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Outline

* Gaussian Mixture Model and EM algorithm

* Global Variational Inference
— Variational evidence lower bound
— Mean-field variational inference
* Local variational inference

— Convex conjugate
— Logistic regression
— Variational EM

e Variational message passing
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Gaussian mixture model (GMM)

* A probabilistic version of the k-means clustering
algorithm

e Given a set of data points and a cluster number K,
how do you group the data points into K clusters?

e Clustering is a fundamental data mining and pattern
recognition task



K-means application

K =2 K=3 Original image




How do we use probabilistic modeling to
represent the clustering procedure?

 Given X = {xq,...,xyx} and cluster number K

* For each data point n e.g, [0,0,1,..0]"

— Sample the cluster membership z,, : K x 1 one-hot vector,
z..=1 means x, belongs to cluster k

T = [7T1,...,7TK]T
Znk

K

— Given z,, sample X, from the cluster-specific Gaussian

K
p(Xn|2zn) = Hk:l N (xn |y, Xg)

e

cluster center soft width 6




Graphical model representation

Task: Given X = {x,..., xy} and K

Infer:
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How to learn GMMs?

 Marginalize out zand do MLE

K
p(xn) = 3 TN (xalitg, )

lnp X|ﬂ-7l'l'7 Zln{zﬂ-kz]\[ X?’L“"’lmzk }



How to learn GMMs?

e Given the parameters, we calculate the posterior of
the cluster membership

WkN(Xn|Mk7 k)

Zm (Xn|pt;, 25)

P(zn|X) =

Why ? Leave it as your exercise



How to learn GMMs?

e Singularity issues

p(aj) m N(Xn’Xn,U?I) — (271')1/2 0,

aj—>0.

Suppose we use diagonal covariance, when the cluster center is
close to a data point, it tends to collapse onto the point to increase
the likelihood
10



EM algorithm to learn GMM

 Can we get rid of the singularity issue?

 Can we jointly estimate the parameters and the

posterior? \
/ T

p(zl,-..,ZN|X) {217"'72K}

11



Let us look at a general case

Suppose we have a model governed by parameters 6

09
p(X[0) = / p(X. Z|6)dZ

/ / "0

Observations Latent random variables |

X©

Question: what are @ and Z, for GMMs?
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EM algorithm: how to estimate @

log (p(X]0)) = log (/p(X, 716)dZ)

= log ( / P (};(’ZZ)‘H) ¢(Z)dZ)

Jensen’s inequality

p(X,Z[6)
> /Q(Z) log ( 12 )dZ
log (p(X10)) = /q(Z) log (p(}q((’zz)’g))quL/q(Z) log pgé‘z))()dz
L(6.4(Z)) KL(q(2Z)|p(Z|X.6))

>0



EM Algorithm

log (p(X10)) = /q(Z) log (p(}q((’ZZ)W))dZ + /q(Z) log p?é‘z}){) dZ
L(0,q(2)) KL(¢(Z)|Ip(ZIX.6)) = 0

[log (p(X|0)) = L(0,q"(Z)) when ¢"(Z) = p(Z[X,0)

J

Now fix ¢*(Z)

""" = argmax L(0,q"(Z))
0

log (p(X[0")) > L(6™Y,q*(Z)) > L(6,q*(Z)) = log (p(X|0))

Like a bridge to improve the parameters!
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EM Algorithm

* Choose an initial setting gnev
* Repeat
geld . gnew
Evaluate ¢(Z) = p(Z|X, 6°'9) E step
Fix ¢(Z), 0" =argmaxL(0,q(Z)) Mstep
e Until ||6°¢ —60™"| <€ Or reagh the maximum # of
iterations log (p(X|6™))

L<0new,p(Z|X, Oold))

old
log (p(X[6°'9)) @ L(6°, p(Z|X, 6°))
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GMM revisited

 Given X = {xq,...,xyx} and cluster number K

* For each data point n e.g, [0,0,1,..0]"

— Sample the cluster membership z,, : K x 1 one-hot vector,
z..=1 means x, belongs to cluster k

5 T=|m,...,TK
. Znk

— Given z,, sample X, from the cluster-specific Gaussian

K
p(Xn|2zn) = Hk:l N (xn |y, Xg)

e

cluster center soft width 16




EM algorithm for GMM

N K
p(X,Z|p, X, ) = T RN (X | g 2k )*F
e2m) =[] 11 o2

0 "

