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Maximum likelihood estimation (MLE)

Suppose we have a distribution p(x|@) parameterized by 6

We have observed a set of Independent and identically
distributed (IID) random variables from p(x]0)

D={x1,...,X,} observations

How do we estimate 9 from D ?



Maximum likelihood estimation (MLE)

The probability density (or mass) evaluated at each
observation is called the “likelihood” of the
observation

We want to find 8 that maximizes the likelihood of all the
observations

P )
o =

mn
Orr = arggnaxz log p(x;|6) Log-likelihood
1=1



Maximum a posterior estimation (MAP)

 Whatis the problem of MLE?

We are in the Bayesian world! We always have
some prior knowledge about 6

O ap = argmax . Hp(Xz"H) brior
& i=1

Orrap = argmax
0

log p(0)

|

+ ZIOgP(Xi\H)

1=1

Corresponds to the regularizer in non-Bayesian view 6



Be aware

e Although MAP looks a good way to incorporate the prior
knowledge, it is not ideal in Bayesian (probabilistic)
perspective

n

Goal: p(0|D) x p(0) Hp(Xiw) p(6|D)

1=1

Orrap s just the mode of the posterior distribution O/ AP
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Let’ s review commonly used probability
distributions

 They are used everywhere — all kinds of statistical
(Bayesian or non-Bayesian) applications

* They are building blocks to construct more complex
probabilistic models

Like 1+1=2, you should be very familiar with them!



Binary variables

* Consider a binary random variable z € {0,1}

e.g., toss a coin, buy or not buy

Bernoulli distribution: p(x — 1) — K

p(x) = p" (1 —p)' ="

10



Binary variables - MLLE

* Suppose we have N IID observations D = {z1,...,xn},

what is the MLE of u ?

p(Dlp) = || planlp) =

n=1
i N

Inp(D|u) = Zlnp Tp|p) = Z{ajnlnu—l—(l—xn)ln(l—u)}

.

1
UML = N Z Tben Ratio of 1s

S
11— =
=
8
3
[
|
8
3
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Binary variables

e Binomial distribution: suppose | toss a coin for N
times, what is the number of heads?

Repeat Bernoulli experiments N times

If =~Bin(N,p) , xe€{0,1,2,...,N}

12



Binary variables

* Binomial distribution: how to compute the expectation
and variance?

Llx] = Ny

var(z] = Npu(l — p)

Trick: represent x as a summation of Bernoulli variables!

13



Categorical variables

e Suppose a random variable can take K values (K>= 2).
We call it a categorical (or discrete) variable.

 We use a K-dimensional vector with only one
nonzero entry (i.e., 1) to represent a sample of
categorical variable.

Xx=[x1,...,TK]"

only one entry can be 1, others=0

* e.g.,, K=4, the variable observed as category 2

X = [0, 1,0, O]T Also called one-hot encoding

14



Categorical variables

* The distribution of a categorical variable is

p(x|p) = HM po= (.. px)"

Note each X iseitherOor1l

Onlyone T is1l

Note: we have constraints on the parameter [

15



Categorical variables - MLE

* Consider we have N IID observations D = {x;,...,x,}

pOlw) = [[ T we = [Trm=""" =T mw=) am
k=1 k=1 -

n=1k=1

K i K
Log likelihood Z me In e + A (Z b — 1)
k=1 k=1

l Lagrange multiplier: why?

ML mi
,uk — N Ratio of each category
16



Categorical variables

 Multinomial distribution: the distribution of the
counts of the K categories in N IID observations:

m = [m,...,mg]' ~ Mult(NV, p)

pmiVep) = (0 ) H e

K N N!
E mi = N mims...mg /)  mylmsl. .. mg!

