Bayesian Neural Networks
Spring 2024

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing

THE
U UNIVERSITY
OF UTAH

mailto:zhe@cs.Utah.edu

Outline

* Neural networks and Back-propagation

e Stochastic optimization

e Bayesian neural networks

* Bayes by Backprop and reparameterization trick
* Auto-encoding variational Bayes

Outline

* Neural networks and Back-propagation

Very brief history

neural networks — very old topic

e 1943: McCullough and Pitts showed how linear threshold units can
compute logical functions

e 1949: Hebb suggested a learning rule that has some physiological
plausibility

e 1950s: Rosenblatt, the Peceptron algorithm for a single threshold neuron

e 1969: Minsky and Papert studied the neuron from a geometrical
perspective

e 1980s: Convolutional neural networks (Fukushima, LeCun), the
backpropagation algorithm (various)

e 2003-today: More compute, more data, deeper networks

See also: http://people.idsia.ch/~juergen/deep-learning-overview.html

Biological neurons

['
| Neurons: core components of brain and the

nervous system consisting of

1. Dendrites that collect information from
other neurons
2. An axon that generates outgoing spikes

Dendrite Axon
terminal

The first drawing of a brain ' ! 2‘;25.;’: '

cells by Santiago Ramoén y
Cajal in 1899

nucleus

Biological neurons

VAN

1 Modern artificial neurons are “inspired” by biological neurons

]

But there are many, many fundamental differences

Don’t take the similarity seriously (as also claims in the news
; about the “emergence” of intelligent behavior)

T

An artificial neural network

A function that converts inputs to outputs
defined by a directed acyclic graph

— Nodes organized in layers, correspond to
neurons

— Edges carry output of one neuron to
another, associated with weights

. .
To define a neural network, we need to Called the architecture

specify: of the network
— The structure of the graph / Typically predefined,
* How many nodes, the connectivity part of the design of

— The activation function on each node the classifier
— The edge weights » Learned from data

ACtlvatlo N fu N Ct|0 NS Also called transfer functions

output = activation(w’ x + b)

Name of the neuron Activation function: activation(z)
Linear unit Z
Threshold/sign unit sgn(z)
1
Sigmoid unit 1+ exp (—2)
Rectified linear unit (ReLU) max (0, z)
Tanh unit tanh (2)

Many more activation functions exist (sinusoid, sinc, Gaussian, polynomial...)

An example network represented by scalars

Given an input x, how is the output predicted

Suppose the true label for this example is a number y~*

We can write the square loss for this example as:

L= 50~y
— W)

Neural networks — A Succinct Representation

An L-layer NN

Xo —7X1 —...X7,—-1 — XJ,

7bitrary element-wise activation function

X; = O'(Wij_l) (1<j<L-1) middlelayer

fout — XL = WLXL—l output layer

dO :input dim.
Wj . dj X dj_l
dL : output dim.
10

Neural networks — A succinct representation

Xo—7 X1 —7...X7,—1 —7 XJ,

X; = O-(ijj_l)(l < j < L — 1) Middle layer
fout — X[= WLXL—l output layer

We can also recursively write

fw(xg) = fout = Wro(Wir_10(...0(Wi1xg)))

W={Wi,..., W}

Forward-pass

* To compute the output, you need to start from the
bottom level and sequentially pass each layer

Xo—7 X1 —7...X7,-1 —7 X[,

This is called forward pass

12

Back-Propagation: Application of Chain Rule

In general, training NN is to minimize a loss
function £(W,D) where D={xW,yM),...,x",y"M)}

For example, square loss:

N
(n) « (1))]

_1
_N

n=1

13

Back-Propagation: Application of Chain Rule

In general, training NN is to minimize a loss
function £OWV,D) where p={x®,y®), ... M 4™y

1 N

e.g, LW, D) == > ™ — fwx")? fyy (xo0)

i
W W \%%
X0 — X1 — .. . X71,1 %LXL

How to efficiently compute gradient?
Do it in backward!

