A = \{1, 3, 5\}$ "an odd roll" $B = \{1, 2, 3\}$ "a roll of 3 or less" $A \cup B = \{1, 2, 3, 5\}$

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

- $A = \{1, 3, 5\}$ "an odd roll" $P = \{1, 2, 3\}$ "a roll of 2 of
- $B = \{1, 2, 3\}$ "a roll of 3 or less"

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

 $A = \{1, 3, 5\}$ "an odd roll" $B = \{1, 2, 3\}$ "a roll of 3 or less" $A \cap B = \{1, 3\}$

Definition

The **intersection** of two sets *A* and *B*, denoted $A \cap B$ is the set of all elements in both *A* and *B*.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:

 $A = \{1, 3, 5\}$ "an odd roll" $B = \{1, 2, 3\}$ "a roll of 3 or less" $A \cap B = \{1, 3\}$

Note: If $A \cap B = \emptyset$, we say A and B are **disjoint**.

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Example: $A = \{1, 3, 5\}$ "an odd roll"

Definition

The **complement** of a set $A \subseteq \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Example: $A = \{1,3,5\} \quad \text{``an odd roll''} \\ A^c = \{2,4,6\} \quad \text{``an even roll''}$

Set Operations: Difference

Definition

The **difference** of a set $A \subseteq \Omega$ and a set $B \subseteq \Omega$, denoted A - B, is the set of all elements in Ω that are in A and are not in B.

Example: $A = \{3, 4, 5, 6\}$ $B = \{3, 5\}$ $A - B = \{4, 6\}$

Note: $A - B = A \cap B^c$

DeMorgan's Law

Complement of union or intersection:

$$(A\cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

DeMorgan's Law

Complement of union or intersection:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

Venn Diagrams

Check whether the following statements are true or false. (Hint: you might use Venn diagrams.)

Probability

Definition

A probability function on a finite sample space Ω assigns every event $A \subseteq \Omega$ a number in [0, 1], such that

1.
$$P(\Omega) = 1$$

2.
$$P(A \cup B) = P(A) + P(B)$$
 when $A \cap B = \emptyset$

P(A) is the **probability** that event A occurs.

The number of elements in a set A is denoted |A|.

The number of elements in a set A is denoted |A|.

If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

The number of elements in a set A is denoted |A|.

If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

Example: Rolling a 6-sided die

The number of elements in a set A is denoted |A|.

If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

Example: Rolling a 6-sided die

►
$$P({1}) = 1/6$$

The number of elements in a set A is denoted |A|.

If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

Example: Rolling a 6-sided die

Repeated Experiments

If we do two runs of an experiment with sample space $\Omega,$ then we get a new experiment with sample space

$$\Omega \times \Omega = \{(x, y) : x \in \Omega, y \in \Omega\}$$

Repeated Experiments

If we do two runs of an experiment with sample space Ω , then we get a new experiment with sample space

$$\Omega \times \Omega = \{(x, y) : x \in \Omega, y \in \Omega\}$$

The element $(x, y) \in \Omega \times \Omega$ is called an **ordered pair**.

Repeated Experiments

If we do two runs of an experiment with sample space Ω , then we get a new experiment with sample space

$$\Omega \times \Omega = \{(x, y) : x \in \Omega, y \in \Omega\}$$

The element $(x, y) \in \Omega \times \Omega$ is called an **ordered pair**.

Properties: Order matters: $(1,2) \neq (2,1)$ Repeats are possible: $(1,1) \in \mathbb{N} \times \mathbb{N}$

Repeating an experiment n times gives the sample space

$$egin{aligned} \Omega^n &= \Omega imes \cdots imes \Omega & (n ext{ times}) \ &= \{(x_1, x_2, \dots, x_n) : x_i \in \Omega ext{ for all } i\} \end{aligned}$$

Repeating an experiment n times gives the sample space

$$\Omega^n = \Omega \times \cdots \times \Omega$$
 (*n* times)
= {(x₁, x₂, ..., x_n) : x_i $\in \Omega$ for all *i*}

The element (x_1, x_2, \ldots, x_n) is called an *n*-tuple.

Repeating an experiment *n* times gives the sample space

$$\Omega^{n} = \Omega \times \cdots \times \Omega \quad (n \text{ times})$$
$$= \{ (x_{1}, x_{2}, \dots, x_{n}) : x_{i} \in \Omega \text{ for all } i \}$$

The element (x_1, x_2, \ldots, x_n) is called an *n*-tuple.

If $|\Omega| = k$, then $|\Omega^n| = k^n$.

Probability Rules

Probability Rules

Complement of an event A:

$$P(A^c) = 1 - P(A)$$

Probability Rules

Complement of an event A:

$$P(A^c) = 1 - P(A)$$

Union of two overlapping events $A \cap B \neq \emptyset$:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exercise

You are picking a number out of a hat, which contains the numbers 1 through 100. What are the following events and their probabilities?

- The number has a single digit
- The number has two digits
- The number is a multiple of 4
- The number is not a multiple of 4
- The sum of the number's digits is 5

Permutations

A **permutation** is an ordering of an *n*-tuple. For instance, the *n*-tuple (1, 2, 3) has the following permutations:

$$(1, 2, 3), (1, 3, 2), (2, 1, 3)$$

 $(2, 3, 1), (3, 1, 2), (3, 2, 1)$

Permutations

A **permutation** is an ordering of an *n*-tuple. For instance, the *n*-tuple (1, 2, 3) has the following permutations:

$$(1, 2, 3), (1, 3, 2), (2, 1, 3)$$

 $(2, 3, 1), (3, 1, 2), (3, 2, 1)$

The number of unique orderings of an *n*-tuple is *n* factorial:

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2$$

Permutations

A **permutation** is an ordering of an *n*-tuple. For instance, the *n*-tuple (1, 2, 3) has the following permutations:

$$(1, 2, 3), (1, 3, 2), (2, 1, 3)$$

 $(2, 3, 1), (3, 1, 2), (3, 2, 1)$

The number of unique orderings of an *n*-tuple is *n* factorial:

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2$$

How many ways can you rearrange (1, 2, 3, 4)?