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Outline

e General ideas and Markov chain basics



MCMC: Goal

* Given a probabilistic model
p(D, z) = p(z)p(D|z)

* How to generate samples from the posterior distribution
(the samples are NOT necessarily independent!)

21,22,...,4N p(Z‘D)



MCMC: Goal

* Given the posterior samples, what can we do?

* Alot of things

— Approximate the (marginal) posterior posterior over any
subset of variable (unlike message-passing)

1 N
p(z|D) ~ = nz_:l 6(z — Zn)
— Estimation of any interested statistics/moments
1 N
) = [ JeplaDIan ;3 flan)

— Predictive distribution

p(y"1D) = [ ol l2)p(alD)dz ~ 1 Y ply’[z)



MCMC: Pros and Cons

* Pros

— Asymptotic convergence to the true posterior (note:
deterministic approximation, such as VI, always has
discrepancy with the true posterior)

— Robust to initialization

— Empirically best and often used as a gold-standard to test
other approximate inference algorithms

— samples are more convenient to use than approximate
distributions



MCMC: Pros and Cons

* Cons
— Orders of magnitude slower than VB
— Hard to diagnosis the convergence
— Hard for parallelization (sequential sampling nature)
— Hard for large-scale applications
— Easily trap into single modes (this is the same as VB)

How to scale up MCMC to big data is a hot
research topic!



MCMC: Basic ideas

Sample a sequence of variables using a
Markov chain that converges to the desired
posterior

Z, 722 — ... 24y 2 Zpy1 —7 ...

Znt1 ~ D(Zni1|2n)  Jim p(zn) = p(z|D)

Therefore, the MCMC samples are strongly correlated!



Basics of Markov chains

* A Markov chain is determined by
— p(Z,): we do not care it much in MCMC sampling

— Transition kernel: determines the speed of convergence

T(zn — Zpt1) = p(Zn+1|2n)

if the kernel is the same for all n, the Markov chain is called homogeneous

The development of MCMC sampling is the art to design the
transition kernel



Basics of Markov chains

 What distribution does a MC converge to ?

— Invariant distribution

We claim that p’() is invariant to the transition kernel T

Also called stationary distribution

Obviously, we want to design a kernel to which the target
posterior is invariant
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Basics of Markov chains

* How to examine invariance?

Sufficient condition (not necessary): detailed balance

p*(2)T(z — 2') = p*(2)T(z' — z)

11



Basics of Markov chains

e How does detailed balance lead to invariance?

7 @ 7' Let us prove it!

An MC whose stationary distribution and transition
kernel respect detailed balance is called reversable
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Basics of Markov chains

* An MC can have multiple stationary distributions;
converging to which one depends on p(z;)

 We want our MC only converges to the desired
posterior no matter what initial distribution is
chosen!

* This property is called ergodicity: an ergodic MC only
converges to one invariant (stationary) distribution
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Basics of Markov chains

* Informally, in an ergodic chain, it is possible to go
from every state to every state (not necessarily in
one move)

* An ergodic chain is also called irreducible

 The invariant (or stationary) distribution of an
ergodic chain is called the equilibrium distribution

14



Basics of Markov chains

* In MCMC sampling procedure

— Invariance guarantees the samples will converge to the
true posterior (unbiased)

— Ergodicity guarantees the sample space can be fully
explored (rather than partially)

* It can be shown that a homogeneous MC will be
ergodic, subject only to weak restrictions on the
invariant distribution and transitional kernels

15



Basics of Markov chains

* Conceptually, the sampling contains two stages

— Before burn-in: the MC has yet converged to the invariant
distribution. In practice, we usually set up the maximum #
of steps before burn-in, and usually various tricks to verify
convergence empirically (e.g., look at trace plots).

— After burn-in: the MC has converged. Then we generate
the posterior samples. To reduce the strong correlation,
we often take every M-th sample (e.g., M =5, 10, 20). We
also need to compute the effective sample size (ESS) to
ensure the collected samples are enough.
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Outline

 Metropolis-Hastings algorithm

17



Metropolis-Hastings algorithm

* A general framework for MCMC

18



Metropolis-Hastings algorithm

* A general framework for MCMC

* In each step, we first use a proposal distribution to
generate a candidate sample, and then decide
whether to accept this new sample

19



Metropolis-Hastings algorithm

* Denote the proposal distribution (not the transition
kernel) by ¢(2'|z,,), e.g., N(Z/|z,,oT). Sample the
the proposal 7 first.

