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3.3 Stochastic Gradient Nosé-Hoover Thermostat . . . . . . . . . . . . . . 44
3.4 Numerical Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



iv

Page

3.4.1 Inferring a Gaussian Distribution . . . . . . . . . . . . . . . . . 48
3.4.2 Machine Learning Applications . . . . . . . . . . . . . . . . . . 51

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 QUASI-RELIABLE ESTIMATES OF EFFECTIVE SAMPLE SIZE . . . . . 58
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Forward Transfer Operator . . . . . . . . . . . . . . . . . . . . . 61
4.1.2 Error in Estimates of Integrated Autocorrelation Time . . . . . 61

4.2 The Longest Autocorrelation Time . . . . . . . . . . . . . . . . . . . . 62
4.2.1 Definition of τmax . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Discretization of State Space . . . . . . . . . . . . . . . . . . . . 65
4.2.3 A Method for Estimating τmax . . . . . . . . . . . . . . . . . . . 66

4.3 Better Estimates of Integrated Autocorrelation Time . . . . . . . . . . 67
4.3.1 An Optimal Lag Window . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Form of Lag Window . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Optimal Damping Coefficient of Langevin Dynamics . . . . . . . . . . . 68
4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 A Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . 71
4.5.2 An L-Shaped Mixture of Two Gaussian Distributions . . . . . . 75
4.5.3 A One-node Neural Network . . . . . . . . . . . . . . . . . . . . 76
4.5.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 FURTHER WORK ON SAMPLING METHODS . . . . . . . . . . . . . . . 82
5.1 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.2 Lowering the Energy Barrier . . . . . . . . . . . . . . . . . . . . 84
5.1.3 Smoothing the Potential Energy Function . . . . . . . . . . . . 87

5.2 Two-stage Simplified Takahashi-Imada Method . . . . . . . . . . . . . 90
5.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



v

LIST OF TABLES

Table Page

2.1 Effective sample size per 1000 force evaluations for Hamiltonian HMC . . . 28

2.2 Effective sample size per 1000 force evaluations for isokinetic HMC . . . . 29

3.1 The mean and the standard deviation of the error between true values and
the estimated values for the four quantities of interest. All numbers in the
table are to be scaled by 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 The weights of the linear combination of the three basis functions with a1

normalized to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 The weights of the linear combination of the θ1 and θ2 with a1 normalized
to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 The acceptance probability and the crossing probability in a given step for
the method of changing variables in the 1-D double-well potential problem.
P is the acceptance probability, ε is the crossing probability, ∆t is the step
size, HMCcv is HMC with change of variables . . . . . . . . . . . . . . . . 86



vi

LIST OF FIGURES

Figure Page

2.1 Acceptance probability vs. the minimum mass for the variable mass method
in the double-well potential problem. . . . . . . . . . . . . . . . . . . . . . 32

2.2 Autocorrelation time vs. the minimum mass for the variable mass method
in the double-well potential problem. . . . . . . . . . . . . . . . . . . . . . 33

3.1 The marginal density of µ and γ recovered by SGNHT and SGHMC in
the Gaussian problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The testing error and its standard deviation for the MNIST dataset for
various ∆t2 and A∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 The testing RMSE and its standard deviation for the Movielens1M dataset
for various ∆t2 and A∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 The testing RMSE and its standard deviation for the Netflix dataset for
various ∆t2 and A∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 The testing perplexity and its standard deviation for the ICML dataset
for various ∆t2 and A∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Example trajectory for the L shape mixture of Gaussians distribution. . . 63

4.2 The estimated autocorrelation time and the effective sample size vs. the
number of samples in the L shape mixture of Gaussians problem. . . . . . 63

4.3 ∆tωτ
(k)
max vs. A/ω for k = 1, 2, 3, 4, ∆t = 10−6 and ω = 1. . . . . . . . . . . 72

4.4 The estimated τmax in the 1-D Gaussian problem. . . . . . . . . . . . . . . 74

4.5 Estimated τ and τmax by the proposed lag window and acor’s lag window
for the 1-D standard Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 The resulting prediction and the trajectories of function values in the one-
node neural network problem. . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Autocorrelation times, effective sample sizes, and the mean squared error
for the one-node neural network model. . . . . . . . . . . . . . . . . . . . . 78

4.8 The autocorrelation times, the effective sample sizes, and the training/testing
error in the logistic regression problem. . . . . . . . . . . . . . . . . . . . . 80



vii

Figure Page

5.1 The graphs of U(θ) (a) and U ′(ξ) (b) in the 1-D double-well potential
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 The trajectory of the samples for HMC (left) and HMC with change of
variables (right). The x-axis is the number of samples and the y-axis is
the position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 The graphs of U(θ) (a) and U ′(ξ) (b) in the 1-D RVM problem. . . . . . . 88

5.4 Histogram of the number of samples in the region near 0. (a) The target
distribution, (b) HMC, and (c) HMCcv . . . . . . . . . . . . . . . . . . . . 89

5.5 Acceptance probability vs. dimensionality for the two-stage simplified Takahashi-
Imada method (TI2) and two other methods in the N -dimensional Gaus-
sian problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Acceptance probability vs. dimensionality for the two-stage simplified Takahashi-
Imada method (TI2) and two other methods in the double-well potential
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



viii

ABSTRACT

Fang, Youhan PhD, Purdue University, May 2018. Efficient Markov Chain Monte
Carlo Methods. Major Professor: Robert D. Skeel.

Generating random samples from a prescribed distribution is one of the most

important and challenging problems in machine learning, Bayesian statistics, and the

simulation of materials. Markov Chain Monte Carlo (MCMC) methods are usually

the required tool for this task, if the desired distribution is known only up to a

multiplicative constant. Samples produced by an MCMC method are real values in

N -dimensional space, called the configuration space. The distribution of such samples

converges to the target distribution in the limit. However, existing MCMC methods

still face many challenges that are not well resolved. Difficulties for sampling by

using MCMC methods include, but not exclusively, dealing with high dimensional

and multimodal problems, high computation cost due to extremely large datasets

in Bayesian machine learning models, and lack of reliable indicators for detecting

convergence and measuring the accuracy of sampling. This dissertation focuses on

new theory and methodology for efficient MCMC methods that aim to overcome the

aforementioned difficulties.

One contribution of this dissertation is generalizations of hybrid Monte Carlo

(HMC). An HMC method combines a discretized dynamical system in an extended

space, called the state space, and an acceptance test based on the Metropolis crite-

rion. The discretized dynamical system used in HMC is volume preserving—meaning

that in the state space, the absolute Jacobian of a map from one point on the trajec-

tory to another is 1. Volume preservation is, however, not necessary for the general

purpose of sampling. A general theory allowing the use of non-volume preserving

dynamics for proposing MCMC moves is proposed. Examples including isokinetic
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dynamics and variable mass Hamiltonian dynamics with an explicit integrator, are

all designed with fewer restrictions based on the general theory. Experiments show

improvement in efficiency for sampling high dimensional multimodal problems. A

second contribution is stochastic gradient samplers with reduced bias. An in-depth

analysis of the noise introduced by the stochastic gradient is provided. Two methods

to reduce the bias in the distribution of samples are proposed. One is to correct the

dynamics by using an estimated noise based on subsampled data, and the other is to

introduce additional variables and corresponding dynamics to adaptively reduce the

bias. Extensive experiments show that both methods outperform existing methods.

A third contribution is quasi-reliable estimates of effective sample size. Proposed is

a more reliable indicator—the longest integrated autocorrelation time over all func-

tions in the state space—for detecting the convergence and measuring the accuracy of

MCMC methods. The superiority of the new indicator is supported by experiments

on both synthetic and real problems.

Minor contributions include a general framework of changing variables, and a nu-

merical integrator for the Hamiltonian dynamics with fourth order accuracy. The idea

of changing variables is to transform the potential energy function as a function of the

original variable to a function of the new variable, such that undesired properties can

be removed. Two examples are provided and preliminary experimental results are

obtained for supporting this idea. The fourth order integrator is constructed by com-

bining the idea of the simplified Takahashi-Imada method and a two-stage Hessian-

based integrator. The proposed method, called two-stage simplified Takahashi-Imada

method, shows outstanding performance over existing methods in high-dimensional

sampling problems.
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1 INTRODUCTION

One of the most important and challenging problems in machine learning, Bayesian

statistics, and the simulation of materials is generating random samples from a pre-

scribed distribution efficiently. In machine learning, for example, the size of data

used for training models is of enormous size nowadays in the age of Big Data. The

inference of probabilistic models, especially Bayesian models, requires extensive com-

putation scaling up with the size of datasets. For this reason, maximum likelihood

or maximum a posteriori estimations, which require only optimization procedures,

are much more popular than full Bayesian treatments, which are based on sufficient

number of samples of the posterior distribution. As is widely recognized, however,

Bayesian treatments are in general more robust and more informative —providing

the uncertainty on top of the estimates. Therefore, the usefulness and popularity of

Bayesian models depend exclusively on algorithms that can generate random samples

from the posterior distribution with comparatively low computation cost.

In many practical problems, the desired distribution is only known up to a mul-

tiplicative constant. In such cases, Markov Chain Monte Carlo (MCMC) methods,

originally proposed by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (MR-

RTT) in their landmark paper published in 1953 [1], are generally required. MCMC

methods can generate unbiased samples by using a conditional acceptance criterion,

usually called the Metropolis step. However, if based on random walk proposals,

traditional MCMC methods generate highly correlated samples. Numerous steps are

required to produce sufficiently independent samples; hence a great deal of computa-

tion power is wasted.

Hybrid Monte Carlo (HMC) methods, introduced in 1987 [2] and generalized in

1991 [3], combine dynamical systems with the Metropolis step and reduce correlation

between successive samples. The dynamical systems are constructed to sample exactly
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from the target distribution. They also use information from the gradient of the log

density to reduce the random walk effect. The Metropolis step eliminates the bias

due to discretization error introduced by the numerical integration of the dynamical

system.

The dynamical system used in HMC is the Hamiltonian dynamics which has some

special properties, such as “preserving volume”—meaning that the absolute Jacobian

of a map from a point on the trajectory to another is 1. Such a special property,

however, is unnecessary for the general purpose of sampling. In principle, any system

of ordinary differential equations (ODEs) can be used for proposing new samples, as

long as some certain conditions are satisfied. If the idea of HMC is extended to a

more general framework, there can be many more possibilities.

There can be dynamical systems that are easier to transit from one mode to

another in multimodal problems or that are more numerically stable. Thus, more

general methods that use new dynamics and can be justified theoretically are needed.

An outstanding problem of dynamics based samplers is the potentially high com-

putation cost in evaluating the gradient. In machine learning, for example, one eval-

uation of the gradient can be extremely expensive if the dataset is large. Methods

based on stochastic gradients [4] have been very successful for reducing the cost of

evaluating the gradient. A stochastic gradient is obtained by subsampling the data

to approximate the true gradient. This idea is used in sampling methods based

on stochastic differential equations (SDEs) such as Brownian dynamics [4, 5] and

Langevin dynamics [6].

The cost of using stochastic gradients instead of full gradients is the introduction

of distortion of the stationary distribution. The distortion is not harmless if not

controlled. Therefore, it is of immense importance to find new methods that can

reduce the distortion and, at the same time, keep the same computational efficiency

as those naively using stochastic gradients.

Another important problem is to detect convergence and evaluate the accuracy of

MCMC methods. Currently, this relies on computing the integrated autocorrelation
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time (IAcT) of some particular functions and obtain the effective sample size (ESS) [7,

8]. The ESS is a quantity denoting the number of equivalent independent samples for

a collection of dependent samples generated by the Markov chain in terms of some

particular function whose expectation is to be estimated.

A small ESS implies the danger of incomplete sampling. Without sufficient sam-

ples, the estimated integrated autocorrelation time of some particular functions can-

not be trusted. Of course, without additional information, it is impossible to find

completely reliable method for detecting convergence. Nonetheless, by weakening the

requirement—only considering apparent good coverage of state space—it is possible

to define and estimate a more reliable quantity than the ordinary integrated autocor-

relation time, to guarantee thorough sampling of those modes that have already been

visited and to minimize the risk of missing an opening to yet another mode.

There are some other possibilities of improving the efficiency of sampling, under

existing frameworks. For example [9], instead of designing new dynamical systems,

consider changing the landscape of the potential energy function to avoid some diffi-

culties, such as high energy barrier, in the original space.

Another example is to construct numerical integrators with higher order accuracy.

Though simple, the classic leapfrog method has only order 2 accuracy. Higher order

accuracy is desired without dramatically increasing the computation cost.

The aim of this dissertation is to propose methods and theory for solving afore-

mentioned problems. Specifically, driven by desire to construct more efficient MCMC

methods, dynamics-inspired methods more general than those based on Hamiltonian

dynamics are sought. Limited practical success is achieved and interesting theoret-

ical results are obtained. A different approach based on stochastic gradients is also

pursued, again with some practical success. Doubts remain concerning the optimal

choice of parameters and the actual efficiency of these methods, leading to a study

of spectral gap and IAcT. A few additional attempts are made for improving the

efficiency of samplers, and interesting results are obtained, suggesting new research

directions.
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To make the dissertation more readable, mathematical formulations are usually

separated in the texts from motivation, description and discussion. In the remainder

of Chap. 1, a brief introduction to the necessary mathematical background is pre-

sented in Sec. 1.1, and explicit statements of the challenges and contributions of the

work are presented in Sec. 1.2.

1.1 Markov Chain Monte Carlo Methods

The goal of sampling is to generate identically distributed random samples from

a target probability distribution. The probability density function can be written as

ρ(θ) =
1

Z
exp(−U(θ)), θ = [θ1, θ2, . . . , θN ],

where U is called the potential energy function, and Z is the normalizing constant

usually unknown. In practical problems, U(θ) is usually high dimensional and has a

non-trivial landscape that may contain many local minima.

The purpose of generating identically distributed samples from the target distri-

bution is to estimate some quantity of interest E[u(θ)], which is the expectation for

specified function u(θ). Suppose the total number of samples is T , a quantity of

interest is approximated by:

E[u(θ)] ≈ û =
1

T

T−1∑
i=0

u(θi). (1.1)

One example of the potential energy function is the Lennard-Jones potential,

which is suitable for modeling interactions between the atoms of a noble gas. The

pairwise potential function is

u(rij) = 4ε((
σ

rij
)12 − (

σ

rij
)6),

where ε is the depth of the potential well, σ is the finite distance at which the inter-

particle potential is zero, and rij is the distance between two particles, namely

rij =
√

(θi1 − θj1)2 + (θi2 − θj2)2 + (θi3 − θj3)2.
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The potential energy function for the entire system is

U(θ) =
∑
i,j,i<j

u(rij).

