Spring 2024

Instructor: Shandian Zhe zhe@cs.utah.edu
School of Computing

Outline

- Neural networks and Back-propagation
- Stochastic optimization
- Bayesian neural networks
- Bayes by Backprop and reparameterization trick
- Auto-encoding variational Bayes

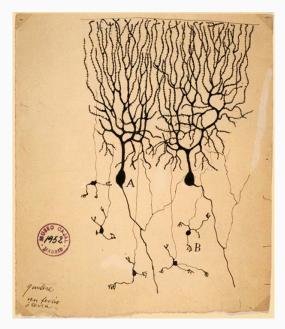
Outline

- Neural networks and Back-propagation
- Stochastic optimization
- Bayesian neural networks
- Bayes by Backprop and reparameterization trick
- Auto-encoding variational Bayes

neural networks – very old topic

- 1943: McCullough and Pitts showed how linear threshold units can compute logical functions
- 1949: Hebb suggested a learning rule that has some physiological plausibility
- 1950s: Rosenblatt, the Peceptron algorithm for a single threshold neuron
- 1969: Minsky and Papert studied the neuron from a geometrical perspective
- 1980s: Convolutional neural networks (Fukushima, LeCun), the backpropagation algorithm (various)
- 2003-today: More compute, more data, deeper networks

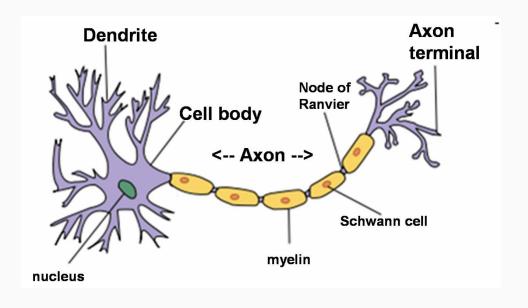
Biological neurons



The first drawing of a brain cells by Santiago Ramón y Cajal in 1899

Neurons: core components of brain and the nervous system consisting of

- Dendrites that collect information from other neurons
- 2. An axon that generates outgoing spikes



Biological neurons

Neurons: core components of brain and the nervous system consisting of

- Dendrites that collect information from other neurons
- 2. An axon that generates outgoing spikes

Modern artificial neurons are "inspired" by biological neurons

But there are many, many fundamental differences

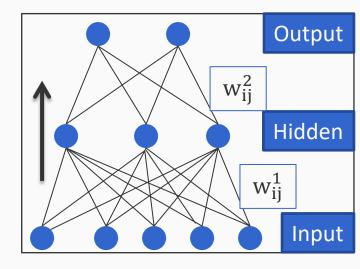
The first d cells by Sa Caial in 18

Don't take the similarity seriously (as also claims in the news about the "emergence" of intelligent behavior)

An artificial neural network

A function that converts inputs to outputs defined by a directed acyclic graph

- Nodes organized in layers, correspond to neurons
- Edges carry output of one neuron to another, associated with weights



To define a neural network, we need to specify:

- The structure of the graph
 - How many nodes, the connectivity
- The activation function on each node

The edge weights

Called the *architecture* of the network
Typically predefined,
part of the design of
the classifier

Learned from data

Activation functions Also called transfer functions

$$output = activation(\mathbf{w}^T \mathbf{x} + b)$$

Name of the neuron	Activation function: $activation(z)$
Linear unit	Z
Threshold/sign unit	sgn(z)
Sigmoid unit	$\frac{1}{1 + \exp\left(-z\right)}$
Rectified linear unit (ReLU)	$\max(0,z)$
Tanh unit	tanh(z)

Many more activation functions exist (sinusoid, sinc, Gaussian, polynomial...)

An example network represented by scalars

output w_{0}^{o} z_2 z_1 Z_0 W_{c}^{h} $|w_{22}^h|$

Given an input x, how is the output predicted

output
$$y = w_{01}^o + w_{11}^o z_1 + w_{21}^o z_2$$

$$z_2 = \sigma(w_{02}^h + w_{12}^h x_1 + w_{22}^h x_2)$$

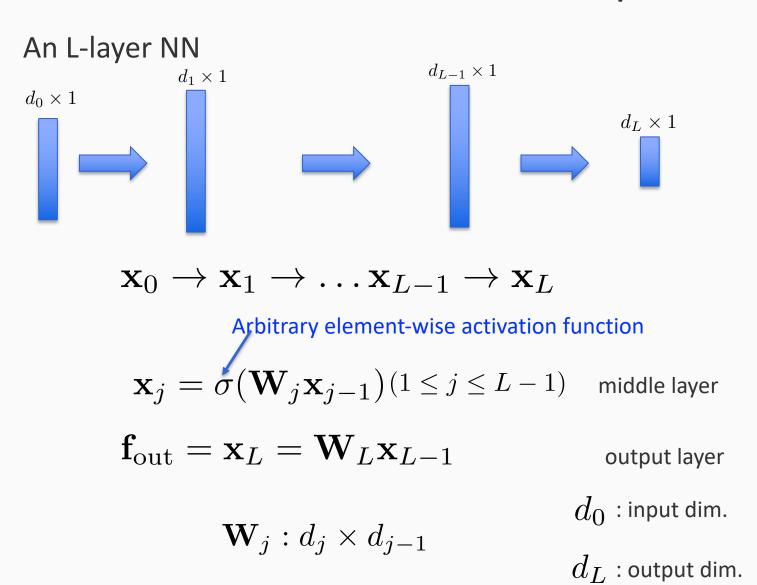
$$z_1 = \sigma(w_{01}^h + w_{11}^h x_1 + w_{21}^h x_2)$$

Suppose the true label for this example is a number y^*

We can write the square loss for this example as:

$$L = \frac{1}{2}(y - y^*)^2$$

Neural networks – A Succinct Representation



Neural networks – A succinct representation

$$\mathbf{x}_0 \to \mathbf{x}_1 \to \dots \mathbf{x}_{L-1} \to \mathbf{x}_L$$

$$\mathbf{x}_j = \sigma(\mathbf{W}_j \mathbf{x}_{j-1}) (1 \leq j \leq L-1)$$
 Middle layer

$$\mathbf{f}_{\mathrm{out}} = \mathbf{x}_L = \mathbf{W}_L \mathbf{x}_{L-1}$$
 output layer