14

Back-Propagation: Application of Chain Rule

LW, D)
)

W, I from the root

XL—1

oL
Ox)_o

P4
o

15

Back-Propagation

e We will not discuss the detail because
— |t is trivial and mechanical

—Nowadays, you never need to implement
BP by yourself. TensorFlow, PyTorch, ... will
do this automatically for you

16

Outline

e Stochastic optimization

17

Stochastic optimization

e Suppose we aim to optimize an objective function
that can be viewed as an expectation

L£(6) =Ep(u)9(0,u)]

* Then we can compute a stochastic gradient for
stochastic optimization

VE(H) — VIEil’p(u) [9(97 u)] — Ep(u) [Vg(g, u)]

under certainty conditions

18

Stochastic optimization

e Suppose we aim to optimize an objective function
that can be viewed as an expectation

L£(6) =Ep(u)9(0,u)]

* Then we can compute a stochastlc gradlent for
stochastic optimization '

VL(O) = VE,(,[9(6,u)] = Epu)] &g)

under certainty conditions

19

Stochastic optimization: General Recipe

e 1. Initialize @ randomly (or 0)
e 2.Fort=1..T

— Sample u from p(u)
— Calculate stochastic gradient Vg(0,u)
— Update 8 < 0 -y, Vg4(0,u)

* 3.Return 0

Y+ learning rate, many
tweaks possible

20

Convergence and learning rates

With enough iterations, it will converge almost surely
(i.e., with probability one)

Provided the step sizes are “square summable, but not
summable”

* Step sizes y, are positive
e Sum of squares of step sizes over t = 1 to oo is not infinite
e Sum of step sizes over t = 1 to o is infinity

: _ _Yo _ Yo
* Some examples.yt — Ty—ot Oorys = 1_+t

C

21

There are numerous ways to determine to
per-element learning rate

* Learning rate is critical to convergence rate

 There are many works that develop learning rate
schedules

* The main-stream is momentum-based approaches

* Most popular approaches include ADAM, Adagrad,
Adadelta, etc.

* There are well developed libraries, and you do not
need to implement them by yourself.

22

Why stochastic optimization is so
important?

* Itis the foundation of modern NN training

LV, D)= LONV,Xn,yn)

n=1

* |f we partition the training data into mini-batches {B,, B,, ...} and each with
size B (e.g., 100)

N/B

LOW,D) = Z % Z Eﬁ(W,men)

N
—]Ep(u) [E Z £(W7Xnayn)]

, B
Distribution: p(u = j) = N For each update we only need

to access a small mini-batch. So

stochastic gradient: Z VLNV, X0, Yn) it largely reduces the cost
neB, 23

Outline

e Bayesian neural networks

24

Bayesian neural networks

e Bayesian version of NNs

 We place prior over the weights
* We use different distributions to sample the observed

output fW (XO)

I
W W \%%
X0 — X1 — .. . X71,1 %LXL

fW(XO) — Iout — WLO'(WL_lO'(. .. O'(W1XO)))

25

Bayesian neural networks
W={Wy,..., W}

W
* Joint probability yn O

fW (Xn) Xn
” o
W
V‘g Xnl W2 g

Xn0 —7 ... 7 Xp -1 7 XpL YUn

pW, D) = pW) | [p(ynlfw(xn))

n=1

26

Bayesian neural networks
W={Wy,..., W}

W
* Joint probability yn O

fW (Xn) Xn
. o
W
V‘g Xnl W2 g

Xn0 —7 ... 7 Xp -1 7 XpL YUn
T

p(W, D) Hp Ynl|fw Xn))

Example of weight priors

Individual Gaussian ~ p(W) = H N (wl0,1)

weW

Spike and slab: p(W) = H 7N (w]0,0%) + (1 — 7)N(w|0,03) Encourage sparsity
wew
e.g., m=05,0f =1,05 =1le—3 27

Bayesian neural networks
W={Wy,..., W}

W
* Joint probability yn O

fW (Xn) Xn
” o
W
V‘g Xnl W2 g

Xn0 —7 ... 7 Xp -1 7 XpL yn
T

p(W, D) Hp Ynlfw (x2))