Note that energy units are chosen to eliminate the need for a temperature parameter

to be consistent with statistical models.

In machine learning, the potential energy function is usually constructed from the

likelihood function. In supervised learning, a data set consists of n examples. Each

is a 2-tuple (x, y), where x represents the features of the observed example, and y is

usually a scalar that represents the target value of the example (e.g., its label, output,

activity, etc.). In unsupervised learning, each example has only the features x. To

make the notation general, in this dissertation, the data example is represented only

by x, while y appears only in specific supervised learning problems.

Let X denote the whole collection of data examples and ρ(z) be the probability

density function of random variables z. The general likelihood function is

ρ(X|θ) =
n∏
i=1

ρ(xi|θ).

For Bayesian models, there is a prior ρ0(θ). ρ(θ|X) denotes the posterior distribution

of θ given the data. The Bayesian rule gives

ρ(θ|X) =
ρ(X|θ)ρ0(θ)∫
ρ(X|θ)ρ0(θ)dθ

.

The denominator is the normalization constant equal to ρ(X), which is also called

the model evidence. The posterior probability density ρ(θ|X) can be also written as

1

Z
exp(−U(θ)), U(θ) = − log ρ(X|θ)− log ρ0(θ),

with Z = ρ(X).

One particular example in supervised learning is logistic regression [10], in which

the logistic function maps a linear combination of features x to a probability:

σ(θ; x) = 1/(1 + exp(−θTx)).
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The potential energy function is

U(θ) = β
n∑
i=1

(yi log(σi) + (1− yi) log(1− σi)) +
1

2
α‖θ‖2 + const.,

where α and β are weight parameters, and each yi is either 1 or 0.

One may be interested in the expected value of the probability density of a new

data example x, given the training data X. This can be written as

ρ(x|X) =

∫
ρ(x|θ)ρ(θ|X)dθ.

Once one obtained the samples θi’s from the posterior distribution ρ(θ|X), the quan-

tity of interest can be estimated by

ρ(x|X) ≈ 1

T

T−1∑
i=0

ρ(x|θi).

1.1.1 The MRRTT Method

Consider a Markov chain

θ0 → θ1 → θ2 → · · · → θT .

The goal is to make the Markov chain converges to the target distribution ρ(θ), so that

when T is large enough, θi’s can be considered as identically distributed samples from

the target distribution. Such samples are not in general independent. Nonetheless,

since sampling is for estimating expectations, the degree of independence is only a

consideration in terms of efficiency instead of correctness.

Convergence requires both stationarity and ergodicity. Stationary means θi ∼

ρ(θ) ⇒ θi+1 ∼ ρ(θ). Ergodicity means that any set with positive probability is

visited by the chain almost surely [11] (Sec. II A).

The MRRTT method consists of two steps:

1. Given a sample θ, propose a move θ′.
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2. Accept the proposed move θ′ as the new sample with probability

min{1, ρ(θ′)

ρ(θ)
},

otherwise, keep θ as the new sample.

This method guarantees stationarity.

Obviously, the quality of the proposal determines the efficiency. Longer moves

and higher acceptance probabilities mean that the samples are less correlated. A

traditional MRRTT method proposes samples based on a random walk and inevitably

generates highly correlated samples.

1.1.2 The Hybrid Monte Carlo Method

HMC extends the configuration space of θ values to the phase space of values

z = [θT,pT]T, where p is called the momenta. The joint density of θ and p can be

written as ρ(θ,p) ∝ exp(−H(θ,p)) whereH(θ,p) = U(θ)+p>p/2 is the Hamiltonian.

Each pi in the momenta p follows the standard Gaussian distribution. The function

K(p) = p>p/2 is called the kinetic energy function, and the Hamiltonian is the

total energy—sum of kinetic and potential energies. The force f(θ) = −∇U(θ) is the

negative gradient of the potential energy. The Hamiltonian dynamics

dθ = pdt,

dp = f(θ)dt,

maintains a constant total energy.

Let Ψν
τ be the composition of ν numerical integrators Ψ∆t (e.g., the “leapfrog”

method) of the Hamiltonian system, namely Ψν
τ = Ψ∆t ◦Ψ∆t ◦ ...◦Ψ∆t and ∆t = τ/ν.

The HMC sampler can be described as follows:

Let θ be given.

1. Generate p from N independent standard Gaussian distribution

2. Compute z′ = Ψν
τ (z),
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3. Accept θ′ with probability

min{1, ρ(z′)

ρ(z)
}, (1.2)

and otherwise keep θ.

One of the condition for HMC to satisfy stationarity [12] is that the propagator

Ψν
τ must preserve volume, meaning that the Jacobian | det(∂Ψν

τ/∂z)| = 1.

HMC explores the energy landscape much more efficiently than random walk MC

for two reasons:

1. The Hamiltonian dynamics makes use of the information in the first order

derivative of the potential energy function, such that the trajectory can find

the region with high probability density much quicker than random walk.

2. The Hamiltonian dynamics conserves the total energy, or equivalently the joint

density of θ and p, along the trajectory, so that the acceptance probability

for large moves can still be high even there is discretization error, if proper

integrators are used.

1.1.3 Samplers Based on Stochastic Differential Equations

Another type of Markov chain samplers is based on the discretization of stochastic

differential equations (SDEs). Usually, the Metropolis step is dropped in exchange for

more efficient sampling. It is proved that there exists a modified stationary density

for discretized SDEs, which is only slightly different (depending on the discretization

step size ∆t) from the the stationary distribution of continuous SDEs [13], and, in

any case, bias due to discretization is usually dominated by statistical error. For

this reason, SDE based samplers are widely used in molecular dynamics and machine

learning. Moreover, in machine learning, such samplers are even a must, because

the Metropolis step is incompatible with the use of stochastic gradients, which is

discussed in detail later.
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The Langevin dynamics is described by the following system of SDEs:

dθ = pdt,

dp = f(θ)dt− Apdt+
√

2Adw, (1.3)

where A is a scalar and w is N independent Wiener processes. A Wiener process w

satisfies:

1. w(0) = 0 with probability 1.

2. w(t+ ∆t)− w(t) ∼ N (0,∆t) and is independent of w(s) for s ≤ t.

The stochastic term dw sometimes is informally written as N (0, dt) [6].

By rescaling time t ← At and letting A → ∞, i.e., neglecting inertia effects on

long time scales, one obtains the Brownian dynamics

dθ = f(θ)dt+
√

2dw. (1.4)

1.1.4 Stochastic Gradients

In machine learning, the gradient of the negative log likelihood function is written

as

−∇ log ρ(X|θ) = −
n∑
i=1

∇ log ρ(xi|θ).

When the size of the dataset is large, the computation cost of evaluating the gradient

can be very high. In such cases, a random subset of data xi’s is sampled from the

full data set, and an approximation of the gradient is obtained by using the subset of

data.

Specifically, as stated in Sec. 1.1, the potential energy function of a Bayesian model

is the negative logarithm of the probability density of the posterior distribution:

U(θ) = −
n∑
i=1

log ρ(xi|θ)− log ρ(θ).
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Let Ui = − log ρ(xi|θ), and rewrite U to be

U(θ) =
n∑
i=1

Ui(θ) + U0(θ),

where the term U0 representing the prior is henceforth omitted when n is large. Let

the size of the random subset be m. The stochastic gradient, ∇Ũ(θ), is written as

∇Ũ(θ) =
n∑
i=1

(1 + ri)∇Ui(θ), (1.5)

where ri are correlated random variables, each one assuming the value −1 or n/m−1.

1.1.5 Integrated Autocorrelation Time and Effective Sample Size

As given in Eq. (1.1), the quantity of interest E[u(θ)] is approximated by the

average of the function u evaluated at the samples.

The variance of the estimated quantity is given by

Var[û] =
1

T
Var[u(θ)]

(
1 + 2

T−1∑
i=1

(
1− i

T

)
C(i)

C(0)

)
,

where the autocovariances

C(i) = E[(u(θ0)− µ)(u(θi)− µ)],

with µ = E[u(θ)]. As T →∞,

Var[û] =
1

T
Var[u(θ)]τ +O(

1

T 2
),

where τ is the integrated autocorrelation time.

τ = 1 + 2
+∞∑
i=1

C(i)

C(0)
. (1.6)

Note that if the samples are independent, the variance of the expected mean

should be Var[u(θ)]/T . Therefore, the integrated autocorrelation time τ indicates the

degree of dependence among the samples. The effective sample size is defined as

ESS =
T

τ
. (1.7)

In practice, when the ESS is large enough, say > 1000, the sampling is considered

complete.
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1.2 Challenges and Contributions

In this section, challenges of MCMC methods and contributions of this dissertation

are presented.

1.2.1 Generalizations of Hybrid Monte Carlo

One of the main challenges for ordinary HMC is the metastability in multimodal

problems. The trajectory can be trapped in one of the local minima of the potential

energy function such that mixing is almost impossible in reasonable time. In addition,

the Hamiltonian dynamics is not necessarily the best choice in terms of integrator step

size, which is determined by numerical stability and accuracy considerations.

The idea is to broaden the possibilities for constructing proposals by extending

HMC to a more general framework. In this dissertation, some theoretical results,

which weaken the sufficient conditions for stationarity, are presented. Specifically,

the condition of preserving volume— the Jacobian of the map defined based on the

discretized dyanmics being 1— is removed, and reversibility is required only in the

form of a bijection rather than an involution. Using the new framework, better

dynamics can be designed with less restrictions.

Four examples that justify the theory are shown. All of the examples have im-

provement on ordinary HMC, by either crossing the energy barrier more frequently,

or being more numerically stable or accurate—meaning more independent samples

for the same computation cost.

1.2.2 Stochastic Gradient Samplers with Reduced Bias

In previous attempts [4–6] that utilize stochastic gradients for sampling, stochastic

gradients merely replace the full gradients of SDEs, such as Langevin dynamics and

Brownian dynamics. Although reducing the computation cost significantly, this idea

makes the bias of the stationary distribution too large to be tolerated.
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An in-depth analysis on the distortion caused by stochastic gradients is provided,

and two methods to remove, at least partially, the damage to the stationary distri-

bution caused by stochastic gradients are proposed. One method is based on the

estimation of the noise and corrects the dynamics directly with these estimates, while

the other is by the introduction of a new variable and corresponding dynamics that

perform as a thermostat to remove the distortion automatically. Extensive numerical

experiments are performed to show the superiority of the new methods.

1.2.3 Quasi-reliable Estimates of Effective Sample Size

In some difficult sampling problems, such as sampling from multimodal distri-

butions, the integrated autocorrelation time of a particular function may not be

trustworthy due to incomplete sampling. In addition, functions of interest that are

popular in some applications may not be representative for the purpose of convergence

detection —the best function is the eigenfunction corresponding to the eigenvalue of

the propagator (a transfer operator of probabilities) closest to 1 and is in general

unknown.

Introduced is the longest autocorrelation time τmax over all possible functions

defined on state space. It is a more reliable indicator of convergence and a bet-

ter measurement of the efficiency of Markov chain samplers, than the τ of just any

particular function.

An algorithm is also proposed for estimating τmax. The algorithm assumes only

that a method for estimating τ for an arbitrary function is available. And its compu-

tation cost is much less than the cost of the sampling procedure. Numerical evidence

is also presented for the utility of this algorithm.

1.2.4 Further Work on Sampling Methods

The difficulty of efficient sampling arises from certain undesired properties of the

potential energy function, such as the existence of high energy barrier or extremely
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elongated low energy basins. Inspired by the idea of spatial warping [9], a simple

general formula for change of variables is presented. By changing variables, dynamical

systems of the original variable are transformed into those of new variables, such that

undesired properties of the potential energy function are removed. The new method is

simpler and requires less problem specific knowledge than the spatial warping method.

Two concrete examples are presented to illustrate the utility of this idea.

As a classic numerical integrator, the leapfrog method is the most widely used

integrator for the Hamiltonian system. The order of accuracy of the leapfrog method

is 2, meaning that the error is bounded by O(∆t2). Proposed is a numerical integrator

with accuracy of order 4, by combining the idea of the simplified Takahashi-Imada

method [14] and a certain two-stage scheme [15]. Numerical experiments show the

outstanding performance of the proposed method.
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2 GENERALIZATIONS OF HYBRID MONTE CARLO

The traditional random-walk MCMC methods do not explore the energy landscape

efficiently. Large moves usually result in low acceptance probability, and the trajec-

tory of the Markov chain goes back and forth so frequently that a lot of computation is

wasted. A hybrid Monte Carlo (HMC) method extends configuration space to phase

space by introducing auxiliary variables, the momenta, and combines the Hamiltonian

dynamics step for proposing a new sample and the Metropolis step compensating for

the discretization error caused by numerical integrators.

An HMC method is able to produce samples from the target distribution [12],

since it satisfies the sufficient conditions: (i) It is stationary, because the discretized

(leapfrog method) Hamiltonian dynamics is reversible and volume preserving. (ii) It

is ergodic, because the momenta are randomized in each MC step.

Also, an HMC method is efficient, for two reasons: (i) It has high acceptance

probability in the Metropolis step. When the force is equal to the negative gradient

of the potential energy, which is defined to be the negative logarithm of the desired

probability density, the Hamiltonian dynamics keeps the value of the density function

constant. This means that if the dynamics can be solved exactly, there is no change on

the value of the density function, hence the acceptance probability of the Metropolis

step is always 1. Of course, numerical integrators introduce discretization error, but

for sufficiently small step size, the error is small, and the acceptance probability of the

Metropolis step is close to 1. (ii) The auxiliary momenta variables contribute to the

ballistic movement [16], which offers speedups for finding high probability regions, by

following the gradient of the potential energy function.

Naturally, one may ask whether it is possible to use other dynamical systems,

combining with the Metropolis step, to do sampling more efficiently? The answer is

yes, as long as there is a theoretically justified framework (Sec. 2.2) for finding such
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dynamics. There are two things to keep in mind when constructing such framework:

(i) the dynamical system combined with the Metropolis step should be able to produce

the desired density, (ii) the acceptance probability of the Metropolis step should be

close to 1.