We can also recursively write

$$\mathbf{f}_{\mathcal{W}}(\mathbf{x}_0) = \mathbf{f}_{\text{out}} = \mathbf{W}_L \sigma(\mathbf{W}_{L-1} \sigma(\dots \sigma(\mathbf{W}_1 \mathbf{x}_0)))$$

$$\mathcal{W} = \{\mathbf{W}_1, \dots, \mathbf{W}_L\}$$

Forward-pass

 To compute the output, you need to start from the bottom level and sequentially pass each layer

$$\mathbf{x}_0 \to \mathbf{x}_1 \to \dots \mathbf{x}_{L-1} \to \mathbf{x}_L$$

This is called forward pass

Back-Propagation: Application of Chain Rule

In general, training NN is to minimize a loss function $\mathcal{L}(\mathcal{W}, \mathcal{D})$ where $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$

For example, square loss:

$$\mathcal{L}(\mathcal{W}, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} [y^{(n)} - f_{\mathcal{W}}(\mathbf{x}^{(n)})]^2$$

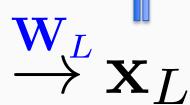
Back-Propagation: Application of Chain Rule

In general, training NN is to minimize a loss function $\mathcal{L}(\mathcal{W}, \mathcal{D})$ where $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}$

e.g.,
$$\mathcal{L}(\mathcal{W}, \mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} [y^{(n)} - f_{\mathcal{W}}(\mathbf{x}^{(n)})]^2$$

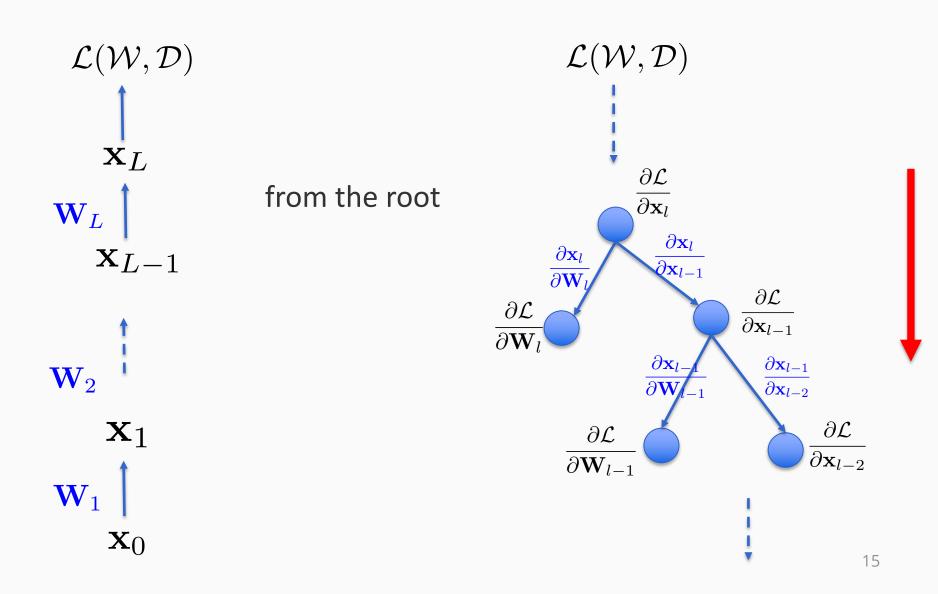
$$\mathbf{f}_{\mathcal{W}}(\mathbf{x_0})$$

$$\mathbf{x}_0 \overset{\mathbf{W}_1}{\rightarrow} \mathbf{x}_1 \overset{\mathbf{W}_2}{\rightarrow} \dots \mathbf{x}_{L-1} \overset{\mathbf{W}_L}{\rightarrow} \mathbf{x}_L$$



How to efficiently compute gradient? Do it in backward!

Back-Propagation: Application of Chain Rule



Back-Propagation

- We will not discuss the detail because
 - It is trivial and mechanical
 - Nowadays, you never need to implement
 BP by yourself. TensorFlow, PyTorch, ... will
 do this automatically for you

Outline

- Neural networks and Back-propagation
- Stochastic optimization
- Bayesian neural networks
- Bayes by Backprop and reparameterization trick
- Auto-encoding variational Bayes
- General adversarial networks

Stochastic optimization

 Suppose we aim to optimize an objective function that can be viewed as an expectation

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(u)}[g(\boldsymbol{\theta}, u)]$$

Then we can compute a stochastic gradient for stochastic optimization

$$\nabla \mathcal{L}(\boldsymbol{\theta}) = \nabla \mathbb{E}_{p(u)}[g(\boldsymbol{\theta}, u)] = \mathbb{E}_{p(u)}[\nabla g(\boldsymbol{\theta}, u)]$$

Stochastic optimization

 Suppose we aim to optimize an objective function that can be viewed as an expectation

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(u)}[g(\boldsymbol{\theta}, u)]$$

• Then we can compute a stochastic gradient for stochastic optimization

$$\nabla \mathcal{L}(\boldsymbol{\theta}) = \nabla \mathbb{E}_{p(u)}[g(\boldsymbol{\theta}, u)] = \mathbb{E}_{p(u)}[\nabla g(\boldsymbol{\theta}, u)]$$

Stochastic optimization: General Recipe

- 1. Initialize θ randomly (or 0)
- 2. For t = 1.. T
 - Sample u from p(u)
 - Calculate stochastic gradient $\nabla g(\boldsymbol{\theta}, u)$
 - Update θ ← θ γ_t $\nabla g(\theta, u)$
- 3. Return $\boldsymbol{\theta}$

 γ_t : learning rate, many tweaks possible

Convergence and learning rates

With enough iterations, it will converge almost surely (i.e., with probability one)

Provided the step sizes are "square summable, but not summable"

- Step sizes γ_t are positive
- Sum of squares of step sizes over t = 1 to ∞ is not infinite
- Sum of step sizes over t = 1 to ∞ is infinity

• Some examples:
$$\gamma_t = \frac{\gamma_0}{1 + \frac{\gamma_0 t}{C}}$$
 or $\gamma_t = \frac{\gamma_0}{1 + t}$

There are numerous ways to determine to per-element learning rate

- Learning rate is critical to convergence rate
- There are many works that develop learning rate schedules
- The main-stream is momentum-based approaches
- Most popular approaches include ADAM, Adagrad, Adadelta, etc.
- There are well developed libraries, and you do not need to implement them by yourself.