17



Link categorical variables to ML models
(we will discuss them later)

* Key: how to model the parameters [t or K

in terms of features «
— Logistic regression w=1/(1+ exp(—w "))

— Probit regression
1t = GaussianCDF(w ' )
— Multi-class classification

exp(w, )

— Ordinal regression M = =
8 D exp(w; a

by
pr = N(tw'a,1)dt

br—1

)
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Distribution of discrete distributions

e A Bernoulli distribution is determined by ¢ € [0, 1]

1l—=x

p(z) = p*(1 — )
* Can we have a distribution over ft ? Beta distribution

L(a+b) , —1
OIOK (1 — )"

Beta(u|a,b) =

['(a) : The general version of (a—1)!,a can be continuous

r(1) =1 [(a) = (a — 1)[(a — 1)

19



Beta distribution with different a,b
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Beta distribution

a
a-+b

ab

(a+b)?(a+b+1)
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Beta distribution is a conjugate prior to the Bernoulli
likelihood. We will discuss it later.
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e A Categorical distribution is determined by

Distribution of discrete distributions

po= (1,5 px)’!

* Can we have a distribution over ¢ ? Dirichlet distribution

T(o H“ak’ 1 _i

a=|a,..., OzK]T are called concentration parameters

Dir(p|o) =

Fach a, > 0

23



Dirichlet distribution: distribution over
simplexes

The Dirichlet distribution over three variables w1, p2, s H2 5
is confined to a simplex (a bounded linear manifold) of
the form shown, as a consequence of the constraints

O<ﬂk<18ndzkuk:1.

M3

Beta dist. is a special case of Dirichlet dist. when K=2

24



Dirichlet distribution

Elpk] =

K
Zj:l a'.j

Ellog ] = ¥ (ax) — (Y o)

g=1

25



Dirichlet distribution

Ak
E[Nlﬂ] — K
Zj 1
E[lOg ,LLk ak Z 04]
/d
digamma function ¢(:C) = — log (I’(ac))

dx

26



Dirichlet distribution is a conjugate prior to the
categorical likelihood. We will discuss it later.
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[Blei et. al. 03]

Latent Dirichlet allocation (LDA)
“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL  YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100.000
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.

28



Continuous variables

e Gaussian distribution

Everybody knows the single-variable case

Nl 0?) = — L exp {—2%,2@ _ m?}

(2#02)1/2

29



Multivariate Gaussian distribution

 We need to be familiar the multivariate (general) case
y 1 _
N(x|p, ) = 27872 exp (= 5 (x — p) "2 7 (x — p))

- J
Y

tr((x — p)(x —p) ' =71

JL :mean 3 > () :covariance matrix

Sometimes we use A — 2_1, which is called precision matrix

30



Contours of 2-D Gaussian

372‘
T
&1
(a)
covariance general

(b)

diagonal

>

L1

5172‘

identity

31



Multivariate Gaussian distribution - MLE

* Thekeyfact Eix|=p Exx"|=pu’+3

* Given IID observations D = {x1,...,xn}
The variable is d dimensional

Nd N 1 &

log (p(D|p, ) = — =" log(2m) — —-log B[ — > >~ (0 — 1) '3 (0 — 1)

n=1

N N
Sufficient statistics > X, > xnxp.
n=1 n=1

32



Multivariate Gaussian distribution - MLE

Nd N 1 & _
log (p(Dlp, X)) = ——-log(2r) — T 1og |8 = 5 > (%0 — ) ' E7 (%0 — )
n=1
dlog (p(Dlp, ) <
set 08 \PLHIH, = ) Sl (xp—p) =0
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Multivariate Gaussian distribution - MLE

Nd N 1 o

log (p(Dlp, X)) = ——-log(2r) — T 1og |8 = 5 > (%0 — ) ' E7 (%0 — )

n=1

)t

Olog (p(Dlpmi:E)) N
2

N
I3 = Z 2_1(Xn — M) (Xn — MML)TZ_l

n=1

N | —

-

N
DML = N Z(Xn — HML)(Xn - HML)T It is semi-positive definite

n=1
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Multivariate Gaussian distribution - MILE

N —1
E[ZML] — N >,  Why?