It is found that if the target density and the dynamics satisfy the continuity equa-

tion (Eq. (2.5)), which states that the negative divergence of the probability current

equals the rate of change of the probability density, and the Metropolis criterion has

a more generalized form—involving the Jacobian of the discretized dynamics, the

aforementioned two goals can both be achieved. Given the target distribution, the

framework is used to design new dynamics with good properties, such as crossing the

energy barrier easier, which is made possible by removing the restriction of phase-

space volume preservation. And at the same time, it is expected that the acceptance

probability is as high as that of the traditional HMC. Four examples are presented

to show the utility of the framework.

The remainder of this chapter is organized as follow: Sec. 2.1 reviews the basic

idea of HMC and related topics; Sec. 2.2 presents the general framework; Sec. 2.3

shows four examples, two of which are further supported by numerical experiments;

Sec. 2.4 concludes this chapter with a discussion.

2.1 Background

In HMC, the joint density of θ and p is ρ(θ,p) ∝ exp(−H(θ,p)) where H(θ,p) =

U(θ) + p>p/2. The Hamiltonian dynamics

dθ = pdt,

dp = f(θ)dt,

has this joint density as its invariant density. Note that the joint density has the

marginal distribution equal to the target distribution, i.e.,∫
ρ(θ,p)dp = ρ(θ).
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Use z to represent the extended space variable z = [θT,pT]T. A general dynamical

system can be written as

dz = v(z)dt, (2.1)

where v is the vector field that describes the motion of particles (characterized by

positions θ and momenta p) in the system.

The flow Φt is defined in terms of a vector field v(z) by a system of ODEs

dΦt

dt
= v ◦ Φt, Φ0 = id.

Let zt = Φt(z0) be the flow map of z starting from z0. A flow map being reversible

under the transformation R means

Φ−1
t (z) = R(Φt(R(z))). (2.2)

An example of R is R : [θT,pT]T 7→ [θT,−pT]T. It is easy to see that the flow map

of the Hamiltonian dynamics is reversible under this R. The Hamiltonian dynamics

also preserves volume, since the vector field v is divergence free [17], i.e., ∇ · v = 0.

Note that the reversibility here is for the flow rather than the MCMC sampler.

Reversibility for an MCMC sampler means that it satisfies detailed balance:

ρt(z
′|z) ρ(z) = ρt(z|z′) ρ(z′), (2.3)

where ρt denotes the transition density. Detailed balance is sufficient for stationarity.

The density function for the dynamical system is defined with respect to t and z

as ρ(t, z). The continuity equation is

∂ρ

∂t
+∇ · (ρv) = 0. (2.4)

By letting ∂ρ/∂t = 0, it is easy to see that a probability density ρ is the invariant

density of the dynamics described by v, if the dynamics and the probability density

satisfy the stationary continuity equation

∇ · (ρv) = 0. (2.5)
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Since non-stationary density is not in consideration in any cases in this dissertation,

the stationary continuity equation is simply referred as the continuity equation, and

ρ is referred as the stationary density which does not depend on t. Let ρ ∝ exp(−H).

The continuity equation can also be written as

∇H · v = ∇ · v. (2.6)

The joint density ρ and the vector field v of the Hamiltonian dynamics satisfy the

continuity equation. It is easy to see that the Hamiltonian H is a conserved quantity,

namely, for two values z and z′ = Φt(z),

H(z) = H(z′).

Recall that the Metropolis criterion of HMC given z and z′ is

min{1, ρ(z′)

ρ(z)
},

and the ratio between the two density values corresponding to z and z′ is equivalent

to

H(z)−H(z′) = 0.

This means that if the Hamiltonian dynamics is integrated exactly, the acceptance

probability is always 1.

The numerical integrator can be constructed by using a splitting method. Specif-

ically, the equations of motion Eq. (2.1) can be split as

dz = v1dt+ v2dt, (2.7)

and the flow map constructed separately for v1 and v2, obtaining

Ψt = Φv2
t ◦ Φv1

t . (2.8)

In the Hamiltonian system, for example, let

v1 = [pT,0T]T, v2 = [0T, fT]T.
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A general splitting method is

Ψt = Φv2
bnt
◦ Φv1

ant ◦ · · · ◦ Φv2
b1t
◦ Φv1

a1t.

The coefficients satisfy
∑n

i=1 ai =
∑n

i=1 bi = 1.

The leapfrog method is a symmetric splitting:

Ψt = Φv2

t/2 ◦ Φv1
t ◦ Φv2

t/2.

For HMC, the explicit form of the leapfrog integrator is

p1/2 = p0 +
1

2
f(θ0)∆t,

θ1 = θ0 + p1/2∆t,

p1 = p1/2 +
1

2
f(θ1)∆t, (2.9)

where ∆t is the discretization step size. It can be seen that the leapfrog method is also

reversible and volume preserving. Therefore, the stationarity of the HMC propagator

is guaranteed [12]. The global error of the leapfrog method is O((∆t)2) [14]. So

the actual acceptance probability depends on the discretization step size ∆t and the

number of steps taken.

2.2 The General Theory

The HMC method produces the desired distribution, because the numerical in-

tegrator of the Hamiltonian dynamics is reversible and volume preserving [12]. Re-

versibility and volume preservation imply that the transition density for z and z′

is symmetric, so the Metropolis criterion defined in terms of the joint density itself

(Eq. (1.2)) is sufficient for guaranteeing stationarity.

When considering more general dynamics and corresponding numerical integrators

with less restrictions, for example, no volume preservation, the Metropolis criterion

for the ordinary HMC is no longer valid. This is because that the change of volume

renders the transition probability asymmetric. Therefore, a new criterion is needed
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for justifying the use of more general dynamics. The following theorem states the

formal result.

Theorem 2.2.1 Let z be the extended space variable. Define z′ = Ψτ (z).

If the following conditions are satisfied:

1. Ψτ is reversible under R, i.e., Ψ−1
τ (z) = R(Ψτ (R(z))).

2. R is an involution, i.e., R ◦R = id,

3. the proposed sample R(z′) is accepted with probability

min{1, ρ(R(z′))

ρ(z)
| det(∂zR ◦Ψτ (z))|}, (2.10)

where ∂zR ◦Ψτ (z) is the Jacobian matrix. Otherwise, keep z,

Then ρ(z) is the stationary density of the Markov chain generated by Ψτ and the

acceptance test (2.10).

Proof It suffices to show detailed balance. Let z′′ = R(z′), and ρt(z
′′|z) denote the

transition density. To find a computable expression for the quotient in the Metropolis-

Hastings test, i.e., the relationship between ρt(R(z′)|z) and ρt(z|R(z′)),write

ρt(z|z′′)

= δ(z−R(Ψτ (R(z′))))

= δ(R(Ψτ (z))−R(Ψτ (R(Ψτ (R(z′))))))| det(∂zR ◦Ψτ (z))|

= δ(R(Ψτ (Ψ
−1
τ (z′)))−R(Ψτ (z)))| det(∂zR ◦Ψτ (z))|

= δ(R(z′)−R(Ψτ (z)))| det(∂zR ◦Ψτ (z))|

= ρt(z
′′|z)| det(∂zR ◦Ψτ (z))|.
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The second equality holds because for a function g compositing with the delta func-

tion, δ(z) = δ(g(z))| det(∂zg(z))|. The Metropolis-Hastings criterion needed to ensure

the detailed balance (Eq. (2.3)) is

min{1, ρ(R(z′))ρt(z|R(z′))

ρ(z)ρt(R(z′)|z)
}

= min{1, ρ(R(z′))ρt(R(z′)|z)

ρ(z)ρt(R(z′)|z)
}| det(∂zR ◦Ψτ (z))|

= min{1, ρ(R(z′))

ρ(z)
| det(∂zR ◦Ψτ (z))|}.

�

Note that theorem 2.2.1 is not the entire MCMC method, but one key substep.

The reason for applying R to z′ is to fit this substep into the Metropolis-Hasting

framework. The theorem has a general form for R. In ordinary HMC, Ψτ is reversible

under R : [θT,pT]T 7→ [θT,−pT]T. So R is volume preserving and satisfies ρ(R(z)) =

ρ(z). It is found that there is no obvious benefit for R not being volume preserving

and satisfying ρ(R(z)) = ρ(z). With these restrictions, the Metropolis criterion (2.10)

is reduced to

min{1, ρ(z′)

ρ(z)
| det(∂zΨτ (z))|}. (2.11)

Moreover, Thm. 2.2.1 states nothing about ergodicity, In ordinary HMC, the

momenta p are randomized based on the distribution of p to ensure ergodicity. For

a generalized HMC, a randomization of z is also necessary, and the randomization

should preserve the density of z to keep stationarity. Since the density of the state

space variable θ is only known up to a normalizing constant, it is more convenient to

only randomize the auxiliary variables in z, for which the density can be designed for

it to be easy to generate independent random variables. For example, the momenta

p in the ordinary HMC has a Gaussian distribution.

Recall that in ordinary HMC, the acceptance probability is always 1 if the dy-

namical system is integrated exactly. Now the question is whether this condition is

also satisfied by the generalized acceptance test. The answer is yes if the dynamics

is designed based on the continuity equation (Eq. (2.5)). To see this, consider one
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Monte Carlo step, where the starting position z is given and z′ = Φt(z) with Φt be-

ing the flow of the dynamics. It is straightforward to show that for any t, the ratio

in (2.11) is always 1, if v and ρ satisfy the continuity equation, and the dynamics is

integrated exactly.

In practice, the dynamical system may be solved only by a numerical integrator.

In order to guarantee stationarity (see Thm. 2.2.1), the numerical integrator must

be reversible. In addition, the discretization error introduced by the numerical inte-

grator makes the actual acceptance probability less than 1. So the efficiency of the

generalized HMC method also depends on the accuracy of the numerical integrator.

2.2.1 The Meta-algorithm

Based on the analysis above, the framework for generalized HMC, called the

“meta-algorithm” is described as follow:

1. Construct a dynamical system, of which the joint density ρ(z) and the vector

field v(z) satisfy the continuity equation (Eq. (2.5)). The dynamical system

should be reversible under R. The joint density should marginalize to the target

density ρ(θ), and the marginal density of auxiliary variables should be easy to

produce independent random samples.

2. Find a numerical integrator for the dynamical system. The numerical integra-

tor should also be reversible. Find the Jacobian of the map of the numerical

integrator.

3. Let Ψτ be the map of the numerical integrator for time interval τ , and the map

R be volume preserving and satisfy ρ(R(z)) = ρ(z). A new sample θ′ is obtained

from the following algorithm:

(a) Let θ be given.

(b) Randomize the auxiliary variable according to the marginal distribution of

the auxiliary variable to form z.
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(c) Compute z′ = Ψτ (z),

(d) Accept θ′, which is contained in z′, with probability

min{1, ρ(z′)

ρ(z)
| det(∂zΨτ (z))|},

otherwise keep θ.

Note that in this algorithm, R becomes irrelevant if the auxiliary variable is

randomized in each step.

2.3 Examples

This section illustrates the use of the “meta-algorithm” proposed in the last sec-

tion.

2.3.1 Example 1: Generalized Hamiltonian System

This toy example illustrates the procedure of designing a new dynamical system

with some desired properties by using the continuity equation (2.6). In ordinary

HMC, the probability density of p is Gaussian. One can also choose other densities

for p, such as the Student’s t distribution, which is known to have heavy tail and may

be useful [18]. The goal is to find the equations of motion given the target density.

Let p follow the Student’s t distribution:

ρp(p) ∝ (1 +
pTp

ν
)(−N+ν

2
),

where N is the dimension of p and ν is the degree of freedom of the Student’s t dis-

tribution. Given the target density ρθ(θ) ∝ exp(−U(θ)), try ρ(θ,p) ∝ exp(−H(θ,p))

with H(θ,p) = U(θ) +K(p) where

K(p) =
N + ν

2
ln(1 +

pTp

ν
).

Assuming volume preservation, then

∇θH · vθ +∇pH · vp = 0,
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namely,

f · vθ =
ν +N

ν + pTp
p · vp.

A divergence free system can be easily found:

dθ = vθdt =
ν +N

ν + pTp
pdt,

dp = vpdt = fdt.

It can be seen that when ν →∞, this dynamical system converges to the ordinary

Hamiltonian system. This is expected, since in the ordinary HMC, the probability

density for p is Gaussian and Student’s t → Gaussian as ν →∞.

2.3.2 Example 2: Nosé-Hoover Thermostat

The extended space may contain auxiliary variables in addition to the momenta

p. For example, the Nosé-Hoover thermostat employs the extended system

dθ = pdt,

dp = f − ξ

µ
pdt,

dξ = (pTp−N)dt, (2.12)

where µ > 0 is “thermal mass”. Let z = [θT,pT, ξ]T be the extended space variable.

The Nosé-Hoover thermostat has the invariant density

ρ(z) ∝ exp(−H(z)), H(z) = U(θ) +
1

2
pTp +

1

2µ
ξ2.

The dynamical system has non-zero compressibility

∇ · v = − ξ
µ
N.

Leimkuhler and Reich [19] develop a generalized HMC method based on the Nosé-

Hoover thermostat .
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2.3.3 Example 3: Isokinetic Ensemble

In this example, an MCMC sampler using the dynamics of the isokinetic ensemble

is constructed by the meta-algorithm. The isokinetic ensemble [20] maintains the

kinetic energy of the system constant. Shown is the process of using the meta-

algorithm—from designing the dynamical system to computing the Jacobian. The

dynamical system derived here is equivalent to the dynamics of isokinetic ensemble

in [21]. Numerical experiments are performed to justify the new sampler.

First, by using the continuity equation, find the dynamical system which maintains

the kinetic energy constant. The system is not necessarily volume preserving. To find

such system, following [22], define H as a function of z satisfying

∇H · v = 0.

The equation above makes H a conserved quantity of the dynamics. Note that here

H is not necessarily the negative logarithm of the density plus a constant. Write the

density as

ρ(z) ∝ exp(−ω(z))ζ(H(z)),

where ζ is any function of H (e.g., exp(−H)), and ω(z) is called the compressibility

integral, because if assuming ∇H · v = 0, ω satisfies

∇ω · v = ∇ · v. (2.13)

Note that the existence of a solution of Eq. (2.13) is possible only in special cases.