Why stochastic optimization is so important?

It is the foundation of modern NN training

$$\mathcal{L}(\mathcal{W}, \mathcal{D}) = \sum_{n=1}^{N} \mathcal{L}(\mathcal{W}, \mathbf{x}_n, y_n)$$

• If we partition the training data into mini-batches $\{B_1, B_2, ...\}$ and each with size B (e.g., 100)

$$\mathcal{L}(\mathcal{W}, \mathcal{D}) = \sum_{u=1}^{N/B} \frac{B}{N} \sum_{n \in \mathcal{B}_u} \frac{N}{B} \mathcal{L}(\mathcal{W}, \mathbf{x}_n, y_n)$$
$$= \mathbb{E}_{p(u)} \left[\frac{N}{B} \sum_{n \in \mathcal{B}_u} \mathcal{L}(\mathcal{W}, \mathbf{x}_n, y_n) \right]$$

Distribution:
$$p(u=j) = \frac{B}{N}$$

stochastic gradient: $\sum_{n \in \mathcal{B}_n} \nabla \mathcal{L}(\mathcal{W}, \mathbf{x}_n, y_n)$

For each update we only need to access a small mini-batch. So it largely reduces the cost

Outline

- Neural networks and Back-propagation
- Stochastic optimization
- Bayesian neural networks
- Bayes by Backprop and reparameterization trick
- Auto-encoding variational Bayes

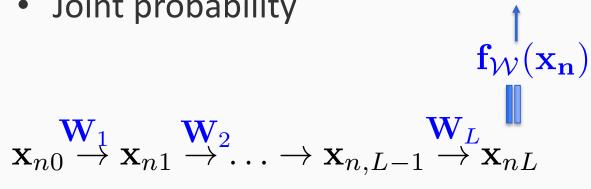
- Bayesian version of NNs
- We place prior over the weights
- We use different distributions to sample the observed output $\mathbf{f}_{\mathcal{W}}(\mathbf{x_0})$

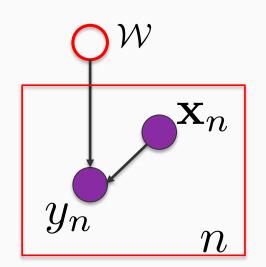
$$\mathbf{x}_0 \overset{\mathbf{W}_1}{
ightarrow} \mathbf{x}_1 \overset{\mathbf{W}_2}{
ightarrow} \dots \mathbf{x}_{L-1} \overset{\mathbf{W}_L}{
ightarrow} \mathbf{x}_L$$

$$\mathbf{f}_{\mathcal{W}}(\mathbf{x}_0) = \mathbf{f}_{\text{out}} = \mathbf{W}_L \sigma(\mathbf{W}_{L-1} \sigma(\dots \sigma(\mathbf{W}_1 \mathbf{x}_0)))$$

$$\mathcal{W} = \{\mathbf{W}_1, \dots, \mathbf{W}_L\}$$

Joint probability

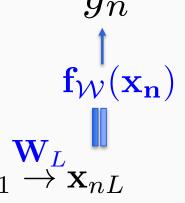




$$p(W, D) = p(W) \prod_{n=1}^{N} p(y_n | f_W(\mathbf{x}_n))$$

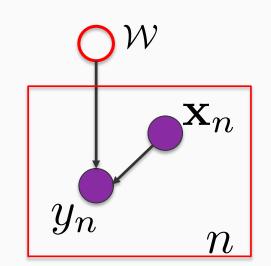
$$\mathcal{W} = \{\mathbf{W}_1, \dots, \mathbf{W}_L\}$$

Joint probability



$$\mathbf{x}_{n0} \overset{\mathbf{W}_1}{\rightarrow} \mathbf{x}_{n1} \overset{\mathbf{W}_2}{\rightarrow} \dots \rightarrow \mathbf{x}_{n,L-1} \overset{\mathbf{W}_L}{\rightarrow} \mathbf{x}_{nL}$$

$$p(W, D) = p(W) \prod_{n=1}^{N} p(y_n | f_W(\mathbf{x}_n))$$



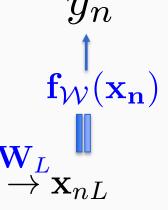
Example of weight priors

Individual Gaussian
$$p(\mathcal{W}) = \prod_{w \in \mathcal{W}} \mathcal{N}(w|0,1)$$

Spike and slab:
$$p(\mathcal{W}) = \prod_{w \in \mathcal{W}} \pi \mathcal{N}(w|0,\sigma_1^2) + (1-\pi)\mathcal{N}(w|0,\sigma_2^2)$$
 e.g., $\pi = 0.5, \sigma_1^2 = 1, \sigma_2^2 = 1e-3$

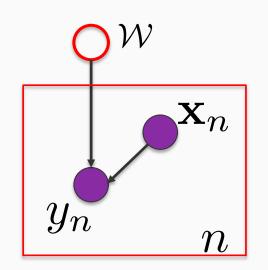
$$\mathcal{W} = \{\mathbf{W}_1, \dots, \mathbf{W}_L\}$$

Joint probability



$$\mathbf{x}_{n0} \overset{\mathbf{W}_1}{\rightarrow} \mathbf{x}_{n1} \overset{\mathbf{W}_2}{\rightarrow} \dots \rightarrow \mathbf{x}_{n,L-1} \overset{\mathbf{W}_L}{\rightarrow} \mathbf{x}_{nL}$$

$$p(W, D) = p(W) \prod_{n=1}^{N} p(y_n | f_W(\mathbf{x}_n))$$



Example of likelihood

Gaussian:
$$p(y_n|f_{\mathcal{W}}(\mathbf{x}_n)) = \mathcal{N}(y_n|f_{\mathcal{W}}(\mathbf{x}_n), \sigma^2)$$

Bernoulli:
$$p(y_n|f_{\mathcal{W}}(\mathbf{x}_n)) = \text{Bern}(y_n|1/(1+\exp(-f_{\mathcal{W}}(\mathbf{x}_n))))$$