* Accept 7z’ with probability
Jump back
p(@, D)l |2y

Unnormalized posterior

20



Metropolis-Hastings algorithm

* Accept 7| with probability

p(z’, D)q(z,|2')
p(Zn,D)q(2'|2,)

min(1,

Jump out

Unnormalized posterior

How do we implement it in practice?

Sample a uniform R\V. v in [0,1], and test if

u < exp { min (0,logp(z’, D) + log ¢(z,|2') — log p(zn, D) — log q(2'|z,)) }

21



Metropolis-Hastings algorithm

* If we accept /A
/

otherwise
Set Zn4+1 = 2y

Note: the chain may contain many duplicated samples due to rejections

22



Metropolis-Hastings algorithm

* Proof: MH guarantees the detailed balance

Given arbitraryz,and z.,,,ifz.,, # z,, z,,; must be
obtained from accepting a proposal

p(zn—l—la D)Q(Zn ‘Zn—l—l)
P(2n, D)q(Zn11|2n)

P(Zn+1, D)/p(D)q(2n |2n+1)

ZQ(Zn—I—1|Zn)min(1[ (Zn’ )/p( )](Zn+1lzn) )

T(zn — Zny1) = q(Zny1|2,) min(l,

P(2n+1|D)q(2n|2Zn 1) )
p(zn‘D)Q(Zn—l—ﬂZn)

= Q(Zn+1 ‘Zn> min(l,
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Metropolis-Hastings algorithm

* Proof: MH guarantees the detailed balance

Given arbitraryz,and z.,,,ifz.,, # z,, z,,; must be
obtained from accepting a proposal

p(zn—l—l |D)Q(Zn ‘Zn—l—l) )
P(2n|D)q(Zn+1|20)

T(Zn — Zpt1) = q(Zp+1|2y) min(1,

p(Zn+1|D)Q(Zn|Zn+1)

(2, | D)1z, — Zpi1) = p(Zn|D)q(2y11|2Z,) min(1,
( | ) ( -|—) ( | ) ( -|—| ) ( p(zn‘D)Q(Zn—i—l‘Zn)

I|: = min (p(zn‘D)Q(Zn—Fl|Zn)ap(zn_|_1|D)q(zn|zn+1))
P(Zn+1|D)T (241 — Zy) | e

— min (p(zn_|_1"D)q(zn’Zn+1),p(Zn’D)Q(Zn+1‘Zn)) 24



Metropolis-Hastings algorithm

* Proof: MH guarantees the detailed balance
if Zne1 = 2

T(zn — zn+1) = p(reject the proposal) +
p(proposal is z,,, and accept)

P(2n|D)T (20 — Zn+1) = p(2,|D)- [p(reject the proposal) +
IH p(proposal is z,,, and accept)]

P(Zn+1|D)T (241 — 2n) = p(2,|D)- [p(reject the proposal) +
p(proposal is z, and accept)]

25



Metropolis algorithm

* If we choose a symmetric proposal distribution

q(z'|z,,) = q(z,|2) e.g., N(Z’]zn,azI)

.ol
Accept probability: min(1,
PEP Y ( p(zn,D)Q()}’\LG))

If the proposal increases the model probability, the accept

rate is one!
26



Nightmare: random walk behavior

 We need to collect samples that fit the target
posterior (e.g., their histogram should be more and
more like the posterior). That means, we require
many samples on the high-density regions and much
less samples on the low-density regions

 However, if the proposals are generated like a
random walk through the sample space, a great
many proposals will be discarded (due to being in the

low-density regions); and much computational cost is
wasted

27



Nightmare: random walk behavior

* Take the commonly used Gaussian proposal as an
example

n g

* So a key goal to design MCMC algorithms is to
reduce random walk behavior!