35



Multivariate Gaussian distribution - MILE

E[”’ML: — M
_ N —1
EXun] = [

N Z] Biased estimate

N
= 1 Z . .

36



Partitioned Gaussian

Question 1: What is p(Xa‘Xb) ?

37



Conditional Gaussian distribution

 We need to use the “completing the square” trick

The exponent of a general Gaussian distribution is

1 1
—§(x _ “)Tg—l(x — ) = ——x'y x4 XTE_ll,L + const

| |

Quadratic term Linear term

38



Conditional Gaussian distribution

* Let us expand the partitioned variables

= )T () =

1 1
_i(xa - l’l'a,)TACLCL<XCL T lJ’a) - §(Xa o l’l’a)TAab(Xb o I“Lb)

1 1
=5 0% = 1) Ava (%0 — 1a) = 5066 = 1) A (X6 — p23).

(\)

39



Conditional Gaussian distribution

* Let us expand the exponent of the conditional p(Xq|Xs)

= )T () =
1

o ) A 1)) 55— 1) A (s — )
1 1

=5 0% = 1) Ava (%0 — 1a) = 5066 = 1) A (X6 — p23).

(\)

1
Quadratic term — _XTAaaXa

2 a

40



Conditional Gaussian distribution

* Let us expand the exponent of the conditional p(Xq|Xs)

= )T () =
1

o ) A 1)) 55— 1) A (s — )
1 1

=5 0% = 1) Ava (%0 — 1a) = 5066 = 1) A (X6 — p23).

(\)

1 —1
Quadratic term _§X3Aaaxa => 2a|b — Aa,a,

41



Conditional Gaussian distribution

* Let us expand the exponent of the conditional p(Xq|Xs)

1 _
S ) BT (x—p) =
1 T 1 T
_§(Xa — I'La) AaCL(XCL — lJ’a) - §(Xa o l”’a) Aab(Xb N Mb)
: ® © ; Qo Q
_§(Xb — ) Apa(Xa — 1) — §(Xb — )" Ay (X — py)-
Q@ Q

Linear term: XE {Aaaﬂa — A (Xb — Hb)}
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Conditional Gaussian distribution

* Let us expand the exponent of the conditional p(Xq|Xs)

o KA Gart, — Agp(xp — 113}

Linear term: X

1 1
—§(X —p) T (x—p) = —§XT2_1X +x ' pf+ const
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Conditional Gaussian distribution

* Let us expand the exponent of the conditional p(Xq|Xs)

Linear term: X

1

Folp —

T
a

(Aaatty — Aap(Xp — 1) }

1

—§(x — )Y T M x—p) = x4 xTE T

2

!

Yap {Aaabty — Ao (X6 — 1)
o — Mg Aoy (xp — 1)

+ const
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Conditional Gaussian distribution

p(Xa’Xb) — N(Xa’u’aﬂ)v 2a|b)

2a|b — Ac:al
Pap = pg — Agg Aap(x5 — 1)

45



Conditional Gaussian distribution

p(Xa’Xb) — N(Xa’u’aﬂ)v Za|b)

2a|b — Ac:al
Pap = pg — Agg Aap(x5 — 1)

46



Conditional Gaussian distribution

 Block matrix inverse
A B\ M ~MBD!
Cc D/ ~\-D'CM D '4+D 'CMBD!

M= (A-BD'C)’

47



Conditional Gaussian distribution

 Block matrix inverse
A B\ M ~MBD!
Cc D/ ~\-D'CM D '4+D 'CMBD!