Categorical:
$$p(\mathbf{y}_n | \mathbf{f}_{\mathcal{W}}(\mathbf{x}_n)) = \prod_k \left(\frac{\exp([\mathbf{f}_{\mathcal{W}}(\mathbf{x}_n)]_k)}{\sum_j \exp([\mathbf{f}_{\mathcal{W}}(\mathbf{x}_n)]_j)} \right)^{\mathbb{1}(y_{nk}=1)}$$

Inference Goal of BNNs

Estimate the posterior distribution of NN weights

$$p(\mathcal{W}|\mathcal{D})$$

Estimate the predictive distribution

$$p(y^*|\mathbf{x}^*, \mathcal{D}) = \int p(y^*|f_{\mathcal{W}}(\mathbf{x}^*))p(\mathcal{W}|\mathcal{D})d\mathcal{W}$$

Outline

- Neural networks and Back-propagation
- Stochastic optimization
- Bayesian neural networks
- Bayes by Backprop and reparameterization trick
- Auto-encoding variational Bayes

- The golden-standard for BNN inference is HMC.
 However, it is often too slow to be practical.
- We want to use variational inference, how?

We want to use variational inference, how?

Introduce variational posterior and construct variational evidence lower bound!

We choose fully factorized Gaussian

Estimate a free parameter

$$q(\mathcal{W}) = \prod_{i} q(w_{i}) = \prod_{i} \mathcal{N}(w_{i}|\mu_{i}, \log(1 + \exp(\rho_{i})))$$
$$\log(p(\mathcal{D})) \ge \mathcal{L}(\boldsymbol{\theta}) = \int q(\mathcal{W}) \log \frac{p(\mathcal{W})p(\mathcal{D}|\mathcal{W})}{q(\mathcal{W})} d\mathcal{W} \qquad \boldsymbol{\theta} = \{(\mu_{i}, \rho_{i})\}$$
$$= \sum_{i} \mathbb{E}_{q(w_{i})}[\log p(w_{i})] + \sum_{n=1}^{N} \mathbb{E}_{q(\mathcal{W})}[\log p(y_{n}|f_{\mathcal{W}}(\mathbf{x}_{n}))] + \sum_{i} H(q(w_{i}))$$

$$\begin{split} q(\mathcal{W}) &= \prod_i q(w_i) = \prod_i \mathcal{N} \big(w_i | \mu_i, \log(1 + \exp(\rho_i)) \big) \\ &\log(p(\mathcal{D})) \geq \mathcal{L}(\boldsymbol{\theta}) = \int q(\mathcal{W}) \log \frac{p(\mathcal{W}) p(\mathcal{D} | \mathcal{W})}{q(\mathcal{W})} \mathrm{d}\mathcal{W} \\ &= \sum_i \mathbb{E}_{q(w_i)} [\log p(w_i)] + \sum_{n=1}^N \mathbb{E}_{q(\mathcal{W})} [\log p(y_n | f_{\mathcal{W}}(\mathbf{x}_n))] + \sum_i H(q(w_i)) \\ &\text{Gaussian} \\ &\text{Analytical for} \\ &\text{Gaussian prior} \\ &\text{Totally intractable, Why?} \end{split}$$

How to maximize $\mathcal{L}(\boldsymbol{\theta})$?

- Stochastic optimization
- The key question: How to compute the stochastic gradient for each

$$\mathbb{E}_{q(\mathcal{W})}[\log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n))]$$

Can we use current parameters to sample \mathcal{W} , plugging into log and calculate the gradient?

$$\widehat{\mathcal{W}} \sim q(\mathcal{W}|m{ heta})$$
 $m{ heta} = \{(\mu_i,
ho_i)\}$ Totally wrong! $\nabla \log p(y_n|f_{\widehat{\mathcal{W}}}(\mathbf{x}_n))$

 The reason is the distribution contains unknown parameters, and so the expectation and derivative are not interchangeable!

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{q(\mathcal{W}|\boldsymbol{\theta})}[\log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n))] \neq \mathbb{E}_{q(\mathcal{W}|\boldsymbol{\theta})}[\nabla_{\boldsymbol{\theta}} \log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n))]$$

$$\nabla_{\boldsymbol{\theta}} \int q(\mathcal{W}|\boldsymbol{\theta}) \log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n)) d\mathcal{W}$$

$$\mathbf{0}$$
Why?

 The reason is the distribution contains unknown parameters, and so the expectation and derivative are not interchangeable!

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{q(\mathcal{W}|\boldsymbol{\theta})}[\log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n))] \neq \mathbb{E}_{q(\mathcal{W}|\boldsymbol{\theta})}[\nabla_{\boldsymbol{\theta}} \log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n))]$$

$$\nabla_{\boldsymbol{\theta}} \int q(\mathcal{W}|\boldsymbol{\theta}) \log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n)) d\mathcal{W}$$

$$\mathbf{0}$$
Why?

Because the log likelihood itself does not include variational parameters!

Reparameterization trick

 The solution is to get rid of the unknown parameters in the distribution under which we compute the expectation. How?

$$q(\mathcal{W}) = \prod_{i} q(w_i) = \prod_{i} \mathcal{N}(w_i | \mu_i, \log(1 + \exp(\rho_i)))$$

$$w_i = \mu_i + \epsilon_i \sqrt{\log(1 + \exp(\rho_i))}$$
 $\epsilon_i \sim \mathcal{N}(0, 1)$

$$\operatorname{vec}(\mathcal{W}) = \boldsymbol{\mu} + \operatorname{diag}(\sqrt{\log(1 + \exp(\boldsymbol{\rho}))}) \cdot \boldsymbol{\epsilon} \quad \Longrightarrow \quad \mathcal{W} = T(\boldsymbol{\theta}, \boldsymbol{\epsilon}), \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Reparameterized Gaussian sample

Reparameterization trick

$$\mathbb{E}_{q(\mathcal{W}|\boldsymbol{\theta})}[\log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n))] = \mathbb{E}_{p(\boldsymbol{\epsilon})}[\log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n))]$$

$$\int q(\mathcal{W}|\boldsymbol{\theta}) \log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n)) d\mathcal{W} = \int p(\boldsymbol{\epsilon}) \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n)) d\boldsymbol{\epsilon}$$

$$\nabla_{\boldsymbol{\theta}} \int q(\mathcal{W}|\boldsymbol{\theta}) \log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n)) d\mathcal{W} = \nabla_{\boldsymbol{\theta}} \int p(\boldsymbol{\epsilon}) \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n)) d\boldsymbol{\epsilon}$$