Example of likelihood
Gaussian: P(Unlfw(xn)) = N (ynlfw(xn),02)

Bernoulli: p(yalfw(xn)) = Bern(y,|1/(1 4 exp (— fw(xn))))

T1(exp([fy (%) 1)) nk=D

A Zj exp([fyv (xn)];) softmax o

Categorical: p(yn\fw(xn» =

Inference Goal of BNNs

e Estimate the posterior distribution of NN weights

p(W|D)

* Estimate the predictive distribution

p(y*[x*, D) = / p (" (x*))p(WID)AW

29

Outline

* Bayes by Backprop and reparameterization trick

30

Bayes by Back Propagation

* The golden-standard for BNN inference is HMC.

However, it is often too slow to be practical.
 We want to use variational inference, how?

31

Bayes by Back Propagation

 We want to use variational inference, how?

Introduce variational posterior and construct variational
evidence lower bound!

_ , Estimate a free parameter
We choose fully factorized Gaussian P

— HQ(/LUZ) = HN(wi\,ui,log(l + exp(pz-)))

08(p(D)) > £0) = [(W) o p(W;fV(\i'm V0= {(uspi)}

= ZEq(w logp wz + Z]Eq(W lng yn'fW Xn +ZH wz

n=1

32

Bayes by Back Propagation

— Hq(wz) = HN(wilui,log(l + eXp(pi)))

W)p(PIW)

q(WV) DY

log(p(D)) > £(6) = [a(W)log pl

- ZEq(w logp(wl + ZEq(W) logp yn‘fW Xn —l_ ZH (wz

/ n= 1[1
|
Analytical for /
Gaussian prior Totally intractable, Why?

How to maximize £(0) ?

Gaussian
entropy

log (log(1 + exp(p;))2me)

33

Bayes by Back Propagation

e Stochastic optimization

* The key question: How to compute the stochastic
gradient for each

Eqow) [10g p(ynfw(xn))]

Can we use current parameters to sample W,
plugging into log and calculate the gradient?

W ~ q(W|0) 0 = {(nipi)}

R x Totally wrong!
Vv logp(yn|f)7\7(xn))

34

Bayes by Back Propagation

 The reason is the distribution contains unknown
parameters, and so the expectation and derivative
are not interchangeable!

VoE,wi0) 108 p(ynl frw(xn))] # Eqonie) [V 1og p(ynl frw(xn))]

Il
m -
e/Q(W|9) log p(yn | fw (xn))dW

Why?

35

Bayes by Back Propagation

 The reason is the distribution contains unknown
parameters, and so the expectation and derivative
are not interchangeable!

VoE,wi0) 108 p(ynl frw(xn))] # Eqonie) [V 1og p(ynl frw(xn))]

Il
m -
e/Q(W|9) log p(yn | fw (xn))dW

Why?

Because the log likelihood
itself does not include

variational parameters!
36

Reparameterization trick

* The solution is to get rid of the unknown parameters
in the distribution under which we compute the
expectation. How?

- [Tatw) HN o123, 1og(1 + exp(py)))

= 11 + €i1/1og(1 + exp(p;)) e; ~ N(0,1)

!

vec(W) = p + diag(y/log(1 +exp(p))) -¢ mmp W =T(0,€),e ~ N(0,I)

\

Reparameterized Gaussian sample

37

Reparameterization trick

Eqwie) 108 p(yn|fw(%n))] = Epe)[log p(Ynlfr(6,e) (%n))]

ﬁ

/ (W0) log p(yn | fw(xn))dW = /) 1og p(Yn ! fr(o,e)(Xn))de

Ve / q(W|0) log p(yn|fn (x,))dW = Vg / p(€)log p(yn|fr(6,e)(%n))de

Il

VoEqowvi0)10g p(Yn|fw(Xn))] — / Veop(€)log p(yn|f1(6,e)(Xn))de

— /p(e)Vg log p(Ynl|fr(6,e) (%n))de€

= Epe)[Veo log p(ynl|fr(e,e)(%n))]