E step: 4¢(%) =

Zn|X Hold _ ﬂ ﬁ an

||:jz

ldN X, old Eold
Yok = p(an _ 1‘:}(7 001d> _ — ( |l"’ )

e TN (x| g, Z5)



EM algorithm for GMM

N K
p(X.Zlp, 3, m) = [ [ ][ mir N Gl B

l_'_l

0 n=1 k=1
M step: 1(6.¢2) =) a(2)l0g (- = i’(‘z")z’”))
— Z q(Z)log (p(X,Z|p, 3, 7)) + const

= Ey(z)log (p(X, Z\p, X, 71')) + const

IE:’q(Z) [ Z Z “nk log Tk + Znk lOg (N(Xn“bk;a Ek))]
n=1 k=1

N K
> nklog m + Yk log (N (xn| g, Zi))
n=1k=1




EM algorithm for GMM

* M step:
N K
max Z Z Vnk l0g T + Ynk log (N(anum Ek))
n=1k=1
v qujzl Ink
K N
Zk:1 Zn:1 Tnk
| N
new __ _— N
:> Fi N, ; TnkXn Ne=> Yk

n=1
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EM algorithm for GMMs

Wzld/\/ (Xn |Nild> Eild)

¢ E Step Ynk = p(znk: — 1|X7901d) —

K
i TN (x|, 25

N
* M step pnew _ _ Yun=1 nk

We do not have any singularity issues!



EM algorithm for GMMs

—i 0 (c)
20 iters
. Séa
o.{ ‘)‘
. ° . :30“ “'
.f: *e T
( N
N lo‘
113
—i 0 (f)

21



Practice

e Derive EM algorithm for mixture of Bernoulli
distributions

* Derive EM algorithm for Bayesian linear regression
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Outline

* Gaussian Mixture Model and EM algorithm
* Global variational Inference

* Local variational inference

e Variational message passing
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Global variational inference

* Consider a general model

p(X[0) = / p(X. Z|6)dZ

/ /

Observations Latent random variables

Put aside the parameters first (either we use full
Bayesian treatment to absorb 0 into Z or consider
0 as fixed constant

24



Global variational inference

Question: how to compute the posterior p(Z|X)

p(X,Z)

Usually infeasible!!

GMMs, Bayesian linear regression are a few exceptions...

In most cases, you cannot get an analytical result ....

p(z) = N(2[0,1)

p(elz) = o(2)"(1 - o ()

25



Global variational inference

Question: how to compute the posterior p(Z|X)

Idea: Now that the true posterior is complicated and tricky to
compute, can we find a simple form of distribution (e.g., Gaussian)
that approximates the true posterior? In other words, can we
designate a family of simple distributions, from which we find the
best member that is closest to the true posterior?

1—=z

p(2) = N(2]0,1) p(z]z) = 0(2)* (1 — o(x))
Let us use a Gaussian q(2) = N(z|u,0?) to approximate the true
posterior p(z|az)

The problem is how to determine the best U, o’

26



Intuitive thoughts

* Suppose we assume the family (form) of
approximate posterior ¢(Z|x)

KL divergence is

L . commonly used to
a” = a,rg;nm KL (q(Z‘a) ”p(%()) measure the difference

between distributions

What is the issue?

27



Detour: go back to what we have derived
before

o (5(X)) = [ a@)1og( "5z + [ a@tost 5z
Evidence L i J L Y J
L(q) KL(q(Z)||p(Z|X)) >0
Variational Lower Bound
1 = KL(q(2)||p(Z]X))
fixed T 73 max L£(¢) <= min KL(¢(Z)||p(Z|X))

evidence-

Key: Maximize the variational lower bound is
equivalent to minimizing the KL divergence!

28



Global variational inference

* Given a family S of the approximate posterior ¢(Z),

p(X,Z)

0" (2) = argmas £(q) = l/ 0(2)log( P
i
p(X,Z)

Usually there is a trade-off: The larger the family S, the better the approximation
quality, but the harder the optimization

29



Mean-field variational inference

* Assume the approximate posterior is factorized:

0(2) =] a(Z) [Z ={Z1,Z,...} nonoverlapping}

Each 4¢(Z;) is a free form distribution

p(X,Z)
Hi Q(Zz’)

max £(g) = [ ] o(Z:)logd 14z

Solve this optimization by alternative updating

30



Mean-field variational inference

Z)
max L(q /Hq log{H 1z )}dZ

Update 4(Z;) giving {q(Z;)}ix; fixed

L(q(Z; / Hq ) log (p(X, Z))dZ — /q(Zj)log (¢(Z;))dZ; + const

J

I
Eqz_,)log (p(X,Z)) a(Z~) = EQ(ZJ

Solve this q(Z;) x exp {Eq(zﬁj) log (p(X, Z))}

exp {Eq(z )10%"( (X, Z))}

q(Z;) = feXp {Eq(z log( (X, Z))}de

31



Mean-field variational Inference:
algorithmic framework

* Choose a factorized posterior form 4(z) =] ¢(z)

* Repeat

— For eachjj
* Fixed 14(Z;)}i»; and update ¢(Z;) x exp {Eq(zﬁj) log (p(X, Z))}

— End for
e Until each ¢(z;) changes little or reach maximum # of
iterations

32



Variational Linear regression

p(a) = Gam(alag, by)  dn

pwlo) = A(w[0.a'T) 5 * \
N tn N

p(tjw) = HN(tn|WT¢mﬁ_1) g
n=1

p(t,w,a) = p(tjw)p(w|a)p(a)

Observed data t = [tq,..., tn]"

Inference task: p(W, oz]t)

33



Variational Linear regression

Obviously, the posterior distribution is intractable, we introduce factorized
approximation:

g(w,a) = q(w)q(a)

Alternating update

Q(a) X eXp{Eq(W) lng(t, W, Oé)}

ﬂ

¢(a) = Gam(alay, by)
an = ag + — d: dimension of w

by = by + —E[w ' w]
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Variational Linear regression

Obviously, the posterior distribution is intractable, we introduce factorized
approximation:

g(w,a) = q(w)q(a)

Alternating update

Q(W) X eXp{Eq(a) 10gp<t7 W, Oé)}

ﬂ

q(w) = N(w|my, Sy)

my = ﬂSN‘I)Tt
Sy = (E[I+42'®)

1



Variational Linear regression

Obviously, the posterior distribution is intractable, we introduce factorized
approximation:

g(w,a) = q(w)q(a)

The required moments
E[oz] = CLN/bN
1 mymy + Sy

E[ww

Predictive distribution

p(tlx,t) = /p(t\x,w)p(wﬂ)dw ~ /p(t\x,w)q(w)dw

= N(tm%e(x),0%(x))

36



Exponential family

p(n|ve, vo) = f(vo, X0)g(m)"° exp {von" X, }

p(X,Zn) = | | h(xn,2n)9(n) exp {n"u(xn,2)}

n=1

Task: p(n, Z|X)

Assume: 4(Z,m) = q(Z)q(n)

37



Exponential family

The updates are analytical

q*(zn) — h(Xna Zn)g (E[TI]) exp {]E[T’T]u(xna Zn)}

g (m) = flvn, xn)g(m)"™ exp {0 xn}

vy = UVg+ N
N

XN =VWXp T Z K., [U-(Xnv Zn)]

n=1

38



Outline

* Gaussian Mixture Model and EM algorithm
* Global variational Inference

* Local variational inference

e Variational message passing
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Local Variational Inference

e Seeks an bound for a factor function of individual
variables or a subset of variables

* Convex conjugate

f(z) = max Az — g(A)

9(N) = max Az — f(z)

e Key idea: if a factor is convex, use the convex
conjugate obtain an bound (easier form)

40



Local Variational Inference

In general

log(p(X, 0)) = log (p(H)) + g log(p(an))o\
n | J
I

If it is convexto @, f(0) > [)\TB — g(A)}

41



Variational logistic regression

* Let us consider the sigmoid function in the likelihood

1

) = l1+e®

log(o(x)) = —log(1+ e~ %) isconcave

Let’s verify it

42



Variational logistic regression

43



Variational logistic regression

f(:l?) = — ln(ex/2 —+ 6—:1:/2) Symmetric

f(x) = f(jz|) = f(Vz2) = f(2?)