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{q(\mathcal{W}|\boldsymbol{\theta})}[\log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n))] = \int \nabla_{\boldsymbol{\theta}} p(\boldsymbol{\epsilon}) \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n)) d\boldsymbol{\epsilon}$$

$$= \int p(\boldsymbol{\epsilon}) \nabla_{\boldsymbol{\theta}} \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n)) d\boldsymbol{\epsilon}$$

$$= \mathbb{E}_{p(\boldsymbol{\epsilon})}[\nabla_{\boldsymbol{\theta}} \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n))]$$

Reparameterization trick

$$\mathbb{E}_{q(\mathcal{W}|\boldsymbol{\theta})}[\log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n))] = \mathbb{E}_{p(\boldsymbol{\epsilon})}[\log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n))]$$

$$\int q(\mathcal{W}|\boldsymbol{\theta}) \log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n)) d\mathcal{W} = \int p(\boldsymbol{\epsilon}) \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n)) d\boldsymbol{\epsilon}$$

$$\nabla_{\boldsymbol{\theta}} \int q(\mathcal{W}|\boldsymbol{\theta}) \log p(y_n|f_{\mathcal{W}}(\mathbf{x}_n)) d\mathcal{W} = \nabla_{\boldsymbol{\theta}} \int p(\boldsymbol{\epsilon}) \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n)) d\boldsymbol{\epsilon}$$

$$= \int \nabla_{\boldsymbol{\theta}} p(\boldsymbol{\epsilon}) \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n)) d\boldsymbol{\epsilon}$$

$$= \int p(\boldsymbol{\epsilon}) \nabla_{\boldsymbol{\theta}} \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n)) d\boldsymbol{\epsilon}$$

$$= \mathbb{E}_{p(\boldsymbol{\epsilon})} \left[\nabla_{\boldsymbol{\theta}} \log p(y_n|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_n))\right]$$

Stochastic gradient ascent!

Look back at ELBO

Constant distribution

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i} \mathbb{E}_{q(w_{i})}[\log p(w_{i})] + \sum_{i} H(q(w_{i}))$$

$$+ \sum_{u=1}^{N/B} \frac{B}{N} \sum_{n \in \mathcal{B}_{u}} \frac{N}{B} \mathbb{E}_{p(\boldsymbol{\epsilon})}[\log p(y_{n}|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_{n}))]$$

$$\mathbb{E}_{p(u)} \mathbb{E}_{p(\boldsymbol{\epsilon})} \sum_{n \in \mathcal{B}_{u}} \frac{N}{B}[\log p(y_{n}|f_{T(\boldsymbol{\theta},\boldsymbol{\epsilon})}(\mathbf{x}_{n}))]$$

$$\alpha(\boldsymbol{\theta}) = \sum_{i} \mathbb{E}_{q(w_i)}[\log p(w_i)] + \sum_{i} H(q(w_i))$$

$\alpha(\pmb{\theta}) = \sum_i \mathbb{E}_{q(w_i)}[\log p(w_i)] + \sum_i H(q(w_i))$ Bayes by Back Propagation

- 1. Initialize θ randomly
- 2. For t = 1.. T
 - Sample *u* from p(u), $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - Calculate stochastic gradient $\nabla_{\boldsymbol{\theta}} \left[\alpha(\boldsymbol{\theta})\right] + \frac{N}{B} \sum_{n \in \mathcal{B}_u} \nabla_{\boldsymbol{\theta}} \left[\log p(y_n | f_{T(\boldsymbol{\theta}, \boldsymbol{\epsilon})}(\mathbf{x}_n))\right]$ Update $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \gamma_t \cdot \left(\nabla_{\boldsymbol{\theta}} \left[\alpha(\boldsymbol{\theta})\right] + \frac{N}{B} \sum_{n \in \mathcal{B}_u} \nabla_{\boldsymbol{\theta}} \left[\log p(y_n | f_{T(\boldsymbol{\theta}, \boldsymbol{\epsilon})}(\mathbf{x}_n))\right]\right)$

- Update
$$\theta \leftarrow \theta + \gamma_t \cdot \left(\nabla_{\theta} \left[\alpha(\theta) \right] + \frac{N}{B} \sum_{n \in \mathcal{B}_u} \nabla_{\theta} \left[\log p(y_n | f_{T(\theta, \epsilon)}(\mathbf{x}_n)) \right] \right)$$

• 3. Return
$$q(\mathcal{W}|\boldsymbol{\theta}) = \prod_{i} \mathcal{N}(w_i|\mu_i, \log(1 + \exp(\rho_i)))$$

$$\alpha(\boldsymbol{\theta}) = \sum_{i} \mathbb{E}_{q(w_i)}[\log p(w_i)] + \sum_{i} H(q(w_i))$$

$\alpha(\pmb{\theta}) = \sum_i \mathbb{E}_{q(w_i)}[\log p(w_i)] + \sum_i H(q(w_i))$ Bayes by Back Propagation

- 1. Initialize θ randomly
- 2. For t = 1.. T
 - Sample *u* from p(u), $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$- \text{ Calculate stochastic gradient } \nabla_{\boldsymbol{\theta}} \left[\alpha(\boldsymbol{\theta}) \right] + \frac{N}{B} \sum_{n \in \mathcal{B}_u} \nabla_{\boldsymbol{\theta}} [\log p(y_n | f_{T(\boldsymbol{\theta}, \boldsymbol{\epsilon})}(\mathbf{x}_n))]$$

$$- \text{ Update } \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \gamma_t \cdot \left(\nabla_{\boldsymbol{\theta}} \left[\alpha(\boldsymbol{\theta}) \right] + \frac{N}{B} \sum_{n \in \mathcal{B}_u} \nabla_{\boldsymbol{\theta}} [\log p(y_n | f_{T(\boldsymbol{\theta}, \boldsymbol{\epsilon})}(\mathbf{x}_n))] \right)$$

• 3. Return
$$q(\mathcal{W}|\boldsymbol{\theta}) = \prod_{i} \mathcal{N}(w_i|\mu_i, \log(1 + \exp(\rho_i)))$$

output of the NN, so it needs BP!