Let K = pTp/2 be the kinetic energy. The goal is to find a dynamical system

that conserves K. Therefore, choose H = K. The marginal probability density of

p needs to be a function of K, e.g., Gaussian: ρ(p) ∝ exp(−pTp/2), Student’s t:

ρ(p) ∝ (1 + pTp/ν)−(ν+N)/2, or a delta function: ρ(p) ∝ δ(pTp − E) where E is

a constant. The function ζ allows a flexible choice on the density of p. Note that

to allow the delta function to be considered as a choice of ζ, δ may be taken as a

mollified delta function as in [11].
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Because exp(−ω(z))ζ(K(p)) must marginalize to ρ(θ), try

exp(−ω(θ)) = exp(−U(θ)) ∝ ρ(θ),

and obtain ω = U . The equations of motion vθ and vp must satisfy

∇K · v = p · vp = 0,

∇ · v = ∇θ · vθ +∇p · vp = −vθ · f = ∇ω · v. (2.14)

A solution v of the system of equations above gives a desired dynamical system.

For the first equation, the vector vp must be orthogonal to p. It is reasonable to

make vp depend on f , and be as close to f as possible. In particular, choose vp to

minimize

‖f − vp‖2, s.t. p · vp = 0.

By using a Lagrange multiplier, it is easy to see that the optimal vp is

vp = (I− ppT

pTp
)f .

Then vθ can be solved by plugging vp into the second equation of (2.14):

∇θ · vθ + (1−N)
fTp

pTp
= −vθ · f .

So one solution can be obtained by observation:

vθ =
N − 1

pTp
p.

The final equations of motion are

dθ = vθdt =
N − 1

pTp
pdt,

dp = vpdt = fdt− pTf

pTp
pdt.

Note that when ρ(p) ∝ δ(pTp−N), the equations of motion above are equivalent to

those of the isokinetic ensemble in [21]:

dθ =
N − 1

N
pdt,

dp = fdt− pTf

pTp
pdt.
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with invariant density

ρ(θ,p) ∝ exp(−pTp

N
U(θ))δ(pTp−N).

It is easy to see that this dynamical system conserves the kinetic energy, since the

vector vp is perpendicular to p (see Eq. (2.14)).

A time reversible and kinetic energy conserved integrator [23] can be obtained by

the operator splitting scheme (Strang splitting):

Ψ∆t = Φv2

∆t/2 ◦ Φv1
∆t ◦ Φv2

∆t/2,

with v1 = [((N − 1)/N)pT,0T]T and v2 = [0T, fT − (pTf/pTp)pT]T.

The following are the substeps of the Ψ∆t mapping as given in [23][Sec. IV.B].

Let the discretization step size be ∆t. Let ċ denote the time derivative of a function

c(t).

Step 1: Φv2

∆t/2 (“kick”): Evaluate s(∆t/2) and ṡ(∆t/2), where

s(t) =
a

b
(cosh(t

√
b)− 1) +

1√
b

sinh(t
√
b),

and

a =
pTf

pTp
, b =

fTf

pTp
.

Then update p:

p1/2 =
p0 + s(∆t/2)f0

ṡ(∆t/2)
.

Step 2: Φv1
∆t (“drift”): Update θ

θ1 = θ0 +
N − 1

N
p1/2∆t,

and then calculate the new force.

Step 3: Φv2

∆t/2 (“kick”): Evaluate s(∆t/2) and ṡ(∆t/2) and then update p:

p1 =
p1/2 + s(∆t/2)f1

ṡ(∆t/2)
.
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The Jacobian of Ψ∆t can be obtained by combining the Jacobians of Φv2

∆t/2 and

Φv1
∆t. For a general m-step splitting method

Ψ∆t = Φv1
am∆t ◦ Φv2

bm∆t ◦ · · · ◦ Φv1
a1∆t ◦ Φv2

b1∆t,

the Jacobian of the entire map Ψ∆t can be obtained by

J =
m∏
i=1

Ji,

where Ji is the Jacobian in step i.

The Jacobian of Φv2

∆t/2 in the “Kick” part can be obtained by integrating the

divergence. A similar derivation can be found in [11]. Specifically, the Jacobian of

Φv2
t for 0 ≤ t ≤ ∆t/2 satisfies:

d

dt
log J(t) = ∇ · v2(z),

log J(0) = 0.

Let ṙ(t) = fTp/(pTp). When f is fixed, s(t) satisfies

s̈(t) = ṡ(t)ṙ(t).

So ṡ(t) = exp (r(t)). And ∇ · ż = (1−N)ṙ(t), so

log ṡ(t) = r(t) = log J(t)/(1−N).

Therefore,

J(t) = ṡ(t)−(N−1).

The Jacobian of the “Drift” part is 1.

This numerical integrator is reversible under R : [θT,pT]T 7→ [θT,−pT]T and

conserves the kinetic energy.

Now all components of the MCMC sampler, a dynamical system with desired

properties satisfying the continuity equation, a reversible numerical integrator, and

the Jacobian of the integrator, are obtained. Samples can be produced by using the

third step of the meta-algorithm (Sec. 2.2.1).
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Table 2.1.
Effective sample size per 1000 force evaluations for Hamiltonian HMC

τ\ν 6 8 10 12

4 1.44 2.51 3.03 2.55

5 2.04 4.41 4.13 3.65

6 - 1.52 3.42 3.19

A test problem is designed to run both ordinary HMC and isokinetic HMC for a

comparison. The problem is a high-dimensional mixture of two Gaussians. Specifi-

cally, the first dimension is the mixture of two Gaussians located at ±2.5 with stan-

dard deviation 1. Another 128 dimensions are all Gaussians located at the origin with

standard deviations uniformly distributed from 1 to 2. Note that all dimensions of θ

are independent from each other. Though simple, the test problem is high dimensional

and multimodal, and it is not sensitive to the choice of the integration duration in one

MC step, an important parameter for the MCMC method. Choose the function of

interest to be a sigmoid function in the first dimension. As is known [24], the sigmoid

function is similar, in shape, to the eigenfunction corresponding to the subdominant

eigenvalue of the propagator for a double well potential problem. The discretization

step size ∆t = 0.5, the number of integration steps is 10, and the number of samples

is 106.

Tables 2.1 and 2.2 show the effective sample sizes per 1000 force evaluations for

each method, for varying values of the duration τ of an MC step and the number

of integrator steps ν per MC step. A pair of parameter values that maximizes the

number of effective samples per integrator step is in the center of each table. A dash

indicates a failure of all proposed moves. It can be seen that the isokinetic method

performs slightly better than the Hamiltonian method and is less sensitive to tuning

parameters.
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Table 2.2.
Effective sample size per 1000 force evaluations for isokinetic HMC

τ\ν 6 8 10 12

4 3.16 3.52 2.81 3.20

5 3.83 4.52 4.91 4.84

6 0.72 4.11 3.60 3.29
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2.3.4 Example 4: Variable Mass Methods

The variable mass HMC is proposed by Girolami and Calderhead [18] for Bayesian

statistics. The expected Fisher information matrix is used to form the mass matrix

embedded in the kinetic energy. This method samples the anisotropic basin of the

potential energy more efficiently than the ordinary HMC. The integrator is symplectic,

but requires solving a nonlinear equation involving the mass matrix M(θ).

The choice of the mass matrix can also be targeted for reducing the energy barrier

of the potential energy function, hence make sampling multimodal problems easier.

In addition, by removing the volume-preserving constraint of the dynamics, the inte-

grator can be made explicit to avoid solving the nonlinear equation.

The dynamical system of the variable mass HMC has invariant density ρ(θ,p) ∝

exp(−H(θ,p)) with the Hamiltonian

H(θ,p) = U(θ) +
1

2
pTM−1(θ)p +

1

2
log det M(θ).

The logarithm determinant term comes from the normalizing constant of the Gaussian

distribution with covariance matrix M. Note that the marginal distribution of θ is

still ∝ exp(−U(θ)).

The equations of motion of the variable mass Hamiltonian system is

dθ = M−1pdt,

dp = fdt− 1

2

N∑
k=1

(tr(M−1Mk)− pTM−1MkM
−1p)ekdt.

where

Mk =
∂M(θ)

∂θk
,

and ek is the unit vector of the kth coordinate direction.

To find explicit integrators, change (θ,p) to (θ,M(θ)v). Note that here the symbol

v is reused to denote the velocity. Then the Hamiltonian is changed to

H(θ,v) = U(θ) +
1

2
vTMv − 1

2
log det M(θ), (2.15)
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and the equations of motion become

dθ = vdt,

Mdv = f(θ)dt+
N∑
k=1

1

2
(tr(MkM

−1)− vTMkv −
N∑
k=1

MkM
−1)ekdt. (2.16)

This can be solved by explicit integrators. Consider quadratic ODE system

dvi = (
1

2
vTAiv + bT

i v + γi)dt,

where, without loss of generality, Ai is symmetric. A time-symmetric discretization,

which is merely linearly implicit, is

v1
i − v0

i

∆t
=

1

2
(v0)TAiv

1 +
1

2
bT
i (v0 + v1) + γi.

Applying this to Eq. (2.16), we have

(I +
∆t

2

N∑
k=1

M−1ek(v
0)TMk)v

1 = v0 −∆tM−1(∇θU
+ +

N∑
k=1

MkM
−1ek),

where

U+(θ) = U(θ)− log det(M(θ))/2. (2.17)

The Jacobian of the map of the integrator is

J =
det(I− (∆t/2)

∑
k M−1ek(v

1)TMk)

det(I + (∆t/2)
∑

k M−1ek(v0)TMk)
.

By using the variable mass, the potential energy is changed to U+ with an extra

term added (Eqs. (2.15) and (2.17)). Therefore, by choosing proper M(θ), some useful

properties can be brought into the dyanmics, such as reducing the energy barrier of

the potential energy. For example, choose M to be

M =
1

µ
(I− (1− µN)mmT ),

where µ is

µ = 1− (1− µ0) exp(−σ‖θ − θ0‖2)),

m is the direction of the barrier and mTm = 1, θ0 is the location of the barrier, σ is

a parameter that controls the speed of the change of the mass, and µ0 determines the
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Figure 2.1. Acceptance probability vs. the minimum mass for the variable
mass method in the double-well potential problem.

minimum of the mass. The idea here is to increase the speed of particles to across the

region of the barrier, by decreasing the mass. The closer the particle to the saddle

point, the higher the speed. And in the regions far away from the barrier, the mass

remains constant. Note that to use this method, prior knowledge of the barrier is

required.

This method is tested on the same problem as in Sec. 2.3.3. The autocorrelation

time, computed by Acor, gives the ratio of the sample size to the effective sample

size. Results are displayed in Figs 2.1 and 2.2 for m in the direction of θ1, θ0 = 0,

σ = 1, and a range of values of the minimum mass. For a fairly wide range of values

of the minimum mass, the variable mass method produces about 100% more effective

samples.
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Figure 2.2. Autocorrelation time vs. the minimum mass for the variable
mass method in the double-well potential problem.



34

2.4 Discussion and Conclusion

More possibilities of designing efficient dynamics based MCMC methods are opened

up by a more general framework—the meta-algorithm proposed in this chapter. The

abilities such as conquering energy barriers are benefits that brought by the general

framework. However, the example methods developed here still have limitations, due

to the lack of knowledge about the location of the barriers. Better methods are yet to

be discovered by combining other techniques, such as adaptively locating the barriers

and parallel tempering.
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3 STOCHASTIC GRADIENT SAMPLERS WITH REDUCED BIAS

The computational cost of dynamics-based samplers is primarily that of the evaluation

of the gradient of the potential energy function. In many applications, such as machine

learning problems with tremendous data, the evaluation of gradients is too expensive

for some of the models to be feasible in practice. For instance, consider probabilistic

models of which the potential energy function consists of the summation of n negative

log likelihood functions, where n is the number of data examples. Nowadays, most

important machine learning applications rely on the use of extremely large datasets

for training. This usually results in unbearably expensive gradient computations.

To make probabilistic models, especially Bayesian models, useful in machine learn-

ing applications, the idea of stochastic gradients was adopted for sampling methods

based on stochastic differential equations such as Brownian dynamics [4] and Langevin

dynamics [6]. A stochastic gradient uses the gradient obtained from a random subset

of the data to approximate the full gradient. The size of the subset is usually much

smaller than the size of the entire dataset.

Methods introduced in Chap. 2, which are referred as rigorous sampling, combine

a dynamical system with the Metropolis step. However, the Metropolis step is incom-

patible with the idea of stochastic gradient, because the evaluation of the potential

energy function requires using the entire dataset which cancels the benefit of using

stochastic gradients. In some molecular dynamics applications, the Metropolis step

is indeed omitted, at least for certain types of samplers such as MALA [25], for there

being theoretical justification regarding the existence of the modified density and the

controllability of the error [13]. For the same reason, sampling methods based on

the discretization of stochastic differential equations are also widely used in practical

machine learning problems.
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Previous attempts for adopting stochastic gradients in dynamics-based samplers

are comparatively half-hearted—the full gradient is simply replaced by the stochastic

gradient. However, stochastic gradients introduce an amount of additional noise into

the dynamical system, hence change the stationary probability density. This change

is undesirable and can be harmful if not controlled. To control the noise, a smaller

discretization step size must be used, which offsets the benefit brought by the use of

a stochastic gradient.

In this chapter, the additional noise is analyzed and a formula for estimating it

adaptively is obtained. Two methods are also designed to reduce the bias introduced

by the stochastic gradient. The first method is based on the estimate of the noise,

and the second uses a new variable and its corresponding equation of motion to

automatically remove, at least partially, the bias.

The rest of the chapter is organized as follow: Sec. 3.1 briefly reviews the related

background; Sec. 3.2 presents the analysis of the noise and the first method; Sec. 3.3

presents the second method; Sec. 3.4 compares the proposed methods with previous

methods on synthetic and real machine learning applications; and Sec. 3.5 concludes

the chapter with a discussion.

3.1 Background

Recall Eqs. (1.3) and (1.4) for Langevin dynamics, with damping coefficient A,

the stochastic differential equations are,

dθ = pdt,

dp = f(θ)dt− Apdt+
√

2Adw,

and for Brownian dynamics, the SDEs are

dθ = f(θ)dt+
√

2dw.
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By dropping the Metropolis step, SDE based methods are well suited for the adop-

tion of stochastic gradients, since the computation requires data present only in the

dynamics.

Following the definition of the stochastic gradient in Sec. 1.1.4, Eq. (1.5), let

fi(θ) = −∇θUi(θ), (3.1)

whence the force can be written as

f =
n∑
i=1

fi.

