Probabilistic Graphical Models

Spring 2024

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing

THE
UNIVERSITY
OF UTAH

Outline

- Bayesian networks
- Markov random fields
- Inference

The task

- Compute the posterior of one or more subsets of nodes given the observed nodes

The task

- Compute the posterior of one or more subsets of nodes given the observed nodes

Key: compute the marginal of one or a subset of nodes!

Let us start with a chain

Let us start with a chain

Let us start with a chain

Each node takes K states and so each potential is a $K x K$ table

Let us start with a chain

Each node takes K states and so each potential is a $K x K$ table

Let us consider to infer the marginal of a node x_{n}

Let us start with a chain

Each node takes K states and so each potential is a $K x K$ table

Let us consider to infer the marginal of a node x_{n}

$$
p\left(x_{n}\right)=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x})
$$

Let us start with a chain

Each node takes K states and so each potential is a $K x K$ table

Let us consider to infer the marginal of a node x_{n}

$$
p\left(x_{n}\right)=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x}) \quad \text { How much cost? }
$$

Let us start with a chain

Each node takes K states and so each potential is a $K x K$ table

Let us consider to infer the marginal of a node x_{n}

$$
p\left(x_{n}\right)=\sum_{x_{1}} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_{N}} p(\mathbf{x}) \quad \text { How much cost? }
$$

Let us start with a chain

$$
p(\mathbf{x})=\frac{1}{Z} \psi_{1,2}\left(x_{1}, x_{2}\right) \psi_{2,3}\left(x_{2}, x_{3}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

How to reduce the cost?
Key observations: many terms are repeated in the calculation, so we can use the distributive law to save products and sums

$$
a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}+a_{2} b_{2}=a_{1}\left(b_{1}+b_{2}\right)+a_{2}\left(b_{1}+b_{2}\right)=\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)
$$

Let us start with a chain

$$
\begin{aligned}
& p\left(x_{n}\right)=\frac{1}{Z} \\
& \underbrace{}_{\mu_{\beta_{3}\left(x_{n}\right)}^{\left[\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \cdots\left[\sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right]\right] \cdots\right]}} \underbrace{[\sum_{x_{n+1}} \psi_{n, n+1}(\underbrace{}_{x_{n},} x_{n+1}) \cdots \sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)] \cdots]}_{\mu_{\alpha}\left(x_{n}\right)}
\end{aligned}
$$

Let us start with a chain

$p\left(x_{n}\right)=\frac{1}{Z}$

$$
\underbrace{\left[\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \cdots\left[\sum_{x_{2}} \psi_{2,3}\left(x_{2}, x_{3}\right)\left[\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)\right]\right] \cdots\right]}_{\mu_{\alpha}\left(x_{n}\right)}
$$

$$
\underbrace{\left[\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \cdots\left[\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]}_{\mu_{\beta}\left(x_{n}\right)}
$$

Recursively,

$$
\begin{aligned}
\mu_{\alpha}\left(x_{n}\right) & =\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\left[\sum_{x_{n-2}} \cdots\right] \\
& =\sum \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \mu_{\alpha}\left(x_{n-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mu_{\beta}\left(x_{n}\right) & =\sum_{x_{n+1}} \psi_{n+1, n}\left(x_{n+1}, x_{n}\right)\left[\sum_{x_{n+2}} \cdots\right] \\
& =\sum_{n+1, n}\left(x_{n+1}, x_{n}\right) \mu_{\beta}\left(x_{n+1}\right)
\end{aligned}
$$

Initial message

$$
\mu_{\alpha}\left(x_{2}\right)=\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right) \quad \mu_{\beta}\left(x_{N-1}\right)=\sum_{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

$$
p\left(x_{n}\right)=\frac{1}{Z} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

Question: What is Z? $\quad Z=\sum_{x_{n}} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)$

Summary: inference on a chain

- To compute local marginals:
- Compute and store all forward messages, $\mu_{\alpha}\left(x_{n}\right)$
- Compute and store all backward messages, $\mu_{\beta}\left(x_{n}\right)$
- Compute Z at any node x_{m}
- Compute

$$
p\left(x_{n}\right)=\frac{1}{Z} \mu_{\alpha}\left(x_{n}\right) \mu_{\beta}\left(x_{n}\right)
$$

for all variables required
What is the cost? $O\left(N K^{2}\right)$

Question: how to infer the marginal of two neighboring variables?