Predictive distribution

$$p(y^*|\mathbf{x}^*, \mathcal{D}) = \int p(y^*|f_{\mathcal{W}}(\mathbf{x}^*)) p(\mathcal{W}|\mathcal{D}) d\mathcal{W}$$
$$\approx \int p(y^*|f_{\mathcal{W}}(\mathbf{x}^*)) q(\mathcal{W}|\boldsymbol{\theta}) d\mathcal{W}$$

Still intractable, but we can use Monte-Carlo approximation

$$\approx \frac{1}{M} \sum_{j=1}^{m} p(y^* | f_{\mathcal{W}_j}(\mathbf{x}^*)) \qquad \mathcal{W}_j \sim q(\mathcal{W}|\boldsymbol{\theta})$$

We can also generate samples of \boldsymbol{y}^* to obtain an empirical (or histogram) distribution

Performance

Table 1. Classification Error Rates on MNIST. ★ indicates result used an ensemble of 5 networks.

Method	# Units/Layer	# Weights	Test Error
SGD, no regularisation (Simard et al., 2003)	800	1.3m	1.6%
SGD, dropout (Hinton et al., 2012)			$\approx 1.3\%$
SGD, dropconnect (Wan et al., 2013)	800	1.3m	$1.2\%^{\star}$
SGD	400	500k	1.83%
	800	1.3m	1.84%
	1200	2.4m	1.88%
SGD, dropout	400	500k	1.51%
	800	1.3m	1.33%
	1200	2.4m	1.36%
Bayes by Backprop, Gaussian	400	500k	1.82%
	800	1.3m	1.99%
	1200	2.4m	2.04%
Bayes by Backprop, Scale mixture	400	500k	1.36%
	800	1.3m	1.34%
	1200	2.4m	1.32 %

Performance

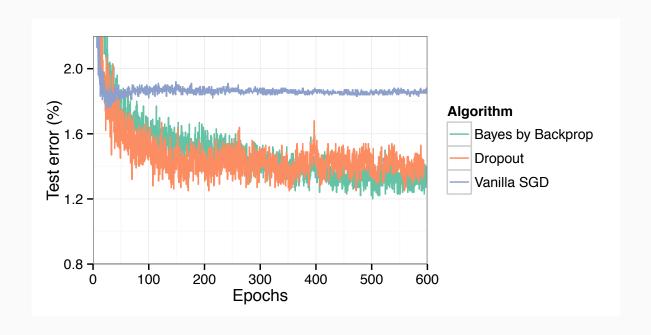


Figure 2. Test error on MNIST as training progresses.

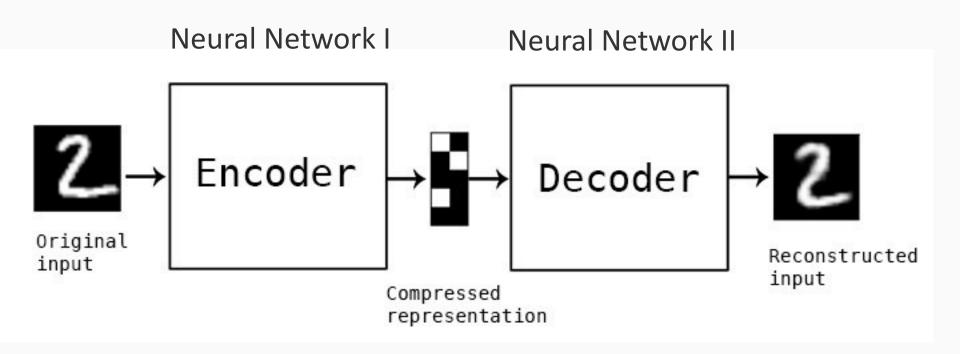
BBB: Summary

- State of the art NN inference, very popular
- The same scalability to SGD, but it can estimate posteriors!
- Core idea : variational inference + reparameterization trick
- This is also the foundation of nearly all the modern Bayesian NN training.

Outline

- Neural networks and Back-propagation
- Stochastic optimization
- Bayesian neural networks
- Bayes by Backprop and reparameterization trick
- Auto-encoding variational Bayes

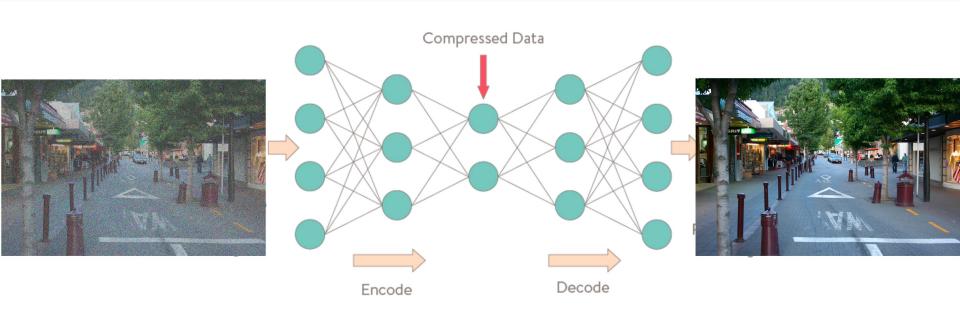
Auto-Encoder: Dimension Reduction



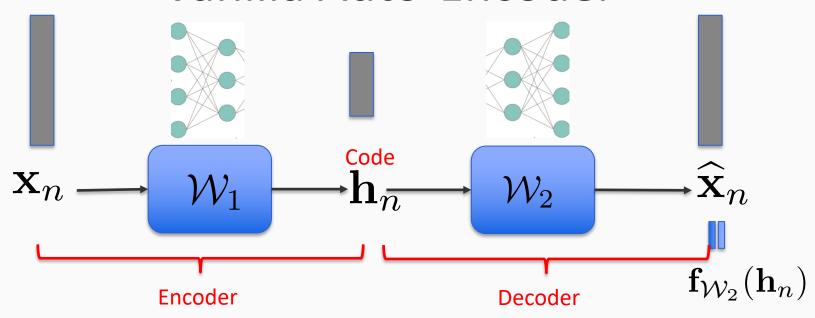
Provided by Will Badr

Auto-Encoder

Dimension reduction is very important: compression, denoise, ...