And the stochastic force can be written as

f̃ =
n∑
i=1

(1 + ri)fi.

The SGLD algorithm [4] uses f̃(θ) and Brownian dynamics integrated by the

Euler-Maruyama method to generate samples:

θ1 = θ0 + f̃(θ0)∆t+
√

2∆ta,

where a denotes N independent standard Gaussian random variables.

Similar to SGLD, SGHMC [6] uses the stochastic gradient to replace the full

gradient in the ordinary Langevin dynamics. SGHMC uses a modified Langevin

dynamics integrated by a simple numerical integrator,

θ1 = θ0 + p0∆t,

p1 = f̃(θ1)∆t− Ap0∆t+ (2A∆tI− 2∆tB̂(θ1))1/2a, (3.2)

where M1/2 satisfies M1/2(M1/2)T = M, and B̂(θ) is an N × N matrix intended to

offset the noise in f̃ . In the actual implementation, B̂(θ) is simply set to zero. So

3.1.1 The Fokker-Planck Equation

Consider the following general systems of stochastic differential equations

dz = v(z)dt+ (2D(z))1/2dw, (3.3)
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where z is a general extended space variable, and D is an N×N matrix given that the

dimension of z is N . Taking Langevin dynamics as an example, it has z = [θT,pT]T,

v = [pT, fT − ApT]T, and D = diag(0, AI).

For deterministic systems, the invariant density ρ and the dynamics described

by the vector field v must satisfy the (stationary) continuity equation (2.5). For

stochastic systems, the continuity equation (2.4) generalizes to the Fokker-Planck

equation. As in Sec. 2.1, the density function for the dynamical system is defined

with respect to t and z as ρ(t, z). The Fokker-Planck equation is:

∂ρ(z, t)

∂t
+∇z · (ρ(z, t)v(z))−∇z∇T

z : (ρ(z, t)D(z)) = 0, (3.4)

where : represents a matrix double dot product A : B = tr(ATB). The stationary

density ρ(z) is independent of t. Let ρ(z) ∝ exp(−H(z)), and write H as

H(z) = U(θ) +Q(θ, β),

where β denotes general auxiliary variables. The marginal density for θ must equal

the target density,

exp (−U(θ)) ∝
∫

exp (−U(θ)−Q(θ, β)) dβ. (3.5)

This condition is referred as the marginalization condition.

The stochastic process of θ generated by the stochastic differential equation (3.3)

has the target distribution as its stationary distribution, if ρ(z) ∝ exp (−H(z)) sat-

isfies the marginalization condition (3.5) and

∇ · (ρv) = ∇∇T : (ρD). (3.6)

To see this, first assume that ρ is stationary, then in the Fokker-Planck equation (3.4),

∂ρ(z, t)/∂t = 0. So Eq. (3.6) holds. This is the stationary Fokker-Planck equation,

and is hereafter simply referred as the Fokker-Planck equation in this dissertation.

As long as the joint density ρ(z) satisfies Eq. (3.6), it can be preserved by the dy-

namics. And because ρ satisfies the marginalization condition (3.5), the marginal

density of θ, which is also preserved by the dynamics, equals the target density

exp(−U(θ)).
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3.2 Analyzing the Noise

It is essential to study the noise introduced by the stochastic gradient, before

considering constructing better SDEs for sampling with less bias.

For the random variable rk defined in Eq. (1.5), it is easy to show that

E[rk] = 0,

E[rkrl] =


n−m
m

, l = k,

− 1

n− 1

n−m
m

, l 6= k.

Write

f̃ = f + s, whence s =
n∑
k=1

rkfk.

We have

Σ = E[ssT] =
∑
k

E[r2
k]fkf

T
k +

∑
k

∑
l 6=k

E[rkrl]fkf
T
l

=
n(n−m)

m(n− 1)

(∑
k

fkf
T
k −

1

n

∑
k

∑
l

fkf
T
l

)

=
n(n−m)

m(n− 1)

(∑
k

fkf
T
k −

1

n
ffT

)
.

This can be written as

Σ =
n(n−m)

m(n− 1)

∑
k

(fk − f)(fk − f)T,

so it can be seen that the effect of the noise depends on the variation in fk.

Remark 1 The matrix Σ has close relationship with the Fisher information matrix.

The Fisher information matrix F is defined as

F(θ) = Ex|θ[∇θl(x|θ)(∇θl(x|θ))T],

where l(x|θ) = log(ρ(x|θ)) and ρ(x|θ) is the likelihood function. With some regularity

conditions for swapping differentiation and integration,

Ex|θ[∇θl(x|θ)] = 0,
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so

F(θ) = Varx|θ[∇θl(x|θ)].

Recall that, with the prior neglected, the force f(θ) is the gradient of the negative

logarithm of the likelihood function ρ(x|θ) (see Sec. 1.1.4 and Eq. (3.1)). Therefore,

Σ can also be written as

Σ =
n(n−m)

m
F̃(θ) ≈ n(n−m)

m
F(θ),

where F̃ is the empirical Fisher information matrix.

Similar to the idea of stochastic gradients, the subsampled data can also be used

to approximate Σ. Note that

E[f̃ f̃T] =
n(m− 1)

(n− 1)m
ffT +

n(n−m)

m(n− 1)

∑
k

fkf
T
k ,

and

E[f̃k f̃
T
k ] =

n

m
fkf

T
k ,

whence

Σ̂ =
n−m
n(m− 1)

(
m
∑
k

f̃k f̃
T
k − f̃ f̃T

)
is an unbiased estimate of Σ, where f̃k = (1 + rk)fk. This can be written as

Σ̂ =
n−m

nm(m− 1)

∑
rk 6=−1

(mf̃k − f̃)(mf̃k − f̃)T.

3.2.1 The Effect of Stochastic Gradients in SDEs

When doing sampling with stochastic gradients, the full gradients in a discretized

system of SDEs are replaced by the stochastic gradients. As a result, the covariance

matrix Σ of the stochastic gradient introduces additional bias to the distribution of

samples on top of the bias caused by discretization. The task here is to find the effect

of Σ in discretized SDEs with stochastic gradients.
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As a simple example, consider the Langevin dynamics written as dz/dt = v with

z = (θT,pT)T,

v = (pT, (f − (AI + B)p + (2AI + 2B)1/2η(t))T)T, (3.7)

where η(t) = dw/dt and B is an N ×N matrix which is to be determined. Consider

the following simple numerical integrator using splitting (Eqs. (2.7) and (2.8)):

v = v1 + v2,

v1 = (pT,0T)T,

v2 = (0T, (f − (AI + B)p + (2AI + 2B)1/2η)T)T.

The equation with v2

dp = fdt− (AI + B)pdt+ (2AI + 2B)1/2dw, (3.8)

can be solved analytically for p:

p1 = exp(−(AI + B)∆t)p0 + (AI + B)−1(I− exp(−(AI + B)∆t))f1

+ (I− exp(−(2AI + 2B)∆t))1/2a. (3.9)

When using f̃ to replace f , additional noise with covariance matrix Σ is added to

the dynamics. To compensate for the additional noise, consider the solution of the

equation

dp = f̃dt− (AI + B)pdt+ (2AI)1/2dw. (3.10)

Note that when f is replaced by f̃ , additional noise is added to the stochastic term in

Eq. (3.10). The idea here is that −Bpdt damps out the additional noise. The matrix

B can be found by making Eq. (3.10) and Eq. (3.8) have the same solution.

The solution of Eq. (3.10) is

p1 = exp(−(AI + B)∆t)p0 + (AI + B)−1(I− exp(−(AI + B)∆t))f̃1

+(I− exp(−2A∆tI))1/2a

= exp(−(AI + B)∆t)p0 + (AI + B)−1(I− exp(−(AI + B)∆t))f1

+((AI + B)−2(I− exp(−(AI + B)∆t))2Σ + I− exp(−2A∆tI))1/2a
′

+O(∆t2), (3.11)
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where a′ denotes N independent Gaussian random variables, just like a. The second

equality holds because the noise in f̃ is approximated by Gaussians having the same

covariance matrix. Equate (3.9) and (3.11) and obtain:

(AI + B)−2(I− exp(−(AI + B)∆t))2Σ + I− exp(−2A∆tI)

= I− exp(−(2AI + 2B)∆t) +O(∆t2).

An approximate solution of the equation above is

B =
∆tΣ

2
+O(∆t2). (3.12)

For the numerical integrator used in [6], the discretized dynamics with the stochas-

tic force f̃ and the damping coefficient A are:

θ1 = θ0 + p0∆t,

p1 = p0 + f̃(θ1)∆t− Ap0∆t+
√

2A∆ta. (3.13)

Using the result in Eq. (3.12), the discretized dynamics (3.13) can be approximated

as

θ1 = θ0 + p0∆t,

p1 = p0 + f(θ1)∆t− Ap0∆t+ (2AI∆t+ ∆t2Σ)1/2a. (3.14)

Consider the following equation of motion for momenta p in the Langevin dynam-

ics:

dp = fdt−Rpdt+ Sdw, (3.15)

where R denotes the damping coefficient and S denotes the diffusion coefficient. The

Fokker-Planck equation (3.6) applied to Eq. (3.7) requires R = S2/2 in order to have

desired stationary density ρ(θ,p) ∝ exp(−U(θ)−pTp/2). From Eq. (3.14), however,

it can be seen that the stochastic force changes the diffusion coefficient and makes it

not match the damping coefficient A in the way that preserves the desired density.

Therefore, the stochastic force introduces additional bias on top of the bias that is

caused by the discretization error of the numerical integrator.
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3.2.2 Correcting the Langevin Dynamics with Stochastic Forces

Based on Eq. (3.14), there are two ways to reduce the effect of the additional noise

introduced by stochastic gradients in Langevin Dynamics. One method is to modify

the diffusion coefficient by using the estimated noise Σ̂:

θ1 = θ0 + p0∆t,

p1 = p0 + f̃(θ1)∆t− Ap0∆t+ (2AI∆t−∆t2Σ̂)1/2a. (3.16)

Note that the force here is the stochastic force. A similar modification (Eq. (3.2)) is

proposed in [6], but the estimated noise ˆB(θ) is set to 0.

The other method is to add Σ̂ to the damping coefficient:

θ1 = θ0 + p0∆t,

p1 = p0 + f̃(θ1)∆t− (AI +
∆tΣ̂

2
)p0∆t+

√
2A∆ta. (3.17)

The first method (Eq. (3.16)) needs the decomposition of an N×N matrix, which

can be as expensive as using the full gradient when the dimension N is large. The

second method (Eq. (3.17)) avoids the costly computation, because that evaluating

Σ̂p0 only requires inner products, thanks to the special property of Σ̂. Therefore,

the second method is more desirable in practice.

With this simple modification, the bias from the stochastic gradient can be reduced

significantly, which is shown empirically later. However, the variance of the estimate

of Σ is large when the size of the subset of the data is small. To this end, it is

reasonable to approximate the variance with a quantity that can be estimated more

accurately. For example, a scalar σ̂ can be used to replace the matrix Σ̂:

σ̂ = tr(Σ̂)/N.

So σ̂ condenses the information in the spectrum of Σ̂. Or one can make a less dramatic

change by using the diagonal of Σ̂ instead of a single scalar.
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3.3 Stochastic Gradient Nosé-Hoover Thermostat

In the last section, Σ, the covariance matrix of the stochastic force, is estimated

by the subsampled data. However, the large variance of the estimate for small m is

undesirable. This concern leads to another idea for reducing the bias from stochastic

gradients, which is to construct a new stochastic dynamical system being able to

produce the desired density even if the stochastic gradient is present. The dynamics

should be able to handle the additional noise without actually estimating it.

To find such dynamical system, consider the following discretized system of SDEs:

θ1 = θ0 + p0∆t,

p1 = p0 + f̃(θ1)∆t−Ξp0∆t+
√

2A∆ta,

where Ξ is an N × N matrix and a is N independent standard Gaussian random

variables. The equations above are similar to Eq. (3.17), except that here Ξ is to

be determined. Needed is a continuous system of SDEs that is a first approximation

to the discretized system of SDEs, known as the modified equations. The desired

dynamical system is to be designed based on the continuous approximation. The

reason for using continuous dynamics is that the derivation is simple with the use of

Fokker-Planck equation (3.6). Assume that the bias caused by stochastic gradients is

much larger than the bias caused by the discretization, which is true when n� m. It

is expected that the stochastic gradients and the modifications for reducing bias work

in the same way for the discretized dynamics and the continuous dynamics, modulo

the discretization error.

As in Sec. 3.2.1, approximate the noise in f̃ by Gaussians having the same covari-

ance matrix, and obtain the modified equations

dθ = pdt,

dp = fdt−Ξpdt+ (2D)1/2dw, (3.18)

where D is also an N ×N matrix. Note that in Sec. 3.2.1, the matrix D is actually

estimated. Due to that in the discretized dynamics, fdt + (2D)1/2dw is evaluated
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as f̃∆t +
√

2A∆ta, the matrix D in Eq. (3.18) is considered as unknown. As is

discussed in Sec. 3.2.1, according to the Fokker-Planck equation (3.6), when Ξ 6= D,

the dynamics do not generate desired stationary distribution ρ(θ,p) ∝ exp(−U(θ)−

pTp/2). Therefore, the idea is to make Ξ a variable and find an equation of motion

for Ξ, such that the entire dynamical system guarantees the stationary distribution

being the desired distribution, which should be marginalized to ρ(θ) ∝ exp(−U(θ)),

no matter what the diffusion coefficient is in Eq. (3.18).

Let the equations of motion for Ξ be

dΞ = V(Ξ)dt, (3.19)

which is to be determined. Let ρ(θ,p,Ξ) ∝ exp(−H(θ,p,Ξ)) be the target distribu-

tion, where H has the form

H(θ,p,Ξ) = U(θ) +Q(p,Ξ), (3.20)

and Q(p,Ξ) is to be determined too. Clearly, the marginalization condition (3.5) is

satisfied for such H(θ,p,Ξ).

Let Rz denote the gradient of a function R, and Rzz denote the Hessian. For

simplicity, constrain ∇Ξ : V(Ξ) = 0, and assume that D is constant. Then the LHS

and RHS of Eq. (3.6) become

LHS = (∇ · v −∇H · v)ρ = (−tr(Ξ) + fTp−QT
pf +QT

pΞp−QΞ : V(Ξ))ρ,

RHS = D : ρpp = D : (QpQ
T
p −Qpp)ρ.

