Basic Concepts in Information Theory

Spring 2024

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing
Coding theory

- Let us start with discrete random variables
Coding theory

• How to represent the information contained in the random variables?

\[h(x) \geq 0 \]

\[h(x, y) = h(x) + h(y) \quad \text{if } x, y \text{ are independent} \]

\[p(x, y) = p(x)p(y) \]

\[h(x) = -\log(p(x)) \]
Entropy

- The average amount of information needs to transmit

\[H(x) = - \sum_x p(x) \log(p(x)) \]
Entropy

<table>
<thead>
<tr>
<th>x</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x)$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{8}$</td>
<td>$\frac{1}{16}$</td>
<td>$\frac{1}{64}$</td>
<td>$\frac{1}{64}$</td>
<td>$\frac{1}{64}$</td>
<td>$\frac{1}{64}$</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
H[x] &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{4} \log_2 \frac{1}{4} - \frac{1}{8} \log_2 \frac{1}{8} - \frac{1}{16} \log_2 \frac{1}{16} - \frac{4}{64} \log_2 \frac{1}{64} \\
&= 2 \text{ bits}
\end{align*}
\]

Entropy is also the average code length
Entropy reflects uncertainty

Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy \(H \) for the broader distribution. The largest entropy would arise from a uniform distribution that would give \(H = -\ln\left(\frac{1}{30}\right) = 3.40 \).

We can extend the definition of entropy to include distributions \(p(x) \) over continuous variables \(x \) as follows. First divide \(x \) into bins of width \(\Delta \). Then, assuming \(p(x) \) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each such bin, there must exist a value \(x_i \) such that

\[
\int_{i\Delta}^{(i+1)\Delta} p(x) \, dx = p(x_i) \Delta.
\]

We can now quantize the continuous variable \(x \) by assigning any value \(x \) to the value \(x_i \) whenever \(x \) falls in the \(i \)th bin. The probability of observing the value \(x_i \) is then \(p(x_i) \Delta \). This gives a discrete distribution for which the entropy takes the form

\[
H = -\sum_i p(x_i) \Delta \ln (p(x_i) \Delta) = -\sum_i p(x_i) \Delta \ln p(x_i) - \ln \Delta.
\]
Maximum entropy

- Consider a discrete R.V. with M possible status. We want to find the distribution has the maximum entropy: \(H[p] = - \sum_i p(x_i) \ln p(x_i) \).

\[
\tilde{H} = - \sum_i p(x_i) \ln p(x_i) + \lambda \left(\sum_i p(x_i) - 1 \right)
\]

\[
p(x_i) = \frac{1}{M} \quad \text{uniform distribution}
\]
Differential entropy

- Entropy is naturally defined on discrete random variables.
- But how about continuous variables?
Differential entropy

- Let us divide \(x \) into bins of \(\Delta \)

Mean-value theorem

\[
\int_{i\Delta}^{(i+1)\Delta} p(x) \, dx = p(x_i) \Delta
\]

Entropy on discretized probability

\[
H_{\Delta} = - \sum_i p(x_i) \Delta \ln (p(x_i) \Delta) = - \sum_i p(x_i) \Delta \ln p(x_i) - \ln \Delta
\]

\[
\sum_i p(x_i) \Delta = 1
\]
Differential entropy

\[H_\Delta = - \sum_i p(x_i) \Delta \ln (p(x_i) \Delta) = - \sum_i p(x_i) \Delta \ln p(x_i) - \ln \Delta \]

\[\lim_{\Delta \to 0} \left\{ \sum_i p(x_i) \Delta \ln p(x_i) \right\} = \int p(x) \ln p(x) \, dx \]

\[H[x] = - \int p(x) \ln p(x) \, dx \]
Differential entropy

• The term that is thrown out reflects that to specify a continuous variable very precisely requires many many bits

• Note: differential entropy can be negative!
Differential entropy

• Given a continuous variable \(x \) with mean \(\mu \) and variance \(\sigma^2 \), which distribution has the largest entropy?

\[
\begin{align*}
\int_{-\infty}^{\infty} p(x) \, dx &= 1 \\
\int_{-\infty}^{\infty} x p(x) \, dx &= \mu \\
\int_{-\infty}^{\infty} (x - \mu)^2 p(x) \, dx &= \sigma^2.
\end{align*}
\]
Differential entropy

\[
\max - \int_{-\infty}^{\infty} p(x) \ln p(x) \, dx + \lambda_1 \left(\int_{-\infty}^{\infty} p(x) \, dx - 1 \right) \\
+ \lambda_2 \left(\int_{-\infty}^{\infty} x p(x) \, dx - \mu \right) + \lambda_3 \left(\int_{-\infty}^{\infty} (x - \mu)^2 p(x) \, dx - \sigma^2 \right)
\]

\[
p(x) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\}
\]

Gaussian distribution!
Conditional entropy

• Given \(\mathbf{x} \), how much information is left for \(\mathbf{y} \)

\[
H[\mathbf{y}|\mathbf{x}] = - \int \int p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y}|\mathbf{x}) \, d\mathbf{y} \, d\mathbf{x}
\]

\[
H[\mathbf{x}, \mathbf{y}] = H[\mathbf{y}|\mathbf{x}] + H[\mathbf{x}]
\]

Prove it by yourself
Kullback-Leibler (KL) divergence

- Also called relative entropy

\[
\text{KL}(p\|q) = -\int p(x) \ln q(x) \, dx - \left(-\int p(x) \ln p(x) \, dx \right)
\]

\[
= -\int p(x) \ln \left(\frac{q(x)}{p(x)} \right) \, dx.
\]

If we use \(q \) to transmit information for \(p \), how much extra information do we need
Kullback-Leibler (KL) divergence

- KL divergence is widely used to measure the difference between two distributions

\[KL(p \parallel q) \geq 0 \]

=0 iff \(p = q \)

- However, it is not symmetric!

\[KL(p \parallel q) \neq KL(q \parallel p) \]

Prove it with convexity
And Jensen’s inequality
KL Divergence

- KL divergence plays the key role in approximate inference
- All the deterministic approximate methods aim to minimize the KL divergence between the true and approximate posteriors (or in the reversed direction)
- In general, we have alpha divergence
- We will discuss these in detail later
Mutual information

How many information do the two random variables share?

\[I[x, y] \equiv \text{KL}(p(x, y) \| p(x)p(y)) \]

\[= - \int \int p(x, y) \ln \left(\frac{p(x)p(y)}{p(x, y)} \right) \, dx \, dy \]

Prove it by yourself
What you need to know

• Definition of entropy
• How is differential entropy is derived
• Entropy is an indicator for uncertainty
• KL divergence and properties (especially asymmetric)
• Mutual information