28



Outline

* Gibbs sampling
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Gibbs sampling

e A special type of MH algorithm

e Use conditional distribution to sample each single (or
subset of) random variable in the model

e Accept rate is always one

* A good choice when the conditional distribution is
tractable and easy to draw samples

30



Gibbs sampling

-
Z=|z1,...,2%m] p(z,D) = p(z1,. .., 2m, D)

Assume each p(z;|z—;, D) is tractable and easy to

generate samples

-
Zz_;, — [21, ce ey Rg—19R5+1y - ,Zm]

31



Gibbs sampling

e Initialize 2V = [¢{",..., 2"
e Fort=1,..,T
—Sample
—Sample

—Sample

n+1 n+1 n—+1 n n
_Sample Z§ )Np(Z]%g )7Z§—1 )}7Z§+)1vz7(n)7p)

n n+1 n+1 n+1
_Sample Zq(n_'_l) N]?(Z”LZ{ + ),Zé + )7"‘7z7(71j1)17p)




Gibbs sampling

* We can also partition the random variables into sub-
vectors, and perform similar alternative sampling

z=1z1,...,2¢"

p(Zi|Z1, /7y N /7y [ ,Zt,D)

* This is called block Gibbs sampling

33



Gibbs sampling: examples

e Matrix factorization

User 1
User 2 2.2 1.0 ? 3.0
User 3 2.5 ? 4.3 ?



Gibbs sampling: examples

User 1
User 2 2.2 1.0 ? 3.0
User 3 2.5 ? 4.3 ?

For each user i, introduce a k-dimensional latent feature vector U;

For each movie j, introduce a k-dimensional latent feature vectorv ;

p(u;) = N(u;]0,I)  p(vj) = N(v;]0,1)
The rating is sampled from a Gaussian

p(Ri;|U, V) = N(R;;|u; vj,7)



Gibbs sampling: examples

User 1
User 2 2.2 1.0 ? 3.0
User 3 2.5 ? 4.3 ?

The joint probability

p(U,V R)



Gibbs sampling: examples

p(U,V,R)
— Hp(uz’) Hp(vj) H p(mﬂujvj,f)

(4,7)€0
We can use Gibbs sampling to sequentially sample each u; and v;

The conditional distribution will be Gaussian!

37



Gibbs sampling: correctness

* Proof: the target posterior is invariant to the chain
What is the transition kernel?

T(z™ — z(nt1)

= p(2\"TV 1M 2 Dy
PV, A, L, D) m steps
-p(zq(g’“) \z§n+1), zénﬂ), .. ,z?(s’jll), D)

38



Gibbs sampling: correctness

* Proof: the target posterior is invariant to the chain

if 2™ ~ p(z|D) respect the target posterior

T(z™ — z(nt1)

)

1 n—+1 n n
— p(ZYH_ )lzén)v sy Zﬁr?)vD) [Zg " )725 )a fe 727(71)]T
.p(zén—Fl) |z§n+1), Zi())n)’ L Z%L% D) LAPHD D) )
(n+1))(n+1) _(n+1) (n+1) p (n+1) (n+1)
- p(z;0 T | 2y .y ey 2y 1, D) [T 2y ]J

I
Z(n+1)

]T

39



Gibbs sampling: correctness

* Note that you need also to ensure ergodicity

* A sufficient condition is that none of the conditional
distributions be zero anywhere in the sample space
(not hard for continuous distributions)

* If the sufficient condition is NOT satisfied, you must
explicitly prove the ergodicity!

40



Gibbs sampling: An instance of MH

* One iteration of Gibbs sampling is equivalent to m
steps of MH updates, each step with accept prob. 1

e Let us look at one step, w.l.o.g., sample the first
element (the other elements are the same)

41



Gibbs sampling: An instance of MH

e Let us look at one step, w.l.o.g., sampling the first
element (sampling the other elements are the same)

n+1 n n
zn:[zgn) zé ),...,zﬁﬂf)]T -»> Z —[Z§ ) é)a---azq(n)]T
divide p(z5™, . .., 2™, D)
Acceptance probability /
n+1 n n n n n
p(z § ) é ),...,zm),D)p(% )|z§ ),...,zq(n),D)

)

min (17

p(z§n), zén), . ,zgf), D)p(z%nﬂ) |z§n), e 27(71',?),1))

|

n—l—l)‘ \ ),D )‘Zén)’“ (n) D)) -
n n+1 n
(1)|22(),.. ()D)((—F)‘z&.. ()D) -

min (1



Gibbs sampling: inefficient exploration

* Although Gibbs sampling won’t reject samples, it
may still suffer from inefficient exploration due to
strong correlations

21 43



Outline

* Hybrid Monte-Carlo
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The MCMC algorithms we learned so far

« Random walk behavior --- waste a lot of samples

* High correlation between different RVs --- slow
exploration

* Can we address both problems?

45



Hybrid Monte-Carlo Sampling (HMC)

* Also called Hamiltonian MC

 An augmented approach

 Turn the probability to the energy of a physical system
 Augment with other physical properties

e Use the evolution of the physical system (usually
described by a set of partial/ordinary differential
equations)

 Theoretically can explore the sample space more
efficiently, acceptance prob =1

* Practically limited by the numerical integration error.