To cancel the f terms in LHS = RHS , set Qp = p, then Q(p,Ξ) = pTp/2 + S(Ξ),

which leaves S(Ξ) to be determined. Then we have

−Ξ : I + Ξ : (ppT)− SΞ : V(Ξ) = D : (ppT)−D : I.

Obviously, SΞ : V(Ξ) must be a function of ppT. Since SΞ is independent of p,

it is reasonable to make V(Ξ) a function of ppT. Also, D must appear only in SΞ,

since V(Ξ) is expected to be independent of the unknown D. Finally, since we let
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∇Ξ : V(Ξ) = 0, it is reasonable to let V(Ξ) be independent of Ξ. Combining all these

observations, let V(Ξ) be a scalar multiple of of ppT plus a constant, and SΞ is scalar

multiple of Ξ plus a constant. With some algebra, the dynamics of Ξ is obtained as

V(Ξ) = (ppT − I)/µ, (3.21)

where µ is a free parameter, and

SΞ = (Ξ−D)µ,

which means

Q(p,Ξ) =
1

2
pTp +

1

2
µ(Ξ−D) : (Ξ−D).

Eq. (3.21) combined with Eq. (3.18) for θ and p give a generalized Nosé-Hoover

thermostat. The stationary distribution of ξ in the deterministic Nosé-Hoover ther-

mostat shown in Sec. 2.3.2 is ξ ∼ N (0, µ−1). With the stochastic term (2D)1/2dw,

the distribution of Ξ changes to a matrix normal distributionMN (D, µ−1I, I). This

indicates that the varying damping coefficient Ξ adaptively adjusts itself to the ma-

trix D containing the noise from the stochastic force, since the expected value of Ξ

is equal to D.

In the derivation above, D is assumed to be constant. The assumption that D

is independent of θ is reasonable when the data size is large so that the variance of

θ in the posterior distribution is small. When D depends on θ, there is still bias in

the target distribution. Therefore, in general cases, the thermostat can be considered

only as an approximate solution for reducing the bias. Note that the method proposed

in Sec. 3.2.2 also has bias due to the variance of the estimate of Σ, and these two

sources of bias are different.

The full dynamics of Ξ requires additional N × N equations of motion, which

might be too costly when N is large. In practice, further approximations needs to be

considered. For example, use a scalar ξ to replace the matrix Ξ, so that there is only

one additional equation. The equation of ξ can be obtained by the same procedure
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as that of Ξ, by replacing DI to D and letting v(ξ) be a scalar multiple of pTp plus

a constant. So we have

v(ξ) = (pTp−N)/µ. (3.22)

In this case, the stationary distribution of ξ is N (D,µ−1), if D = DI. Empirically,

it can be seen that this approximation is a good balance between computation cost

and accuracy.

A simple numerical integrator for the dynamics of θ, p and ξ with stochastic gradi-

ents, named stochastic gradient Nosé-Hoover thermostat (SGNHT) [26], is described

by

θ1 = θ0 + p0∆t,

p1 = p0 + f̃(θ1)∆t− ξ0p0∆t+
√

2A∆ta,

ξ1 = ξ0 +
1

µ
(pT

1 p1 −N)∆t. (3.23)

Based on the analysis above, this sampler is expected to produce samples with less bias

than those obtained by the ordinary Langevin dynamics with stochastic gradients.

For the parameter µ, it is reasonable to have µ = N , such that the rate of temperature

change is independent of the dimension of the data N .

3.4 Numerical Illustrations

The experimentation begins with a toy example to demonstrate the superiority of

the proposed methods for reducing the bias caused by the stochastic gradient. Var-

ious quantities are compared numerically in this example. Then the recommended

method— stochastic gradient Nosé-Hoover thermostat—is run for a series of real ma-

chine learning problems. The results show the improvement in performances brought

by the better sampling method at a real application level.
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3.4.1 Inferring a Gaussian Distribution

Consider the Bayesian inference of a 1D Gaussian distribution. The task is to

estimate both the mean and the variance of a Gaussian distribution: let n i.i.d. ex-

amples xi ∼ N (µ, γ−1) be given, and let the prior be a Gaussian-gamma distribution

µ, γ ∼ N (µ|0, γ)Gam(γ|1, 1), where the Gamma distribution is defined as

Gam(γ|a, b) =
1

Z
γa−1 exp(−γb).

The posterior is another Gaussian-Gamma distribution with the potential energy

function

U(µ, γ) = −n+ 1

2
log γ + γ +

γ

2
(µ2 +

∑
i

(xi − µ)2).

The stochastic gradient is

∇µŨ = (n+ 1)µγ − γ
∑
ri 6=−1

xi(1 + ri),

∇γŨ = −(n+ 1)/(2γ) + 1 + 1/2µ2 +
∑
ri 6=−1

(xi(1 + ri)− µ)2,

where ri is defined in Sec. 3.1. It can be seen that the variance of the noise depends

on the values of µ and γ.

The number of data in this example is 100, and the size of the random subset

is 10. The damping coefficient A = 1, the discretization step size ∆t = 0.05, and

the number of samples is 106. Four quantities of interest are considered and the

error between the true value and the estimated value (obtained from the samples) is

calculated. Specifically, define e1: the error for the expected value of the mean E(µ),

e2: the error for the expected value of the standard deviation E(1/
√
γ), e3: the error

for the standard deviation of the mean Std(µ), and e4: the error for the standard

deviation of the standard deviation Std(1/
√
γ). The mean error and the standard

deviation of the error are calculated from 12 independent runs.

Six sampling methods are compared in this experiment: 1. SGHMC: replacing the

full gradient by the stochastic gradient in Langevin dynamics; 2. SGLDc: Langevin

dynamics with stochastic gradients and corrected damping coefficient (matrix); 3.



49

Table 3.1.
The mean and the standard deviation of the error between true values
and the estimated values for the four quantities of interest. All numbers
in the table are to be scaled by 10−4.

e1 e2 e3 e4

SGHMC 10.9± 7.6 229.4± 119.8 1934.9± 135.4 2069.6± 178.8

SGLDc 5.1± 3.4 11.8± 7.6 12.5± 11.3 26.5± 20.0

SGLDcs 9.7± 9.1 114.9± 9.0 153.8± 18.3 293.7± 18.8

SGNHTm 4.2± 3.0 7.0± 4.7 15.1± 4.4 6.9± 3.7

SGNHT 11.2± 5.0 112.1± 12.0 143.1± 6.6 326.2± 9.3

LD 9.2± 5.6 12.9± 7.9 10.5± 10.2 33.6± 17.7

SGLDcs: the scalar version of method 2; 4. SGNHTm: the matrix version of SGNHT;

5. SGNHT: the scalar version of the method; 6. LD: Langevin dynamics with full

gradients, but the damping and diffusion coefficients set to the same level as of those

using stochastic gradients.

The result is shown in table 3.1. From the table, it can be seen that doing

a correction on the damping coefficient, either by estimating the noise or by the

thermostat, greatly reduces the error. The thermostat method seems slightly better

than the estimation method. Also, the matrix version methods are better than their

scalar version. Fig. 3.1 shows the marginal posterior density of µ and γ. From the

plots it can be seen that SGNHT recovers the true marginal density much better than

SGHMC, under various parameter settings.

Although worse than the matrix versions of methods, the scalar versions are still

better than the naive method, and they are the only feasible methods for real prob-

lems, which are usually of high dimension. Overall, the scalar version of SGNHT is

recommended for the use in real machine learning problems.
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Figure 3.1. The marginal density of µ and γ recovered by SGNHT and
SGHMC in the Gaussian problem.
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3.4.2 Machine Learning Applications

In the following machine learning experiments, the focus is on comparing SGHMC

to SGNHT. Details of the experiment settings are described below. Note that the

criterion for measuring goodness of a sampler is based on the actual prediction accu-

racy for the Bayesian model of a problem in the experiments to be presented. The

prediction accuracy for the Bayesian model generally depends on the nearness of the

distribution of the samples to the true posterior distribution of the Bayesian model.

1. Bayesian Neural Network

The first experiment is on the benchmark MNIST dataset, using the Bayesian

Neural Network (BNN) as in [6]. The MNIST dataset contains 50,000 training

examples, 10,000 validation examples, and 10,000 test examples. The hidden

layer size of the BNN model is 100. To show SGNHT being able to handle

large stochastic gradient noise, small subsets of size 20 are sampled. The total

number of samples is 5 × 105 for each method. The parameter ∆t2 is chosen

from {2, 4, 6, 8} × 10−7 and the product A∆t from {0.001, 0.01}.

Fig. 3.2 shows the testing error over various parameters. It is obvious that

SGNHT outperforms SGHMC. The testing error for SGNHT is almost always

smaller than SGHMC under the same parameter settings. When ∆t2 = 4 ×

10−7 and A∆t = 0.01, both methods achieve the lowest testing error, and the

advantage of SGNHT is the most obvious in this setting. In addition, when

A∆t = 0.001, SGHMC diverges—as the green curve is way beyond the range.

2. Bayesian Matrix Factorization

The second experiment consists of two collaborative filtering tasks: the Movie-

lens ml-1m dataset and the Netflix dataset, using the Bayesian probabilistic

matrix factorization (BPMF) model [27]. The Movielens dataset contains 6,050

users and 3,883 movies with about 1M ratings, and the Netflix dataset contains

480,046 users and 17,000 movies with about 100M ratings. The BPMF model

factorizes an N ×M matrix into the multiplication of an N ×K matrix and a
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K×M matrix. In this experiment, K is chosen to be 10. To conduct the exper-

iments, each dataset is partitioned into training (80%) and testing (20%), and

the training set is further partitioned for 5-fold cross validation. Each random

subset contains 400 ratings for Movielens1M and 40,000 ratings for Netflix—

0.04% of the total dataset. The total number of samples is 105 for each method.

The parameter ∆t2 is chosen from {2, 4, 6, 8} × 10−7 and the product A∆t is

from {0.01, 0.1} and .

Figs 3.3 and 3.4 show the root mean square error (RMSE) of the predicted

rating. It can be seen that SGNHT outperforms SGHMC in all parameter

settings except in the Movielens dataset with the smallest ∆t2. As ∆t2 increases,

the advantage of SGNHT becomes more obvious. The divergence of SGHMC is

also observed in the Netflix dataset when ∆t2 ≥ 6 × 10−7 and A∆t = 0.01. In

the Movielens dataset, this is even more obvious—the RMSE for SGHMC is so

large that the green curve is off the chart.

3. Latent Dirichlet Allocation

The last experiment is the ICML dataset using Latent Dirichlet Allocation

(LDA) [28]. The ICML dataset contains 765 documents from the abstracts

or ICML proceedings from 2007 to 2011. After simple stop-word removal, a

vocabulary size of about 2K and total words of about 44K are obtained. The

number of topics is 30. 80% documents are used for 5-fold cross validation and

the remaining 20% for testing. Similar to [29], the semi-collapsed LDA is used.

The Dirichlet prior parameter for the topic distribution for each document is

set to 0.1 and the Gaussian prior for θkw is set as N (0.1, 1). Each random

subset contains 100 documents. The total number of samples is 5×104 for each

method.The parameter ∆t2 is chosen from {2, 4, 6, 8} × 10−5 and the product

A∆t is from {0.01, 0.1}.

Fig. 3.5 shows the testing perplexity for various parameter settings. The testing

perplexity is defined as L(Xtest)
−1/ntest , where L(Xtest) is the likelihood on the
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Figure 3.2. The testing error and its standard deviation for the MNIST
dataset for various ∆t2 and A∆t.

testing dataset and ntest is the number of testing examples. It can be seen that

when ∆t2 = 10−5 and A∆t = 0.1, both SGNHT and SGHMC achieves the

minimum perplexity, and the advantage of SGNHT is obvious. Similar to the

pervious three experiments, the performance of SGHMC under some parameter

settings (green curves) is too bad to be included in the chart.

Overall, SGNHT is apparently more stable than SGHMC when the discretization

step ∆t2 is larger. In all four datasets, especially with the smaller A∆t, SGHMC

gets worse and worse results as ∆t2 increases. Under the optimal parameter settings,

SGNHT outperforms SGHMC obviously.
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Figure 3.3. The testing RMSE and its standard deviation for the Movie-
lens1M dataset for various ∆t2 and A∆t.
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Figure 3.5. The testing perplexity and its standard deviation for the ICML
dataset for various ∆t2 and A∆t.
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3.5 Discussion and Conclusion

It is a challenging task to accurately sample the posterior distribution by using

SDE based methods with stochastic gradients, due to the additional bias. The bias

can be reduced by either estimating the noise and modifying the dynamics accordingly,

or by introducing new auxiliary variables with their dynamics. Both methods are

shown theoretically and empirically superior to the naive method. However, the

full potential of the proposed idea cannot be fulfilled due to the costly computation

involving N ×N matrices, or the large variance of the estimated noise. Compromises

must be made for practical use of the methods. A simple solution is to use a scalar to

replace the matrix in order to reduce the computation cost and the variance. Other

possible ideas include combining two methods together and using diagonal matrices

instead of scalars, and applying advanced matrix computation techniques to reduce

the variance of the estimate.
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4 QUASI-RELIABLE ESTIMATES OF EFFECTIVE SAMPLE SIZE

Markov chain Monte Carlo methods usually require immense computational effort.

So monitoring the convergence and evaluating the accuracy of MCMC methods is of

prime importance. The samples generated by MCMC methods are correlated. So

the effective sample size is more meaningful than the total number of samples. The

effective sample size is the number of equivalently independent samples for estimating

one particular quantity of interest. It can be obtained by dividing the integrated

autocorrelation time τ into the total number of samples T (Eq. (1.7)).

The integrated autocorrelation time is always considered in terms of a particular

quantity of interest, and it is estimated based on available samples. Then two natural

questions are asked: (i) is the estimate accurate, especially when the problem is

difficult such that the effective sample size is very small? (ii) is the quantity of

interest representative enough for the sampler to tell if the sampling is sufficient for

other quantities of interest? In fact, the number of samples needed to make accurate

estimation of a quantity of interest cannot be determined solely on the estimation

of the autocorrelation time of the quantity itself. Also, the autocorrelation time

of one particular quantity sometimes gives false information about the efficiency of

the sampler in general cases. More details about these assertions is presented later.