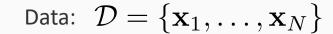


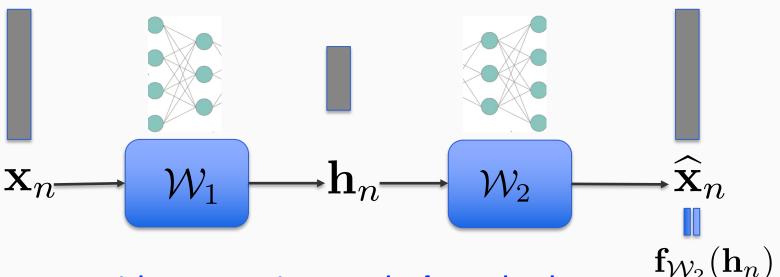
Vanilla Auto-Encoder



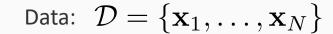
Given data
$$\,\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}\,$$

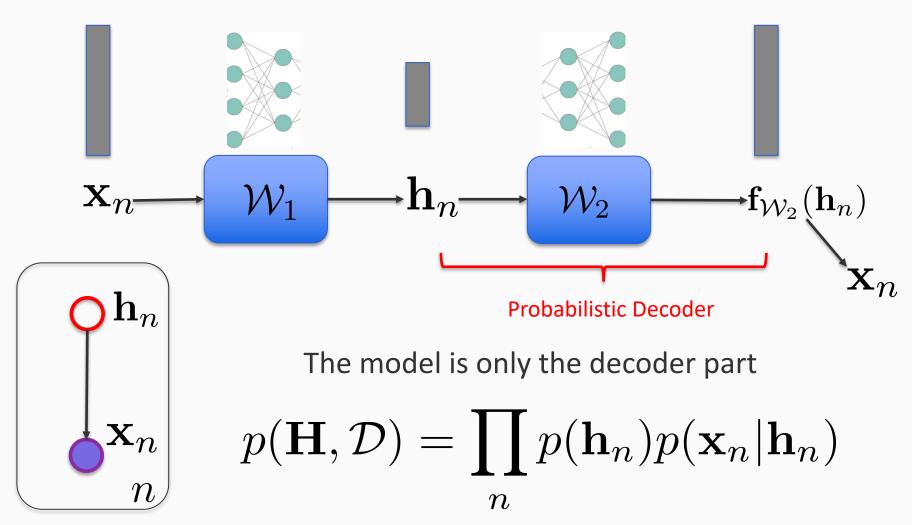
Loss:
$$\sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{f}_{\mathcal{W}_2} \big(\mathbf{h}_{\mathcal{W}_1} (\mathbf{x}_n) \big) \|^2$$

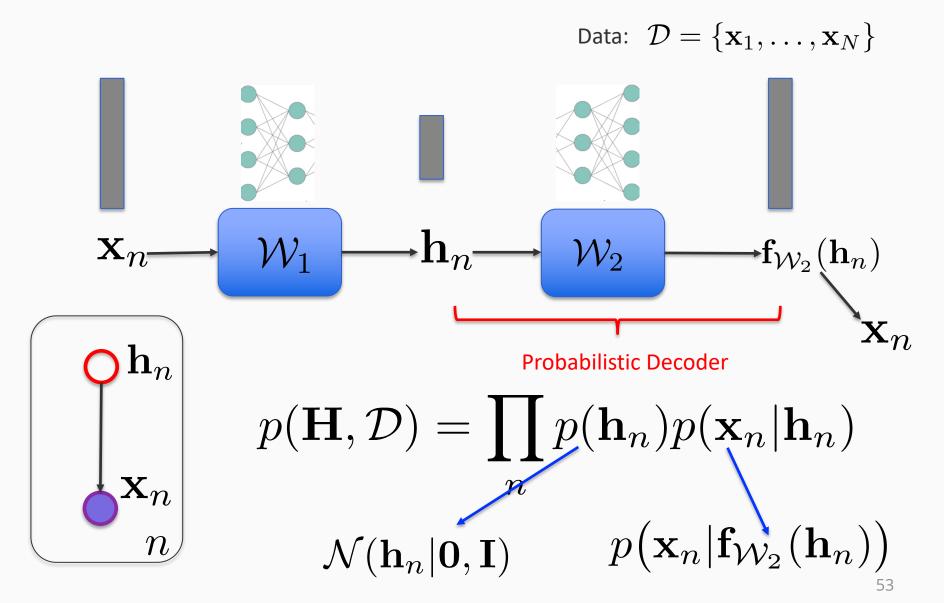


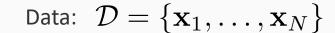


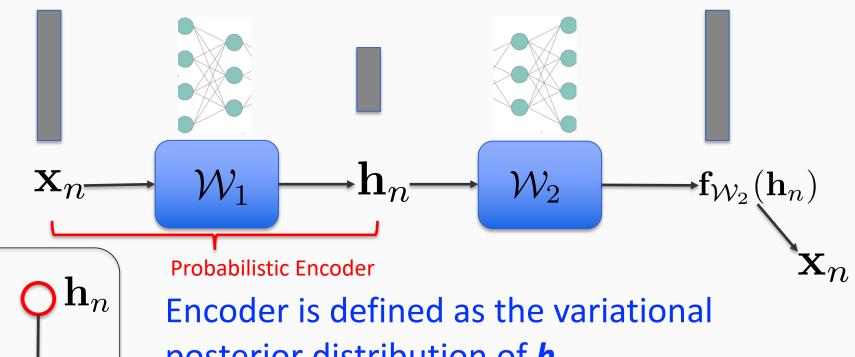
Key idea: We view code **h** as the latent random variables. We want to estimate the posterior distribution of **h**; However, the NN weights are considered as hyperparameters rather than RVs.