M= (A-BD'C)’

Zaa Eab _1_ Aaa Aab Aaa — (Eaa_zabzb_blzba)_l
dipa b Apa  App ; Ay = —(Bas—ZapZp Zba) ' Zap Sy

48



Conditional Gaussian distribution

p(Xa’Xb) — N(Xa‘“’aﬂw 2a,|b)
Sap = Aga
Falp = K, — A;;Aab(xb — )

Aoo = (Zaa_zabzb_blzba)_l
Aab — _(Eaa_zabz&lzba)_lzabz&l

49



Marginal Gaussian distribution

x ~ N (x|p, X)
(%) el -

Question 2: What is p(x4) = /p(Xa,,Xb)de ?

Eab
2bb

)

50



Marginal Gaussian distribution

x ~ N (x|p, X)

Use the same trick, we can derive that
p(Xa) = N(Xa|thas Xaa)

Leave it as your exercise
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Gamma distribution

A scalar Gaussian distribution

Nl o?) = —L—exp {—2%,2@@ _ mQ}

(27r02)1/2




Gamma distribution

A scalar Gaussian distribution

1 1
2 — — —
Mo = (2m02)"/? eXp{ 20

Do we have a distribution over the precision? X\ =1/0

1

Gam(\l|a,b) = T(a)

@—uf}

A>0

A" exp(—bA)

53



Gamma distribution

A scalar Gaussian distribution

N (@l 02) = —

(27r02)1/2

Do we have a distribution over the precision? X\ =1/0

GaH(MaJO::FéQ

EA =

var|A]

emp{—igﬁt—uf}

A>0

A" exp(—bA)

Tlaesle

a>0,b>0

54



Gamma distribution

A scalar Gaussian distribution

1 1
NGl = oo { e —

Do we have a distribution over the precision? X\ =1/0

A>0

1
Gam(\l|a,b) = (o) b\ texp(—bA) a>0,b>0

EA =

var|A]

Tlaesle

E[log(X\)] = v (a) — log(b)
L

digamma function
/

55


https://en.wikipedia.org/wiki/Digamma_function

Gamma distribution

I
[S2IINTN

S Qe
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Inverse Gamma distribution

A ~ Gamma(A\la, b)

A7 ~ InvGamma(\|a, b)

57



Inverse Gamma distribution

A ~ Gamma(A\la, b)

A7 ~ InvGamma(\|a, b)

Inverse Gamma distribution is often used as a prior distribution over the
Gaussian variance

N (x| pfo?) = (27”712)1/2 exp {—%‘Q(x _ M)?}
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Wishart Distribution

e Now let us switch to multivariate Gaussian distribution

1
NEx|p, X)) = 27|~ 2 exp(—§XTE_1X)

Do we have a distribution over the precision matrix A = 2_1 ?

59



Wishart Distribution

e Now let us switch to multivariate Gaussian distribution

1
N, %) = Prs|~F exp(—5x 5%

Do we have a distribution over the precision matrix A = 2_1 ?

‘A‘(u—d—l)/2 exp ( 1 (W 1A))

W(AIW,v) = = 2
ST W T

W0 v>d-1

degree of freedom

60



Wishart Distribution

e Now let us switch to multivariate Gaussian distribution

1
N, %) = Prs|~F exp(—5x 5%

Do we have a distribution over the precision matrix A = 2_1 ?

‘A‘(u—d—l)/2 exp ( 1 (W 1A))
2% W v/2T, (Y
W] d(g)

W>=0 v>d-1 multivariate gamma function
degree of freedom

W(AIW,v) =

61



Wishart Distribution

e Now let us switch to multivariate Gaussian distribution

1
N(x|p,X) = [273| 2 eXp(—§XT2_1X)

Do we have a distribution over the precision matrix A = 2_1 ?

‘A‘(u—d—l)/2 exp ( 1 (W 1A))
2% W v/2T, (Y
W] d(g)

W>=0 v>d-1 multivariate gamma function
degree of freedom

W(AIW,v) =

Multi-dimensional version of Gamma distribution! 62



Inverse Wishart Distribution

A~W(AIW,v)

|

A=~ W HAIWT )

63



Inverse Wishart Distribution

A~W(AIW,v)

|

A=~ W HAIWT )

Inverse Wishart distribution is often used as a prior distribution over the
covariance matrixs of the multivariate Gaussian dist.