Overall, traditional way of estimating the autocorrelation time does not give good

answers to these two questions, hence is deemed unreliable for practical uses.

In this chapter, a more reliable estimate of the effective sample size is proposed,

particularly for difficult problems, such as sampling multimodal distributions. In gen-

eral, however, it is impossible to detect convergence without additional information.

So a realistic goal is to find a quasi-reliable estimate—meaning an estimate based

on apparent good coverage of state space. More concretely, it means guaranteeing

the region “belonging to” the modes that have already been visited is thoroughly
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sampled, and minimizing the risk of failing to visit other regions, for example, those

separated by energy barriers.

Two contributions are made towards more reliable estimates of effective sample

sizes:

1. An intuitive and easy to estimate quantity, τmax, for measuring thoroughness of

sampling is proposed. This quantity is defined to be the longest autocorrelation

time over all possible functions in state space. The quantity of interest corre-

sponding to τmax can be considered as the worst case quantity for a sampler,

hence it is conservative—in a good way—for detecting the convergence.

2. An efficient algorithm for estimating this longest autocorrelation time τmax is

constructed. Here efficient means that the algorithm has much less computa-

tion cost comparing to the sampling procedure. The algorithm requires only

a method for estimating the integrated autocorrelation time for an arbitrary

function, which is readily available and a better version can still be developed.

The idea of using the longest integrated autocorrelation time among a set of in-

dicator functions is initially proposed in [30], and discussion about how to choose

such functions automatically based on the dynamics of the propagator is presented

in [31]. The method described in this dissertation is a more thorough way of ap-

proximating the function corresponding to τmax. Specifically, the approximation is

done by optimizing the linear combination of a set of basis functions. Note that the

basis functions are not necessarily indicator functions. Also, the maximum over all

linear combinations can be arbitrarily larger than the maximum over individual basis

functions, if the basis functions are chosen to be highly correlated. Therefore, the

proposed τmax has a better claim to the maximum.

A classical method for estimating integrated autocorrelation time of a single func-

tion is described in [7], and its implementation, a small program called acor is avail-

able in [32]. In this chapter, an improved method by using a better lag window, a
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set of weights on combining autocorrelation functions, is also presented. Experiments

show that the proposed method is slightly better than acor.

As a more reliable indicator of the accuracy of sampling, the longest integrated

autocorrelation time is also a good measurement of the efficiency of samplers. An

application of this metric is to optimize parameters of samplers to minimize τmax.

For example, a good choice of damping coefficient of Langevin dynamics is essential

for the efficiency of the sampler. In this chapter, an initial attempt for optimizing

the damping coefficient of Langevin dynamics is made. The analysis is based on a

test problem where the analytical form is obtained for τmax and the optimal damping

coefficient, the latter result relying on computational evidence.

The rest of this chapter is organized as follow: In Sec. 4.1, needed concepts and

methods are reviewed. In Sec. 4.2, the concept of τmax is presented, and the algorithm

for estimating it is described. In Sec. 4.3, a lag window that helps in getting better

estimates of τ is proposed. In Sec. 4.4, theoretical and numerical analysis for the

optimal parameter value for Langevin dynamics is presented. In Sec. 4.5, new methods

are tested and compared with existing methods on 4 examples, covering a wide range

of problems. Sec. 4.6 concludes with a discussion of the chapter.

4.1 Background

Recall from Sec. 1.1.5, the variance of the estimated mean for a quantity of interest

E[u(θ)] is

Var[û] =
1

T
Var[u(θ)]

(
1 + 2

T−1∑
i=1

(
1− i

T

)
C(i)

C(0)

)
.

As T →∞,

Var[û] =
1

T
Var[u(θ)]τ +O(

1

T 2
)

The integrated autocorrelation time τ is

τ = 1 + 2
+∞∑
i=1

C(i)

C(0)
. (4.1)
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An estimate of covariances is provided by Ref. [33, pp. 323–324]:

Ĉ(k) =
1

T

T−k−1∑
i=0

(u(θi)− û)(u(θi+k)− û).

4.1.1 Forward Transfer Operator

Consider an MCMC sampler with extended space variable z. The forward transfer

operator F of the MCMC propagator maps a relative density ui−1 = ρi−1/ρ for zi−1

to a relative density ui = ρi/ρ for zi:

ui = Fui−1,

with

Fui−1(z) =
1

ρ(z)

∫
ρt(z|z′)ui−1(z′)ρ(z′)dz′.

where ρt(z|z′) is the transition probability density [24]. Note that u ≡ 1 is an eigen-

function of F for eigenvalue λ1 = 1.

Let the initial probability density be ρ0(z), then the error in the probability density

for estimating means is,

1

T

T−1∑
i=0

ρi − ρ = ρ
1

T
(1−F0)−1(1−FT0 )

ρ0 − ρ
ρ

,

where operator F0 is F with the dominant eigenvalue 1 removed, i.e., F0u = Fu −

E[u(θ)]. From this, it can be seen that the error is proportional to the reciprocal of

the spectral gap. In general, however, the spectral gap is not the relevant quantity

for our task.

4.1.2 Error in Estimates of Integrated Autocorrelation Time

With Ĉ(i) replacing C(i), an estimate of τ based on Eq. (4.1) has a standard

deviation that grows with the number of terms taken; more specifically, it is approx-
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imately
√
M/Tτ where M is the number of terms [7, Eq. (3.19)]. Therefore, use

instead

τ̂ ≈ 1 + 2
T−1∑
i=1

w(i)
Ĉ(i)

Ĉ(0)
(4.2)

where the weight function w(i), called a lag window, is a decreasing function.

The program acor uses a lag window that is 1 for k from 0 to M − 1 and 0 for

the rest, where M is the smallest number that exceeds the estimated τ by a factor of

10. It requires the number of samples T to exceed 100τ .

4.2 The Longest Autocorrelation Time

Let us begin with an example showing the danger of relying solely on estimates

of the ESS for just the quantities of interest.

Consider a mixture of two Gaussians,

− log ρ(θ1, θ2) =
1

2
(36(θ1 + 1)2 + (θ2 − 3)2) +

1

2
((θ1 − 2)2 + 36θ2

2) + const, (4.3)

whose combined basin has an L shape with a barrier at the corner of the L. Using

Brownian dynamics with the Euler-Maruyama integrator, the trajectory of a realiza-

tion of sampling is shown in Fig. 4.1. It can be seen that the trajectory makes the

first transition around T = 1000.

Fig. 4.2 shows the estimated integrated autocorrelation time and the effective

sample size as a function of the sample size. In terms of thorough sampling, suppose

that ESS = 100 is considered to be adequate for estimating quantities of interest.

Just before the θ1 curve jumps, the estimated effective sample size, ÊSS , is much

greater than 100 indicating thorough sampling. This is misleading since after the

jump ÊSS drops dramatically. On the other hand, the θ2 curve more reliably detects

thorough sampling. Note that if the trajectory starts from the vertical leg of the

“L”, the behavior of θ1 and θ2 are swapped. This implies that a general quantity of

interest that is independent of the starting point and can capture the “hardest” move

is needed for better detecting convergence.
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4.2.1 Definition of τmax

The autocovariance function C(i) can be written in the form of a inner product.

The inner product is

〈v, u〉 =

∫
v(z)u(z)ρ(z) dz, (4.4)

where the bar denotes complex conjugate. Note that 〈1, u〉 is the expectation E[u(z)]

of u(z). It can be shown by induction that the cross covariance

E[v(z0)u(zi)] = 〈F iv, u〉,

and, in particular, C(i) = 〈F iu, u〉.

The goal is to maximize the autocorrelation time over all possible functions

u. There may be permutations P of the variables z such that ρ(Pz) = ρ(z) and

P−1FP = F , where (Pu)(z) = u(Pz), for all interesting u. Such symmetries exist in

many practical problems. For example, in machine learning, the nodes in hidden lay-

ers of a deep neural network are considered interchangeable. And in mixture models,

the order of the components are also interchangeable.

For convenience, it is appropriate to consider only those functions that satisfy the

symmetry condition. Define the set of function

W = {u = u(z) | E[u(z)] = 0, u(Pz) = u(z) for symmetries P},

and define the longest autocorrelation time as

τmax = sup
u∈W

(
1 + 2

+∞∑
i=1

C(i)

C(0)

)
.

By using inner product, it can also be written as

τmax = sup
u∈W

(
1 + 2

+∞∑
i=1

〈F iu, u〉
〈u, u〉

)
. (4.5)

For reversible samplers, for which the propagator has a self-adjoint operator, the

spectral gap is intimately related to τmax. If τmax were the maximum over all u(z),

then

τmax = (1 + λ2)/(1− λ2), (4.6)

where λ2 is the eigenvalue of the transfer operator that is nearest to 1.
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4.2.2 Discretization of State Space

Computationally, it is not possible to work in an infinite-dimensional function

space, so a discretization is required. Here a linear combination u(θ) = aTu(θ) of

given basis functions ui ∈ W is considered, where a is to be determined. The τmax

obtained by the discretized function space is expected to be close to the true value,

if the basis functions are well selected.

After the discretization, the autocovariance can be written as

C(i) = 〈F iu, u〉 = aTCia,

where

Ci = 〈F iu,uT〉 = E[u(θ0)u(θi)
T], (4.7)

and

τmax ≈ sup
a

aTKa

aTC0a
, (4.8)

where

K = C0 + 2
+∞∑
i=1

Ci. (4.9)

This optimization problem in Eq. (4.8) can be transformed to a generalized eigenvalue

problem, by fixing the denominator and combining it with a Lagrange multiplier.

After some algebra, we have

1

2
(K + KT)a = C0aτ. (4.10)

For basis functions, linear functions ui(θ) = θi are suggested as a general choice.

The matrix C0 is symmetric positive definite, if the components of u are linearly

independent. For reversible samplers the cross covariance matrices Ci, i ≥ 1 are also

symmetric [34]. A reversible MCMC sampler is defined to be one that satisfies detailed

balance (Eq. (2.3)). All Metropolis-Hasting samplers are reversible. Examples of some

popular reversible samplers include
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1. Gibbs sampler,

2. a Brownian sampler (Sec. 1.1.3), the Euler-Maruyama discretization of Brown-

ian dynamics coupled with a Metropolis step (known as MALA in the statistics

literature [25]),

3. hybrid Monte Carlo [2] (Sec. 1.1.2).

4.2.3 A Method for Estimating τmax

Begin with a guess for a, e.g., choose a to be a vector of 0’s except for a 1

corresponding to the function with the longest autocorrelation time. Then proceed

as follow:

1. With C(i) = aTCia, select a lag window w(i), i = 1, 2, . . . , T − 1,

2. Set

K = C0 + 2
T−1∑
i=1

w(i)Ci. (4.11)

Note that in practice, the lag window w(i) cuts off to 0 well before i = T − 1.

3. Choose a to maximize aTKa/(aTC0a).

4. Repeat.

The number of samples T needed for an estimate of τmax depends on τmax itself;

for this a formula suggested by others can be used, e.g., acor requires n ≥ 100τ ,

roughly.

To improve the convergence of the algorithm, τmax is prohibited from decreasing

from one iteration to the next. To guarantee convergence, each w(k) of the lag window

is insisted to be nonincreasing from one iteration to the next.

It is important to keep the method cheap, i.e., its time complexity must not

exceed the time complexity for sampling, and using FFT to estimate autocovariances

is helpful for achieving this.
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4.3 Better Estimates of Integrated Autocorrelation Time

In this section, a lag window for estimating τ and τmax (Eqs. (4.2) and (4.11)) is

constructed.

4.3.1 An Optimal Lag Window

The autocorrelation function can be highly oscillatory, which would invalidate the

method proposed here. To obtain a much more suitable function, use values based

on doubling: vi = u(θ2i) + u(θ2i+1). In the case of a reversible sampler, this can be

shown to yield a positive decreasing convex autocorrelation function [8, Sec. 3.3]. It

is straightforward to show that the autocorrelation time of u can be recovered from

that of v:

τ (u) =
1

2

C(v)(0)

C(u)(0)
τ (v),

where the superscripts indicate that the values belong to u or v.

4.3.2 Form of Lag Window

Begin by requiring that the lag window w(i) satisfy 0 ≤ w(i) ≤ 1 and be nonin-

creasing. Make the simplifying assumption that covariance estimates Ĉ(i) satisfy

Ĉ(i) = C(i) + σC(0)ηi,

for some nonnegative value σ, where the ηi are independent standard Gaussian ran-

dom values. The estimated autocorrelation time is

τ̂ = 1 + 2
+∞∑
i=1

w(i)
c(i) + σηi
1 + ση0

,

where c(i) = C(i)/C(0) is the normalized autocorrelation function (ACF). Assuming

σ � 1, the error in the integrated autocorrelation time, to a first approximation, is

−2R + 2σ
+∞∑
i=1

w(i)ηi − 2ση0

+∞∑
i=1

w(i)c(i),
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where

R =
+∞∑
i=1

(1− w(i))c(i).

The expectation of the square of the error is

4R2 + 4σ2

+∞∑
i=1

w(i)2 + 4σ2

(
+∞∑
i=1

w(i)c(i)

)2

,

which is minimized if

w(i) =
c(i)

σ2

(
R− σ2

+∞∑
i=1

w(i)c(i)

)
. (4.12)

Note that, for small enough σ, the right-hand side is positive.

To use the formula above, the values of c(i) need to be known. Therefore, consider

a fitting model

Ĉ(i) = c0λ
i + σc0ηi,

where λ, c0, and σ are to be determined. An algorithm of finding these parameters

can be found in [34]. This model is simple and well describes the tail behavior of

the ACFs. For the normalized ACFs c(i)’s, the model assumes c(i) = λi, so w(i) is

proportional to λi, suggesting the choice

w(i) = min{1, λi−M}, (4.13)

where M is to be determined optimally.

Using the specified model for Ĉ(i), the expectation of the error squared becomes

4c0λ
2

(1− λ2)2

(
µ2 + σ2(1 + λ− µ)2

)
+

4σ2 log µ

log λ
− 4σ2

1− λ2
,

where µ = λM . The necessary condition for the minimum—the first derivative w.r.t.

µ being 0—leads to a quadratic equation for µ, which has a positive and negative

root. If the sample size T is not large enough, the positive root may exceed 1.