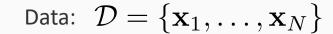


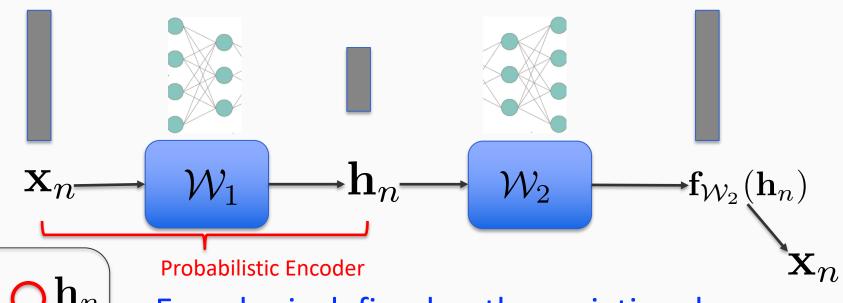




posterior distribution of h_n

$$q(\mathbf{H}) = \prod_{n} q_{\mathcal{W}_1}(\mathbf{h}_n | \mathbf{x}_n)$$





 \mathbf{h}_n \mathbf{x}_n

Encoder is defined as the variational posterior distribution of h_n

$$q(\mathbf{H}) = \prod_{n} q_{\mathcal{W}_1}(\mathbf{h}_n | \mathbf{x}_n)$$

We use NN output to parameterize the variational posterior, namely, the encoder!

Variational Auto-Encoder: Inference

Maximize the variational ELBO

$$\mathcal{L} = \int q(\mathbf{H}) \log \frac{p(\mathbf{H})p(\mathbf{H}, \mathcal{D})}{q(\mathbf{H})} d\mathbf{H}$$

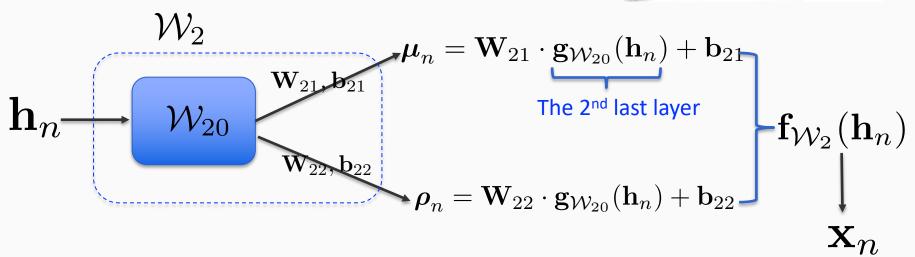
$$= \sum_{n=1}^{N} \int q_{\mathcal{W}_1}(\mathbf{h}_n | \mathbf{x}_n) \log \frac{p(\mathbf{h}_n)p(\mathbf{x}_n | \mathbf{f}_{\mathcal{W}_2}(\mathbf{h}_n))}{q_{\mathcal{W}_1}(\mathbf{h}_n | \mathbf{x}_n)} d\mathbf{h}_n \quad \text{ELBO is obviously intractable, why?}$$

$$= \sum_{n=1}^{N} \mathbb{E}_{q_{\mathcal{W}_1}(\mathbf{h}_n | \mathbf{x}_n)} \left[\log \frac{p(\mathbf{h}_n)p(\mathbf{x}_n | \mathbf{f}_{\mathcal{W}_2}(\mathbf{h}_n))}{q_{\mathcal{W}_1}(\mathbf{h}_n | \mathbf{x}_n)} \right]$$

Use reparameterization trick + stochastic optimization (on mini-batches)!

Concrete example

Likelihood for continuous output

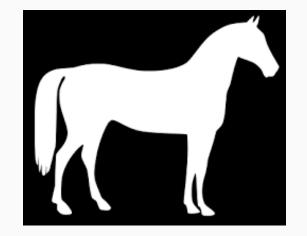


$$p(\mathbf{x}_n|\mathbf{h}_n) = p(\mathbf{x}_n|\mathbf{f}_{\mathcal{W}_2}(\mathbf{h}_n)) = \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_n, \operatorname{diag}(\exp(\boldsymbol{\rho}_n)))$$

Gaussian with diagonal covariance

Concrete example

Likelihood for binary output



$$\mathbf{h}_n \longrightarrow \mathbf{f}_{\mathcal{W}_2}(\mathbf{h}_n) \longrightarrow \mathbf{x}_n$$

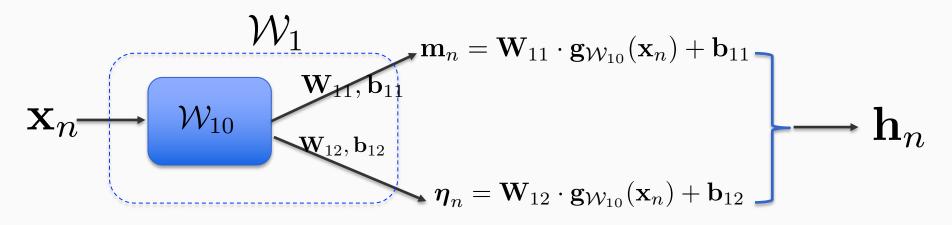
$$p(\mathbf{x}_n|\mathbf{h}_n) = p(\mathbf{x}_n|\mathbf{f}_{\mathcal{W}_2}(\mathbf{h}_n)) = \prod_j \text{Bern}([\mathbf{x}_n]_j | \alpha([\mathbf{f}_{\mathcal{W}_2}(\mathbf{h}_n)]_j))$$

Bernoulli likelihood over each element

$$\alpha(t) = 1/(1 + \exp(-t))$$

Concrete example

Gaussian encoder (most commonly used)



$$q_{\mathcal{W}_1}(\mathbf{h}_n|\mathbf{x}_n) = \mathcal{N}(\mathbf{h}_n|\mathbf{m}_n, \operatorname{diag}(\exp(\boldsymbol{\eta}_n)))$$

$$\mathcal{L} = \sum_{n=1}^{N} \mathbb{E}_{q_{\mathcal{W}_1}(\mathbf{h}_n|\mathbf{x}_n)} \left[\log \frac{p(\mathbf{h}_n)p(\mathbf{x}_n|\mathbf{f}_{\mathcal{W}_2}(\mathbf{h}_n))}{q_{\mathcal{W}_1}(\mathbf{h}_n|\mathbf{x}_n)} \right]$$

Very easy to use reparameterization trick!

VAE: summary

- Convert auto-encoder estimation into a probabilistic inference problem
- Trivial application of VI
- State-of-the-art
- Very popluar

What you need to know

- What are Bayesian NNs?
- What are the key idea of BP and stochastic optimization?
- How to conduct variational inference for BNNs?
- What is the reparameterization trick?
- The key idea of Bayes by Backprop, and variational auto-encoder
- You should be able to implement them (with TensorFlow or pyTorch) now!