1 1
N (x|p/Z) = [273] 7% exp(—5x 27 %)
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Student t’s distribution

* |Infinite mixture of Gaussian distribution

Suppose we have a Gaussian random variable p(z|u,7) = N (z|w, 771)

If we place a Gamma prior distribution over the precision 7
p(7|a,b) = Gamma(7|a, b)

What is the marginal distribution of  ?

p(|ps, @, b) = / ol el D)l
0

65



Student t’s distribution

p(aliab) = / N (@l 7=Y) Gam(r|a, b) dr
0

o) bae(—bT)Ta—l 7\ 1/2
_/0 T'(a) (%) exp{

= () e e

T

2

——(x — ,u)z} dr

66



Student t’s distribution

p(x|p, a,b) / N (z|p, 7~ Gam(7|a, b) dr
— / 7 )T 1/2exp{—%(az—,u)2} dr
e

v =2a A =a/b

67/



Student t’s distribution

Infinite weighted sum of Gaussians!

p(z|p, a,b) :[/ N(xluﬁl)Gam(Tla,b)dT}
0
00 bae(—bT)Ta—l 7\ 1/2 T )
- /0 T(a) (%) exp{_§<$_“) }dT

A

v = 2a )\—a/b

y/z + 1/2 L Ma - u)2] Rt

A —
/’u’ g I'(v/2) %

mean precision degree of freedom ;, - 68



Student t’s distribution — heavy tail

0.5

Vv — OO

-5 0 5

v—00 ) St v) - Nzlp AT



Student t’s distribution - robustness

Figure 2.16 lllustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.
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Student t’s distribution

p(z|, @, b) = / ol el )
0
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Student t’s distribution

p(z|, @, b) = / ol el )
0

v=2a,\A\=a/b,n=71b/a

72



Student t’s distribution

p(z|, @, b) = / ol el )
0

v=2a,\A\=a/b,n=71b/a i

{St(wuakal/)—/ooof\/(xlu, (n\) ™) Gam(n|v/2,v/2) dn ]
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Multivariate student-t distribution

StCalis ) = [ A (el () ) GGl 2v/2)

|

St(x|pe. A, ) — / " Nl (nA) ) Gam(nly/2, v/2) d

74



Multivariate student-t distribution

St(z|p, A, v) N (z]p, (nA) ™) Gam(n|v/2,v/2) dn
St(x|u, A, v) N (x|, (nA) 1) Gam(n|v/2,v/2) dn

I'(d/2+v/2) \AW?
Tw2) )l Ty

St(x|p, A, v) = L (x = )T A (x — )] "2
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Multivariate student-t distribution

X ~ St(x|p, A, v)

Elx|] = u, it v>1
cov|x| = (V—iQ)A_l, it v>2
mode|x| = pu

Ding, Peng. "On the conditional distribution of
the multivariate t distribution." The American
Statistician 70.3 (2016): 293-295.

Conditional distribution
Shah, Amar, Andrew Wilson, and Zoubin

Ghahramani. "Student-t processes as
alternatives to Gaussian processes." Artificial
intelligence and statistics. 2014.
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https://arxiv.org/pdf/1604.00561.pdf
https://arxiv.org/pdf/1604.00561.pdf
http://proceedings.mlr.press/v33/shah14.pdf
http://proceedings.mlr.press/v33/shah14.pdf

What you need to know

* The commonly used distributions for binary,
categorical, continuous random variables

* For multi-variate Gaussian distribution, know how to

derive the conditional distribution and marginal
distribution

* The commonly used prior distribution of the
distribution parameters (Gamma, Beta, Dirichlet...)

e Know how the student t distribution is derived and
its heavy tail property.
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