We can show that f is convex to x2, so we can use convex conjugate

g(A) = max {)\332 — f (\/ﬁ)}

x2

44



Variational logistic regression

g(A) = max {)\xQ — f (@)}

xr2

T

i tanh(x) = c _T_e
et +e”

dr d 1 T
= A- —— = — h (—)
0=A T dxf(:v) A+ e tan 5

i ¢ is the optimal x corresponding to )\

A§) =~ tanh (g) __1 [0(@ . %]

x



Variational logistic regression

0 = max et £ (V7)

46



Lower-bound of o(z)

0.5}

47



Variational logistic regression

e Given an arbitrary feature vector ¢, the binary response
t is sampled from

p(tlw) = o(a) {1 —c(@}' ™ la=w"¢

1
N\
et
+
ml =
Q
N~
N\
p—
|
p—d
e
ml =
Q
N~
|

48



Variational logistic regression

From the previous result
o(z) = o(§)exp {(z =€) /2 = ME)(¥* = &%)}

1 1 Note:We omit —in
52 |08 — 5 .
the previous symbol

49



Variational logistic regression
pltlw) = ¢*o(~a) > e"o(€) exp {~(a +£)/2 ~ ME)(@® — %)}

Given the design matrix (features after Binary output t = [t1,..., tN
appropriate (nonlinear) transformations) Each t, € {0,1}

N

p(t) = / p(t]w)p(w) dw = / [Hpanw)] p(w) dw

n=1

h(w,&) = J]o) exp{w d,tn — (W ¢, +&)/2

n=1

— A& (Wi, = &)}

50



Variational logistic regression

* Consider approximate posterior g(w)

p(t, w) .
max E,w) log{ } [@ min KL(C](W)HP(W‘J))}
q(w) (W)
L Y J
Infeasible! Also, if you directly optimize w.r.t a free

from, you obtain the true posterior

Solution: We maximize its variational lower bound!

p(t7 W) — p(t\w)p(w) = h(W> f)p(W) Why called “‘variational LB”’?
It’s possible to
(w)h(w f) take equality

max [y log{p

51



Variational logistic regression

The same as Mean-Field

4(w) o< exp(log{p(w)h(w,£)})  p(w) = Nwlmo,S0)

—l(w —mg)'S; (W — my)

+ Z {W Gy (tn —1/2) — (fn)WT(qbnqbg)W} + const

i Complete squares
N

my = Sy (Solmo + Z(tn - 1/2)¢n)
g(w) = N(w|mpy, Sy) T
Sy = Si'42) A&)dnon

52



Are we done?

* No, we haven’t identified the variational parameters ¢

max  £(g,0) = By 1Og{p(v")h(w, £)

¢ i q(w

Y {no(&) — /2 — M&) (D Eww™ e, — £2)} + const

0= X (&) (PnEfww"]g,, — §i)ﬂ

(E2)? = @, E[ww '], = ¢, (Sy + mymy) ¢,

53
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Variational logistic regression

* We conduct an EM procedure

(w)h(w, &)
q(w

;

max L(q,¢) = E(w) log{p

E step: update ¢(w)

M step: update «S

Alternatively maximize the variational lower bond

54



Why is it called variational bound

 The variational bound is variational transformation, it
means, if you do NOT restrict the range of the
variational parameters, they always have settings
that reach equality

p(t, w)
q(w) j

log(p(t)) > Eqw) log{

W p(W)h(w, §)

}

In practice, we often restrict the family/range of the variational

parameters to gain the computational easiness
55



Variational EM algorithm

* In general, if we also need to estimate hyper-
parameters.

p(X7 Z|9) 0®

X,Z|6 .
max £(q(Z),6) =Eyg 10g{p( q(Z>‘ >} ZQ

|

E step:  ¢(Z) < argmax L(q(Z), ) X ‘

qeS

M step: 6+« argmeax L(q(Z),0) fix ¢(Z)

56



Variational Message Passing

* Consider a Bayesian network

p(x) = [ p(xilpalx))

 Assume a factorized posterior over the nodes

q(x) = qu'(xv:)

57



Variational Message Passing

* Consider the update on each node
Q(Xj) 8 eXp{Eq(xﬁj) [logp(x)]}
Questions: which factors involve X; ?

The conditional probabilities where x; is a parent/child

C](Xj) oc exp{E [ log p(X] |pa<X] ))}

4+ Z logp (x¢]x5, Pa(Xt)\{XJ})}}

X4 Epa(xt)

Markov blanket

58



Variational Message Passing

* Given a graphical model, the mean-field variational
update only requires a local computation on the
graph

59



What you need to know

* What is EM algorithm

* Log(Evidence) = Variational Lower Bound + KL
* What is EM algorithm

* Global variational inference, mean-field

* General update in exponential family

e Local variational inference, convex conjugate
e Variational message passing

* Being able to derive and implement variational
inference

60