46



Hamiltonian system

* Consider a small ball in a m-dimensional space,
without any friction

e Given an initial position and momentum, how does
the ball move?

Potential energy\ﬁ

Kinetic energy

47



Hamiltonian system

* Characterize how the system evolves
e Z(t): position vector at time t

e Potential energy: U(z(t))

* r(t): momentum vector at time t

* Kinetic energy: K(r(t))

* Total energy : H(z, r) = U(z) + K(r)

48



Hamiltonian system

e Z(t): position vector at time t

e Potential energy: U(z(t))

* r(t): momentum vector at time t
* Kinetic energy: K(r(t))

* Total energy : H(z, r) = U(z) + K(r)

Evolving:

dt ) 822

dt _87"/&' Z:[Zl,...
dri 8H I':[’I“l,...

49



Hamiltonian system

* How to map our probabilistic model into the system?

p(Z,D) — p(Zh T Zm7D)

e We take

T —1
K(I‘) =-r M r often takes identity/diagonal matrix

e

H(z,x) = Ulz) + K(r) e p(z,1) o exp ( — H(z,1))

What does it include?

50



Hamiltonian system

=

U(z) = — log (p(z, D))

K(r) = %rTM—lr ~ H(z,r) =U(z) + K(r)
dZZ' B OH de _ [M_lr]i
dt B 87'7; :> dt
d?“z' OH d?“i o 8U

© 0 dt 0z

51



Hamiltonian System

* The key idea: use the current sample z, and random
sample of r, as the initial state of the Hamiltonian
system; and then evolve the system to a time t, pick

the z(t) as the proposal and test whether to accept it
dsS Z4q

(2, 1)

Potential energy\ﬁ

Kinetic energy 2(t) Note: the proposal is not
G randomly generated; it is
generated deterministically.

52




Hamiltonian system

* Nice properties to guarantee the detailed balance

1. Reversibility:

one-to-one
—_ I
(z(t), r(t)) (z(t+s), r(t+s))
Negate momentum
(z(t), -r(t)) (z(t+s), -r(t+s))
~ .

Rigorously speaking, we
o need to first evolve the
Why is it important? system, and then negate
the momentum to obtain
the new proposal

p*(2)T(z — 2') = p*(2)T (2" — z)

Now T is a delta function, we need to be able to jump back!

53



Numerical Integration

* Nice properties to guarantee the detailed balance

: dH
2. Conservation: —= 0 Totally energy does not change

3. Volume preservation: Determinant of Jacobian is always 1

ol T
9 e wl

Volume does not change after transformation

54



General theorem (proof omitted)

Consider an arbitrary dynamic system W,
Let v=(z,r) be the extended variable. Define v/ = ¥;(v)

If the following conditions are satisfied:
— W, isreversible under R, i.e., v="9;'(v') = R(¥;(R(v)))
— Ris aninvolution, i.e., Ro R(x) = x

— The proposed sample R(v’) is accepted with prob.
p(R(V’)) OR o W (v)
p(v) ov

Then p(v) is stationary distribution of the Markov chain
generated by this W, and accept test

'} otherwise keep v

|det

min{1,
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General theorem (proof omitted)

Consider an arbitrary dynamic system W,
Let v=(z,r) be the extended variable. Define v/ = ¥;(v)

If the following conditions are satisfied:
— W, isreversible under R, i.e., v="9;'(v') = R(¥;(R(v)))
— Ris an involution, i.e., Ro R(X) = X R is negating the momentum

— The proposed sample R(v') is accepted with prob.
conservatlon\p(R(V/)) OR o W, (V)

min{1,
p(v) ov
Then p(v) is stationary distribution of the Markov chain

generat%g by this W, and accept test
Energy dist.

v otherwise Keep v volume preservation

|det

Apply the theorem to Hamiltonian system, the accept rate is always 1
56



However, we cannot exactly evolve
Hamiltonian system (do not know solution)

——

U(z) = —log (p(z, D))

K(r) = %rTM_lr ~ H(z,r)=U(z)+ K(r)
dZZ' _ OH de — [M_lr],,;
dt (97“7; ‘=> d?

d’l“z' 8H dlr?; _ aU

% O3 dt 0z

57



Numerical integration

dZZ'