Reparameterization trick

Eqwie) 108 p(yn|fw(%n))] = Epe)[log p(Ynlfr(6,e) (%n))]

ﬁ

/ (W0) log p(yn | fw(xn))dW = /) 1og p(Yn ! fr(o,e)(Xn))de

Ve / q(W|0) log p(yn|fn (x,))dW = Vg / p(€)log p(yn|fr(6,e)(%n))de

Il

VoEqowvi0)10g p(Yn|fw(Xn))] — / Veop(€)log p(yn|f1(6,e)(Xn))de

— /p(e)Vg log p(Ynl|fr(6,e) (%n))de€
= Ep(e) (Ve 10gp(yn|fT(0,e) (Xn)i]

Stochastic gradient ascent!

Look back at ELBO

- ZEQ(wi)[lng(wi)] + Z H(Q(wz))
N/B

+Z > =Ep(e) 108 D(ynl fr(6.¢) (%n))]

nEB
J

Y

neb,,

p(7 p(e) Z logp ynlfT(O e)(Xn))]

Constant distribution

40

ZEq(w [log p(w;) +ZH wz
Bayes by Back Propagatlon

e 1. Initialize @ randomly

e 2.Fort=1..T
— Sample u from p(u), €~ N(0,1)
— Calculate stochastic gradient vola()] + % 3= Vollogp(unlfr(s.o(x:))
— Update 0+ 6++,- <V9 ()] +% > Ve[logp(yn\;:;,e)(Xn))]> ‘

neh,

* 3.Return ¢q(W|0) = HN il log (1 + exp(pi)))

41

ZEq(w [log p(w;) +ZH wz
Bayes by Back Propagatlon

* 1. Initialize @ randomly

e 2.Fort=1..T
— Sample u from p(u), €~ N(0,1)
— Calculate stochastic gradient vola()] + % 3= Vollogp(unlfr(s.0(x:))
— Update 60+ <Ve [(6)] +% > Ve[logp(yn\;:;,e)(Xn))]> / |

neh,

output of
3. Return Q(W‘H) HN w;|pi,log(1 + exp(p;))) the NN, so it
needs BP!

42

Predictive distribution

p(y* %", D) = / p(y* | (x*)) p(W|D)AW

~ / (7| P (x7)) gV |0) AW

Still intractable, but we can use Monte-Carlo approximation
1 m
~ 72 2 P, (X)) Wy~ a(W)6)
j=1

We can also generate samples of Y" to obtain an empirical (or
histogram) distribution

43

Performance

Table 1. Classification Error Rates on MNIST. % indicates result
used an ensemble of 5 networks.

)
=
n
T | &
.E '5
> | B
Method = | = Test
Error
SGD, no regularisation (simardetal., 2003)| 800 | 1.3m| 1.6%
SGD, dropout (Hinton et al., 2012) ~ 1.3%
SGD, dropconnect (wan et al., 2013) 800 | 1.3m| 1.2%"
SGD 400 | 500k| 1.83%

800 | 1.3m| 1.84%
1200| 2.4m| 1.88%
SGD, dropout 400 | 500k| 1.51%
800 | 1.3m| 1.33%
1200 2.4m| 1.36%
Bayes by Backprop, Gaussian 400 | 500k | 1.82%
800 | 1.3m| 1.99%
1200 2.4m| 2.04%

Bayes by Backprop, Scale mixture 400 | 500k| 1.36%
800 | 1.3m| 1.34%
1200 2.4m| 1.32%

Performance

2.0 1
§ Algorithm
g1 .6 - —— Bayes by Backprop
qta —— Dropout
"qcn: —— Vanilla SGD
F1.2-

0.8 I I I I I
0 100 200 300 400 500 600

Epochs

Figure 2. Test error on MNIST as training progresses.

45

BBB: Summary

e State of the art NN inference, very popular

 The same scalability to SGD, but it can estimate
posteriors!