Let us generalize the idea to trees

Tree-structured MRF

Tree-structured Bayesian network

Why trees: tree structures can guarantee exact inference (we will see it later)

Factor graphs - bipartite graphs

$$
p(\mathbf{x})=\prod_{s} f_{s}\left(\mathbf{x}_{s}\right)
$$

Factor graphs - multiple choices

$\begin{aligned} p(\mathbf{x})= & p\left(x_{1}\right) p\left(x_{2}\right) \\ & p\left(x_{3} \mid x_{1}, x_{2}\right)\end{aligned}$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)= \\
& \quad p\left(x_{1}\right) p\left(x_{2}\right) p\left({ }_{3} \mid x_{1}, x_{2}\right)
\end{aligned}
$$

$$
f_{a}\left(x_{1}\right)=p\left(x_{1}\right)
$$

$$
f_{b}\left(x_{2}\right)=p\left(x_{2}\right)
$$

$$
f_{c}\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{3} \mid x_{1}, x_{2}\right)
$$

Factor graphs for undirected graphs

$\psi\left(x_{1}, x_{2}, x_{3}\right)$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right) \\
& \quad=\quad \psi\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{a}\left(x_{1}, x_{2}, x_{3}\right) f_{b}\left(x_{2}, x_{3}\right) \\
& \quad=\psi\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Overview: The Sum-Product algorithm

- Objective:
- efficient, exact inference to find marginals
- When several marginals are required, allow computations to be shared

Key idea: Distributive Law
$a_{1} b_{1}+a_{1} b_{2}+a_{2} b_{1}+a_{2} b_{2}=a_{1}\left(b_{1}+b_{2}\right)+a_{2}\left(b_{1}+b_{2}\right)=\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)$

The Sum-Product algorithm

Given a tree-structured graphical model

ne(x): factor nodes that are

$$
p(x)=\sum_{\mathbf{x} \backslash x} p(\mathbf{x})
$$ neighbors of x

X_{s} : variables in the subtree that

$$
p(\mathbf{x})=\prod_{s \in \operatorname{ne}(x)} F_{s}\left(x, X_{s}\right)
$$

connect to x via the factor node
f_{s}

The Sum-Product algorithm

$$
\begin{array}{rlr}
p(x) & =\prod_{s \in \operatorname{ne}(x)}\left[\sum_{X_{s}} F_{s}\left(x, X_{s}\right)\right] \quad \text { Why this is true? } \\
& =\prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x) . & \mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right)
\end{array}
$$

The Sum-Product algorithm

$$
\begin{array}{rlr}
p(x) & =\prod_{s \in \operatorname{ne}(x)}\left[\sum_{X_{s}} F_{s}\left(x, X_{s}\right)\right] \quad \text { Why this is true? } \\
& =\prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x) . & \mu_{f_{s} \rightarrow x}(x) \equiv \sum_{X_{s}} F_{s}\left(x, X_{s}\right)
\end{array}
$$

The Sum-Product algorithm

The Sum-Product algorithm

The Sum-Product algorithm

The Sum-Product algorithm

Very similar to how we compute $p(x)$, but with a small difference

The Sum-Product algorithm

$$
G_{m}\left(x_{m}, X_{s m}\right)
$$

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \equiv \sum_{X_{s m}} G_{m}\left(x_{m}, X_{s m}\right)=\sum_{X_{s m}} \prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} F_{l}\left(x_{m}, X_{m l}\right)
$$

$$
=\prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

The Sum-Product algorithm

- Now we have two message passing rules
\square From a factor node to a variable node

$$
\mu_{f_{s} \rightarrow x}(x)=\sum_{x_{1}} \cdots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
$$

\square From a variable node to a factor node

$$
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)=\prod_{l \in \operatorname{ne}\left(x_{m}\right) \backslash f_{s}} \mu_{f_{l} \rightarrow x_{m}}\left(x_{m}\right)
$$

Alternately pass messages!