—1
— [M r]z’ In practice we often choose
o M = diag|s Sm)
dr;  OU By o
dt 822

Euler’s method: choose step size € , and # of step size L

) / Log joint probability

o dr;(t) _oU(=(t)
rilt+€) = 7ilt) +e—g = =milt) —e—p
Zs (t + 6) = Z; (t) + edZ(;Et) = Zj (t) + ETiS(f)

58



Leapfrog method

e Euler’s method is a first-order method O(¢)

* |In practice, people choose Leapfrog method, a
second-order method O(e?)

ri(t+€/2) = ri(t) — (€/2) agz(j)
zi(t +¢€) = z;(t) + . v 1_ ¢/2) introduce half-step
OU (z(t + €))

ri(t+e)=ri(t+¢€/2) —(e/2)

02@

59



Leapfrog method (€, L)

* Key properties

— Reversibility under momentum negation

one-to-one
— I
(z(t), r(t)) (z(t+s), r(t+s))
Negate momentum
(z(t), -r(t)) (z(t+s), -r(t+s))
~ .

— Volume preservation: each leap-frog step is a shear
transformation and preserves volumes

Question: does conservation still hold?

60



Leapfrog method , L)

* Key properties

— Reversibility under momentum negation

one-to-one
— I
(z(t), r(t)) (z(t+s), r(t+s))
Negate momentum
(z(t), -r(t)) (z(t+s), -r(t+s))
~ .

— Volume preservation: each leap-frog step is a shear
transformation and preserves volumes

Question: does conservation still hold? No, because itis a numerical
approximation!

61



General theorem (proof omitted)

Leapfrog
Consider an arbitrary dynamic system \I!;g/

Let v=(z,r) be the extended variable. Define v/ = ¥;(v)

If the following conditions are satisfied:
— W, isreversible under R, i.e., v="9;'(v') = R(¥;(R(v)))
— Ris aninvolution, i.e., Ro R(x) = x R: momentum negation

— The proposed sample R(v’) is accepted with prob.
p(R(V’)) OR o W (v)
p(v) ov

Then p(v) is stationary distribution of the Markov chain
generated by this W, and accept test

'} otherwise keep v

|det

min{1,

Note that: due to the numerical error, the accept rate is not guaranteed to be 1
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HMC based on leap-frog

 We augment the latent variable z, with momentum
variables r

e Construct energy distribution

U(z) = —log (p(z, D)) K(r) = %rTM_lr

H(z,r)=U(z) + K(r)

p(z,r) x exp (— H(z,r))

* We construct a MC to generate samples from p(z, r)

63



HMC based on leap-frog

e Step 1: generate new sample for r
T, r~ /\/'('rz\(), Si)

(This is a Gibbs sampling step, why? Because the r and z are independent!)

e Step 2: start with current (z, r) and run Leap-frog for
L steps with step size €, obtain (Z, r'), setr =-r,
accept z’ with probability
min{1,exp ( — H(z',r') + H(z,r))} = min{l,exp (- U(z') — K(r') + U(z) + K(r))}

otherwise keep z

(This is a Metropolis-hasting step)

 Repeat Step 1 & 2 until get all the samples after burn-in
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HMC-correctness

* Combining multiple Metropolis-hasting steps still
yields one valid MH step, so the target posterior is
invariant to the transitional kernel of the chain

* Ergodicity: typically satisfied because any value can
be sampled from the momentum; only failed when
the Leapfrog will produce periodicity; we can
overcome this issue by randomly choosing € and L
routinely.
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HMC applications

* Apply to continuous distributions only, because
Leapfrog needs the gradient information

* Very powerful MCMC algorithmes.
* Usually much better than original Metropolis Hasting

* Gold-standard for inference in Bayesian neural
networks.
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HMC discussion

 There is a trade-off for the choice (¢, L) in the
Leapfrog

min{1, exp ( — H(z',r") + H(z, r))}

* Large € and L will allow you to explore the space
further away, but increase the numerical error and
lower the acceptance rate

e Small € and L will be more accurate and so the

acceptance rate increases, but the generated
samples are not distant.

* |n practice, it is very important to tune the two
parameters!
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What you need know

e Basic idea of MCMC

* Key concepts: transitional kernel,
stationary/invariant/equilibrium distribution,
detailed balance...

* Metropolis Hasting and random walk behavior

* Gibbs sampling

* Hybrid Monte-Carlo sampling

* You should be able to implement these algorithms!
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