* Coreidea : variational inference + reparameterization
trick

* This is also the foundation of nearly all the modern
Bayesian NN training.

46

Outline

* Auto-encoding variational Bayes

47

Auto-Encoder: Dimension Reduction

Neural Network |

Neural Network Il

.2—> Encoder —>E—> Decoder —>

gggginal ?ﬁCﬁgstructed
Compressed P
representation

Provided by Will Badr

48

https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726

Auto-Encoder

Dimension reduction is very important:
compression, denoise,

Compressed Data

X /
. “:
¥/ \

X X >
WA

Encode Decode

Provided by Will Badr

49

https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726

Vanilla Auto-Encoder

Encoder Decoder

Givendata D = {Xl, S, ,XN}

N
Loss: Z [xn — (hW1 (Xn)) H2

n=1

50

Variational Auto-Encoder

Data: D = {x1,...,Xn}

Key idea: We view code h as the latent
random variables. We want to estimate
the posterior distribution of h; However,
the NN weights are considered as hyper-
parameters rather than RVs.

51

Variational Auto-Encoder

Data: D = {x1,...,Xn}

N
°09

6600

I

XXX

Q hn Probabilistic Decoder

The model is only the decoder part

oXn Hp p(xn|h)

52

Variational Auto-Encoder

N (h,[0,T)

Probabilistic Decoder

p(H, D) — Hp(hn)p(xn|hn)

53

Variational Auto-Encoder

Data: D = {x1,...,Xn}

® _Q_Q

‘XX,
60660

I

I

22y

"\ Probabilistic Encoder Xn,

Q h, Encoder is defined as the variational
posterior distribution of h,,

‘Xn q(H) = H qw, (hn %)

54

Variational Auto-Encoder

Data: D = {x1,...,Xn}

® _Q_Q

‘XX,
60660

22y

I J \

1
) Probabilistic Encoder Xn,

Q h, Encoder is defined as the variational
posterior distribution of h,,

We use NN output to
4 p—
‘X’n q(H) | I dwi (h”|X”) parameterize the
n variational posterior,
% namely, the encoder!

55

Variational Auto-Encoder: Inference

e Maximize the variational ELBO

p(H)p(H, D)
Cz/ H)I dH
q(H)log J(FT)

N ELBO is obviously
- Z/QWl(hn|Xn)10g (o) hl el))dhn intractable, why?

n=1 QW1(n|Xn)

N

p(hyn)p(xn |fyy, (hy)

= 3 B ey [0 22)

qw, (hy |x5,)

3
I
—_

Use reparameterization trick + stochastic optimization
(on mini-batches)!

56

Concrete example

* Likelihood for continuous output

att, = Wo1 - g, (hy) + box

1
The 2 [ast layer
—fWQ (hn)
‘\\\ ------------------------------------- ’,’ pn — W22) gW20 (hn) _|_ b22"’ l
XTL

pOxalbn) = p(xalfw, () =[N (0l 1s,. diag(exp(p,)))

Gaussian with diagonal covariance

57

Concrete example

* Likelihood for binary output

p(nln) = p (v, (1)) = H[Bem([xnma([fm<hn>1j>) J

J

Bernoulli likelihood over each element

a(t) = 1/(1 + exp(—t))

Concrete example

e Gaussian encoder (most commonly used)

. m, = Wll . ngo (X'n,) 1T bll _

N p(hn)p (Xn |fw2 (hn)) Very easy to use
qw, (hy, |x5) reparameterization trick!
1 n n

59

VAE: summary

* Convert auto-encoder estimation into a probabilistic
inference problem

* Trivial application of VI
e State-of-the-art
* Very popluar

60

What you need to know

* What are Bayesian NNs?

 What are the key idea of BP and stochastic
optimization?

 How to conduct variational inference for BNNs?
* What is the reparameterization trick?

* The key idea of Bayes by Backprop, and variational
auto-encoder

* You should be able to implement them (with
TensorFlow or pyTorch) now!

61