The Sum-Product algorithm

- Initial messages on the leaves

The Sum-Product algorithm

- How to conduct the order of message passing?

1. Pick an arbitrary node as the root
2. Compute and propagate messages from the leaf nodes to the root, and store received messages at every node
3. Compute and propagate messages from the root the leaf nodes, storing the messages at every node

The Sum-Product algorithm

- After the message passing done, how to compute the marginals?

$$
\begin{aligned}
p(x) & =\prod_{s \in \operatorname{ne}(x)}\left[\sum_{X_{s}} F_{s}\left(x, X_{s}\right)\right] \\
& =\prod_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)
\end{aligned}
$$

Just multiple the received messages of the variable, and normalize as necessary!

The Sum-Product algorithm

- Why do we need normalization
- Undirected graphical models (MRF)

$$
p(\mathbf{x})=\frac{1}{Z} \prod_{C} \psi_{C}\left(\mathbf{x}_{C}\right) \quad \text { The potentials are not normalization }
$$

- Some nodes have been observed

We actually fix the value of the observed nodes in message computation

The Sum-Product algorithm: example

The sum-product algorithm: example

$$
\begin{aligned}
& \mu_{x_{1} \rightarrow f_{a}}\left(x_{1}\right)=1 \\
& \mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}} f_{a}\left(x_{1}, x_{2}\right) \\
& \mu_{x_{4} \rightarrow f_{c}}\left(x_{4}\right)=1 \\
& \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{4}} f_{c}\left(x_{2}, x_{4}\right) \\
& \mu_{x_{2} \rightarrow f_{b}}\left(x_{2}\right)=\mu_{f_{a} \rightarrow x_{2}}\left(x_{2}\right) \mu_{f_{c} \rightarrow x_{2}}\left(x_{2}\right) \\
& \mu_{f_{b} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{2}} f_{b}\left(x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow f_{b}}
\end{aligned}
$$

The sum-product algorithm: example

The sum-product algorithm: example

The sum-product algorithm: implementation

\square Step 1. Pick a root node x and arrange the graph into a tree
\square Step 2.
For each child factor f of x

$$
\mu_{f \rightarrow x}(x)=\operatorname{Collect}(f, x)
$$

\square Step 3.
For each child factor f of x Distribute (x, f)

The sum-product algorithm: implementation

Collect (x, f)
if x is a leaf, return 1
for each child factor f_{j} of x (note: not including f)

$$
\mu_{f_{j} \rightarrow x}(x)=\operatorname{Collect}\left(f_{j}, x\right)
$$

return $\prod_{j} \mu_{f_{j} \rightarrow x}(x)$

Collect (f, x)
if f is a leaf, return $f(x)$
for each child variable x_{j} of f (note: not including x)

$$
\begin{aligned}
& \quad \mu_{x_{j} \rightarrow f}(x)=\operatorname{Collect}\left(\mathrm{x}_{j}, f\right) \\
& \text { return } \sum_{x_{1}, \ldots, x_{M}} f\left(x, x_{1}, \ldots, x_{M}\right) \prod_{j} \mu_{x_{j} \rightarrow f}(x)
\end{aligned}
$$

The sum-product algorithm: implementation

Distribute (x, f)
compute and store $\mu_{x \rightarrow f}(x)$ directly
if f is a leaf, return
for each child variable x_{j} of f (note: not including x) Distribute (f, x_{j})

Distribute (f, x)
compute and store $\mu_{f \rightarrow x}(x)$ directly
if x is a leaf, return
for each child factor f_{j} of x (note: not including f)
Distribute $\left(x, f_{j}\right)$

What about general graphs?

