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1 Jeffreys Priors

Recall from last time that the Jeffreys prior is defined in terms of the Fisher information:

πJ(θ) ∝ I(θ)
1
2 (1)

where the Fisher information I(θ) is given by

I(θ) = −Eθ

[
d2 log p(X|θ)

dθ2

]
(2)

Example 1. Suppose X is binomially distributed:

X ∼ Bin(n, θ), 0 ≤ θ ≤ 1

p(x|θ) =
(

n

x

)
θx(1− θ)n−x

We want to choose a prior π(θ) that is invariant under reparameterizations. We saw previously that a flat
prior π(θ) ∝ 1 does not have this property. Let’s derive a Jeffreys prior for θ. Ignoring terms that don’t
depend on θ, we have

log p(x|θ) = x log θ + (n− x) log(1− θ)
d

dθ
log p(x|θ) =

x

θ
− n− x

1− θ

d2

dθ2
log p(x|θ) = − x

θ2
− n− x

(1− θ)2

Since EθX = nθ under Bin(n, θ), we have

I(θ) = −Eθ

[
d2 log p(x|θ)

dθ2

]
=

nθ

θ2
+

n− nθ

(1− θ)2

=
n

θ
+

n

1− θ

=
n

θ(1− θ)

1
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Figure 1: Jeffreys prior and flat prior densities

Therefore πJ(θ) = I(θ)
1
2 ∝ θ−

1
2 (1− θ)−

1
2 , which is the form of a Beta( 1

2 , 1
2 ) density.

Figure 1 compares the prior density πJ(θ) with that for a flat prior (which is equivalent to a Beta(1, 1)
distribution).

Note that in this case the prior is inversely proportional to the standard deviation. Why does this make
sense?

We see that the data has the least effect on the posterior when the true θ = 1
2 , and has the greatest effect near

the extremes, θ = 0 or 1. The Jeffreys prior compensates for this by placing more mass near the extremes
of the range, where the data has the strongest effect. We could get the same effect by (for example) setting
π(θ) ∝ 1

Var(θ) instead of π(θ) ∝ 1

Var(θ)
1
2
. However, the former prior is not invariant under reparameterization,

as we would prefer.

1.1 Jeffreys priors and conjugacy

Jeffreys priors are widely used in Bayesian analysis. In general, they are not conjugate priors; the fact that
we ended up with a conjugate Beta prior for the binomial example above is just a lucky coincidence. For
example, with a Gaussian model X ∼ N (µ, σ2) we showed in the last lecture that

πJ(µ) ∝ 1

πJ(σ) ∝ 1
σ

which do not look anything like a Gaussian or an inverse gamma, respectively.

However, it can be shown that Jeffreys priors are limits of conjugate prior densities. For example, a Gaussian
density N (µ0, σ

2
0) approaches a flat prior as σ0 →∞, while the inverse gamma σ ∝ σ−(a+1)e−b/σ → 1/σ as

a, b → 0.
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1.2 Limitations of Jeffreys priors

Jeffreys priors work well for single parameter models, but not for models with multidimensional parameters.
By analogy with the one-dimensional case, one might construct a naive Jeffreys prior as the joint density:

πJ(θ) = |I(θ)|1/2

where the Fisher information matrix is given by:

I(θ)ij = −Eθ

[
∂2 log p(X|θ)

∂θi∂θj

]

Let’s see what happens when we apply a Jeffreys prior for θ to a multivariate Gaussian location model.
Suppose X ∼ N(θ, I) for some p-dimensional random vector X, and we are interested in performing inference
on ||θ||2. In this case the Jeffreys prior for θ is flat. It turns out that the posterior has the form of a
noncentral χ2 distribution with p degrees of freedom. The posterior mean given one observation of X is
E(||θ||2|X) = ||X||2 + p. This is not a good estimate because it adds p to the square of the norm of X
whereas we might normally want to shrink our estimate towards zero. By contrast, the minimum variance
frequentist estimate of ||θ||2 is ||X||2 − p.

Intuitively, a multidimensional flat prior carries a lot of information about the expected value of a parameter.
Since most of the mass of a flat prior distribution is in a shell at infinite distance, it says that we expect
the value of θ to lie at some extreme distance from the origin, which causes our estimate of the norm to be
pushed further away from zero.

Example 2. Consider a naive Jeffreys prior for a two-parameter Gaussian: X ∼ N(µ, σ2), and let θ =(
µ
σ2

)
. We take derivatives to compute the Fisher information matrix:

I(θ) = −Eθ

(
1

σ2
2(X−µ)

σ2
2(X−µ)

σ2
3

σ4 (X − µ)2 − 1
σ2

)

=
(

1
σ2 0
0 1

σ2

)

since Eθ(X − µ) = 0 and Eθ(X − µ)2 = σ2. Therefore

πJ(θ) = |I(θ)|1/2 ∝ 1
σ2

.

Unfortunately, this prior turns out to have poor convergence properties.

Jeffreys himself proposed using the prior πJ(θ) ∝ 1
σ , which is a product of the separate priors for µ and

σ. This prior is better motivated and gives better results as well. It also turns out to be the same as the
reference prior, which we will discuss next.

2 Reference Priors

Reference priors were proposed by Jose Bernardo in a 1979 paper, and further developed by Jim Berger and
others from the 1980’s through the present. They are credited with bringing about an “objective Bayesian
renaissance”; an annual conference is now devoted to the objective Bayesian approach.



4 Lecture 7: Jeffreys Priors and Reference Priors

The idea behind reference priors is to formalize what exactly we mean by an “uninformative prior”: it
is a function that maximizes some measure of distance or divergence between the posterior and prior, as
data observations are made. Any of several possible divergence measures can be chosen, for example the
Kullback-Leibler divergence or the Hellinger distance. By maximizing the divergence, we allow the data to
have the maximum effect on the posterior estimates.

For one dimensional parameters, it will turn out that reference priors and Jeffreys priors are equivalent. For
multidimensional parameters, they differ.

One might ask, how can we choose a prior to maximize the divergence between the posterior and prior,
without having seen the data first? Reference priors handle this by taking the expectation of the divergence,
given a model distribution for the data. This sounds superficially like a frequentist approach - basing inference
on “imagined” data. But once the prior is chosen based on some model, inference proceeds in a standard
Bayesian fashion. (This contrasts with the frequentist approach, which continues to deal with imagined data
even after seeing the real data!)

2.1 Reference priors and mutual information

Consider an inference problem in which we have data X parameterized by Θ, with sufficient statistic T =
T (X). We want to find a reference prior p(θ) that maximizes its K-L divergence from the posterior p(θ|t),
averaged over the distribution of T . This K-L divergence is∫

p(θ|t) log
p(θ|t)
p(θ)

dθ

Its expectation over the distribution of T can be written:

I(Θ, T ) =
∫

p(t)
∫

p(θ|t) log
p(θ|t)
p(θ)

dθdt

=
∫ ∫

p(θ, t) log
p(θ, t)

p(θ)p(t)
dθdt

This may be recognized as the mutual information between θ and t. Therefore, choosing a reference prior
involves finding p∗(θ) that maximizes the mutual information:

p∗(θ) = arg max
p(θ)

I(Θ, T ) (3)

We note that defining reference priors in terms of mutual information implies that they are invariant under
reparameterization, since the mutual information itself is invariant.

Solving equation (3) is a problem in the calculus of variations. In the next lecture we’ll derive reference
priors for a variety of common situations.