- In general graphs that contain cycles, sum-product cannot guarantee exact inference
- The exact inference on general graphs is called Junction tree algorithm
- It first merges factors and turns the initial graph into a junction tree and then run a sum-product-like algorithm
- Intractable on graphs with large factors

Loopy belief propagation (LBP)

- We can still apply sum-product on general graphs as an approximate inference algorithm
- First initialize all the messages with 1 (or random)
- Run sum-product (with any message passing order) repeatedly until convergence (not guaranteed!)
- Often works really well, sometimes totally fail
- Striking connections between LBP and decoding (turbo codes) in information theory

The max-sum algorithm

- A simple variant of the sum-product algorithm
- Objective: an efficient algorithm to find
- The value $\boldsymbol{x}_{\text {max }}$ that maximizes $p(\boldsymbol{x})$
- The value of $p\left(\boldsymbol{x}_{\max }\right)$
- Very important in many tasks, e.g., structure prediction, decision,

The max-sum algorithm

- In general, maximum marginals \neq joint maximum

Maximizing over a chain

$$
\begin{aligned}
& p\left(\mathbf{x}^{\max }\right)=\max _{\mathbf{x}} p(\mathbf{x})=\max _{x_{1}} \ldots \max _{x_{M}} p(\mathbf{x}) \\
& \quad=\frac{1}{Z} \max _{x_{1}} \cdots \max _{x_{N}}\left[\psi_{1,2}\left(x_{1}, x_{2}\right) \cdots \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \\
& \quad=\frac{1}{Z} \max _{x_{1}}\left[\max _{x_{2}}\left[\psi_{1,2}\left(x_{1}, x_{2}\right)\left[\cdots \max _{x_{N}} \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)\right] \cdots\right]\right]
\end{aligned}
$$

Observation

- We still have the distributive law

$$
\max (a b, a c)=a \max (b, c)
$$

So we can simply replace sum by max in the sumproduct algorithm!

Observation

- Generalizes to tree-structured factor graph

$$
\max _{\mathbf{x}} p(\mathbf{x})=\max _{x_{n}} \prod_{f_{s} \in \operatorname{ne}\left(x_{n}\right)} \max _{X_{s}} f_{s}\left(x_{n}, X_{s}\right)
$$

Observation

- To enhance numerical stability, we take log

$$
\ln \left(\max _{\mathbf{x}} p(\mathbf{x})\right)=\max _{\mathbf{x}} \ln p(\mathbf{x}) .
$$

The distributive law still holds

$$
\max (a+b, a+c)=a+\max (b, c)
$$

So we only need to replace sum by max, product by sum in the sum-product algorithm

The max-sum algorithm

Initialization message (leaf nodes)

$$
\mu_{x \rightarrow f}(x)=0 \quad \mu_{f \rightarrow x}(x)=\ln f(x)
$$

Message passing (recursively)

$$
\begin{aligned}
& \mu_{f \rightarrow x}(x)=\max _{x_{1}, \ldots, x_{M}}\left[\ln f\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m \in \operatorname{ne}\left(f_{s}\right) \backslash x} \mu_{x_{m} \rightarrow f}\left(x_{m}\right)\right] \\
& \mu_{x \rightarrow f}(x)=\sum_{l \in \operatorname{ne}(x) \backslash f} \mu_{f_{l} \rightarrow x}(x)
\end{aligned}
$$

The max-sum algorithm

- First pass from leaves to the root and the second pass from the root to leaves
- Termination

$$
\begin{aligned}
p^{\max } & =\max _{x}\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right] \\
x^{\max } & =\underset{x}{\arg \max }\left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_{s} \rightarrow x}(x)\right]
\end{aligned}
$$

The max-sum algorithm

- How to find the global configuration $\boldsymbol{x}_{\text {max }}$ that gives the maximum probability?
- We need to store a quantity to tell us how to trace back to the variable value that maximizes the previous sub-problem (back-tracking)
- So each message can contain two component: (1) the max-sum value (2) the variable value that gives the max-sum (i.e., argmax)

The max-sum algorithm

The max-sum algorithm

- This is essentially dynamic programming
- For hidden Markov models, this is known as Viterbi algorithm

What you need to know

- Factor graph definition
- Sum-product algorithm
- Message-passing
- Accurate for tree-structured graphs, not guaranteed to be accurate for graphs with cycles
- Loopy belief propagation
- Max-product algorithm, max-sum
- Be able to implement the algorithms!