4.4 Optimal Damping Coefficient of Langevin Dynamics

Recall that in the equations of motion for Langevin dynamics (Eq. (1.3)), the

damping coefficient A (Sec. 3.2.1) is a parameter determining the efficiency of the
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sampler. The efficiency is best measured by a quantity that is independent of partic-

ular quantities of interest, since their choice varies depending on the user. Thus, the

longest integrated autocorrelation time τmax is a good measurement for this purpose.

Consider a test problem—sampling 1-D Gaussian distribution ρ(θ) ∝ exp(−ω2θ2/2)

by using Langevin dynamics. The equations of motion are written as

dθ = pdt,

dp = −ω2θdt− Ap+
√

2Adw. (4.14)

Let L0 be the Fokker-Planck operator (Ref. [35] and Eq. (3.4))

L0u = (−p ∂
∂θ

+ ω2θ
∂

∂p
+ A

∂

∂p
p+ A

∂2

∂p2
)u

The Fokker-Planck operator is related to the forward transfer operator as

Fu = ρ−1 exp(∆tL0)(ρu),

where ρ is the stationary density.

ρ(θ, p) ∝ exp(−1

2
ω2θ2 − 1

2
p2).

Therefore,

F = exp(∆tL), (4.15)

where the operator L is defined to be

Lu = ρ−1L0(ρu) = (−p ∂
∂θ

+ ω2θ
∂

∂p
− Ap ∂

∂p
+ A

∂2

∂p2
)u.

The adjoint operator of L is

L†u = (p
∂

∂θ
− ω2θ

∂

∂p
− Ap ∂

∂p
+ A

∂2

∂p2
)u.

Adjoint means 〈Lv, u〉 = 〈v,L†u〉.

Consider the probablists’ Hermite polynomials Hei for ωθ and p. Orthogonal basis

functions of degree k can be constructed by

Hei(ωθ)Hej(p), i+ j = k.
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The orthogonality is with respect to the inner product (Eq. (4.4)). For k = 0, 1, 2, . . .,

the basis functions are

u =1,

u =[ωθ, p]T,

u =[ω2θ2 − 1, ωθp, p2 − 1]T,

u =[ω3θ3 − 3ωθ, (ω2θ2 − 1)p, ωθ(p2 − 1), p3 − 3p]T,

u =[ω4θ4 − 6ω2θ2 + 3, (ω3θ3 − 3ωθ)p, (ω2θ2 − 1)(p2 − 1),

ωθ(p3 − 3p), p4 − 6p+ 3]T,

· · ·

The operator L applied to a set of basis functions u can be transformed to a matrix

M applied to u:

Lu = Mu,

with

M =



0 kω 0 · · · · · · · · · 0

−ω −A (k − 1)ω 0 · · · · · · 0

0 −2ω −2A (k − 2)ω 0 · · · 0

0 0 · · · · · · 0

· · · −(k − 1)ω −(k − 1)A ω

0 · · · · · · 0 −kω −kA


,

where k is the number of basis functions. Similarly, the adjoint operator L† has a

corresponding matrix M†:

M† =



0 −kω 0 · · · · · · · · · 0

ω −A −(k − 1)ω 0 · · · · · · 0

0 2ω −2A −(k − 2)ω 0 · · · 0

0 0 · · · · · · 0

· · · · · · (k − 1)ω −(k − 1)A −ω

0 · · · · · · 0 kω −kA


.
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Recall the relation between L and F (Eq. (4.15)). Combining Eqs. (4.7), (4.9)

and (4.10), τmax for a given k is the maximum eigenvalue of the matrix

I +
+∞∑
i=1

exp(iM∆t) +
+∞∑
i=1

exp(iM†∆t) = coth(−1

2
M∆t) + coth(−1

2
M†∆t).

Note that the maximum eigenvalue of this matrix is a function of A, ω and ∆t.

Actually the number of parameters can be reduced to 2, by extracting ω out of the

matrices M and M†. Then τmaxω∆t can be made a function of A/ω. The reason to

make A/ω one of the parameters is because that omega is intrinsic to the problem

and ∆t is just a method parameter. The longest autocorrelation time τmax can be

found numerically from the matrix with different sets of basis functions. Assuming

the maximum of τmax is attained for k = 1 and k = 2, which is supported by Fig. 4.3.

The optimal A is at the intersection of the curve for k = 1 and the curve for k = 2. An

analytical form for the optimal A is
√

6ω/2 as ∆t→ 0, which is derived in [16]. From

Fig. 4.3, it can be seen that the numerical value is consistent with the theoretical

value.

4.5 Numerical Experiments

4.5.1 A Gaussian Distribution

To confirm the correctness of the theory, consider a simple test problem for sam-

pling where the target distribution is the standard Gaussian. The sampler is Brownian

dynamics with Euler-Maruyama method. The discretization time step size is chosen

to be ∆t = 0.02. This step size is much smaller than needed in practice. It is cho-

sen in this way to make the discretization error negligible, thereby permitting the

use of analytical results derived for exact Brownian dynamics. The Markov chain is

obtained by subsampling the original trajectory at intervals of 0.1 (every 5th point).

This gives the true eigenvalues of the transfer operator of the Brownian dynamics [35]

as 1, exp(−0.1), exp(−0.2), exp(−0.3), . . .. The corresponding eigenfunctions are the
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Table 4.1.
The weights of the linear combination of the three basis functions with a1

normalized to 1.

n = 103 n = 104 n = 105 n = 106

a1 −0.036 −0.008 0.003 0.010

a2 0.972 1.024 1.008 0.994

a3 1.000 1.000 1.000 1.000

Hermite polynomials defined by the recurrence: Hi(θ) = 2qHi−1(θ) − H′i−1(θ) with

H0(θ) = 1.

Consider three basis functions

H3 + H2 + H1, H3 − H2 + H1, −H3 + H2 + H1.

The goal of this test is to recover the theoretical value of τmax and the corresponding

maximizing function H1(θ) by using the linear combination of given functions. Since

Brownian dynamics is a symmetric sampler, the theoretical value of τmax can be

obtained by using Eq. (4.6):

τmax = (1 + exp(−0.1))/(1− exp(−0.1)) ≈ 20.0.

Twelve independent runs are performed to evaluate the reliability of the method.

Fig. 4.4 shows the estimated τmax for all 12 runs for increasing sample size. It can

be seen that the estimated value converges to the true value. And the variance is

comparatively small when N > 3× 103. Table 4.1 shows the coefficients of the linear

combinations of given basis functions. It can be seen that the theoretical maximizing

function H1(θ) is successfully recovered.

The proposed lag window and the lag window of acor are also compared. Fig. 4.5

shows the mean and variance for 12 runs of the estimates of τ for H1 and H3 +H2 +H1

as well as τmax. It can be seen that when T is small, both methods underestimate

τ , but the proposed method gives larger estimates. When T is large, both methods
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Figure 4.5. Estimated τ and τmax by the proposed lag window and acor’s
lag window for the 1-D standard Gaussian.

converge to the true value, and the proposed method has a smaller variance. Overall,

the proposed lag window is more reliable than is that of acor.

4.5.2 An L-Shaped Mixture of Two Gaussian Distributions

Consider again the mixture of two Gaussians with target density given by Eq. (4.3)

sampled with discretized (Euler-Maruyama) Brownian dynamics with time step size

∆t = 0.02 and subsampled at time interval 0.1 (every 5 points). The basis functions

are θ1 and θ2. Theoretically, θ1 should have a larger estimated autocorrelation time

than θ2 for small T while the chain remains in the horizontal leg of the “L”, since the

frequency of the motion is smaller in the direction of θ1 than it is in the direction of

θ2. By the same reasoning, the weight for θ1 in the linear combination forming the

maximizing function should be greater than the weight for θ2, when T is small. Due

to symmetry, on the other hand, both autocorrelation times and the magnitudes of

the weight for θ1 and θ2 should be equal when T is large.

Fig. 4.2 shows ÊSS and τ̂ for θ1 and θ2. Table 4.2 shows the weights of linear

combinations for different sample sizes. The weighting obtained meets expectations,

ultimately giving equal weight to θ1 and θ2. Computation of τmax (not shown due to



76

Table 4.2.
The weights of the linear combination of the θ1 and θ2 with a1 normalized
to 1.

n = 103 n = 104 n = 105 n = 106

a1 1.000 1.000 1.000 1.000

a2 0.089 0.085 −1.207 −1.051

overlapping with the curve for θ1) confirms that its estimate equals the greater the

estimates of the τ values for the two basis functions.

4.5.3 A One-node Neural Network

Consider the simplest Bayesian neural network regression model [36], having a

single node in the hidden layer:

yi ≈ u(θ;xi) = θ3 tanh(θ1xi + θ2) + θ4,

where (xi, yi) represents a data example. Suppose a total of 100 data examples are

given as shown by the large dots of Fig. 4.6(a). The posterior distribution is

− log ρ(θ) =
1

2
β

100∑
i=1

(yi − u(θ;xi))
2 +

1

2
α‖θ‖2 + const,

where β = 2.5 and α = 0.8. There are three modes. One corresponds to a good

fit at x = −2, one to a good fit at x = 2, and one to a best fit as a constant

function. Suppose the sampler is discretized (Euler-Maruyama) Brownian dynamics

with ∆t = 0.01, and let the Markov chain be obtained by subsampling the original

trajectory at time interval 0.1 (every 10 points). Use as basis functions for finding

the maximizing function by using linear combination are the parameters of the model

θ1, θ2, θ3 and θ4. In practice, Eθ[u(θ; x)] for any x is a possible quantity of interest.

In this experiment, only the prediction for the first data example is computed.
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Figure 4.6. The resulting prediction and the trajectories of function values
in the one-node neural network problem.

Fig. 4.6(a) shows the overall prediction ū(x) resulting from the regression model.

It can be seen that when the sampling is insufficient, the prediction is not the best

possible— the asymmetry implies only one mode is explored, just like the behavior

of the maximum a posteriori (MAP) estimate. When the sampling is sufficient, on

the other hand, the prediction is much closer to being the best possible. This exam-

ple demonstrates the advantage of sampling over MAP, and shows the necessity of

detecting convergence to validate a sampling result.

Fig. 4.6(b) and (c) show the trajectories of function values. It can be seen that the

maximizing function makes many fewer transitions than θ1. This is because the maxi-

mizing function tends to make the “hardest” moves, hence has longest autocorrelation

time.

Fig. 4.7(a) and (b) show ÊSS and τ̂ for the maximizing function and two others. It

can be seen that ÊSS of the prediction ū(x1) is misleading for convergence detection,

since it indicates sufficient sampling when n ≈ 100. It can also be seen that the

maximum τ̂ is significantly larger than the longest τ̂ of the other two functions.

Fig. 4.7(c) shows the mean squared error of the regression converging when N >

2.0× 104. This coincides with the convergence of τ̂max. On the other hand, the τ̂ for

the prediction ū(x1) might suggest stopping far too early and the τ̂ for θ1 might also

be too optimistic.
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Figure 4.7. Autocorrelation times, effective sample sizes, and the mean
squared error for the one-node neural network model.
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4.5.4 Logistic Regression

Consider a Bayesian logistic regression model [10] discussed in Sec. 1.1. The

logistic function maps a linear combination of features x to a real value in (0, 1):

σ(θ; x) = 1/(1 + exp(−θTx)).

The posterior distribution is

− log ρ(θ) = β

n∑
i=1

(yi log(σi) + (1− yi) log(1− σi)) +
1

2
α‖q‖2 + const,

where yi is the class label of data example i, β = 1.0 and α = 0.1. When predicting

the label of a given data example x, use the average value

σ̄(x) =
1

T

T−1∑
i=0

σ(θi; x),

over all samples. For data, use the Australian Credit Approval dataset from the UCI

machine learning data repository [37]. It contains 690 data examples and provides

15 features for each data example. Half of the examples in the dataset are extracted

to form the training set, and the remainder are from the testing set. The sampler

is discretized (Euler-Maruyama) Brownian dynamics with ∆t = 0.05. This step size

best balances discretization error and sampling error. As for the one-node neural

network problem, the model parameters θi are used as functions for estimating τmax

and the prediction for the first data point in the training set as a quantity of interest.

Fig. 4.8 shows τ̂ , ÊSS , and the training/testing error in the logistic regression

problem. The training error is defined as

errtrain =
1

n

n∑
i=1

1t(xi)6=yi ,

where the label t of a data example x is predicted to be 1 if σ̄(x) ≥ 0.5 and 0 if

σ̄(x) < 0.5. Note that t itself is not a quantity of interest, but depends on the

quantity of interest Eθ[σ(θ; x)]. The testing error is defined similarly except the data

examples are from the testing set.
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Figure 4.8. The autocorrelation times, the effective sample sizes, and the
training/testing error in the logistic regression problem.

In practice, the convergence may be monitored by observing the convergence of

the training error. This approach, however, can be very expensive for large data sets.

This is because that the prediction function σ(θ; x) has to be evaluated for every

data example xi’s, so that the computation cost is even higher than the sampling

procedure if stochastic gradients are used. Instead, estimates of quantities, such as

the prediction function of a single data example or a single weight, can be used for

detecting convergence. As is shown in the figure, however, it is risky to observe only

one such quantity. Both the training and testing error do not converge until the

number of samples exceeds 1000, but both the prediction and the weight θ1 have

an almost constant autocorrelation time equal to 1 (implying independent samples).

This is obviously misleading. On the other hand, the maximizing function does not

show convergence until N > 1000. This demonstrates that the maximizing function

is a more reliable indicator of convergence.

4.6 Discussion and Conclusion

For MCMC methods, there is no doubt of the importance of estimating the inte-

grated autocorrelation times τ for quantities of interest that are estimated from the

samples. However, estimates of τ by previous methods are not reliable. In this chap-
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ter, a method that uses the results of the sampling to obtain quasi-reliable estimates

is proposed. The idea is to find the function with the longest τ among all possible

linear combination of a set of basis functions. The effectiveness of the method de-

pends on how well the space spanned by the basis functions approximates the space

of all functions of the state space. To select good basis functions, intuition and prior

knowledge of the problem is helpful. If such information is not available, low-degree

polynomials might be reasonable choices.
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5 FURTHER WORK ON SAMPLING METHODS

This chapter is organized as follow: Sec. 5.1 presents the idea of changing variables,

with two examples showing the utility of this idea; Sec. 5.2 describes the two-stage

Takahashi-Imada method, and shows results of experiments; Sec. 5.3 concludes this

chapter with a discussion.

5.1 Change of Variables

The methods proposed in Chap. 2 focus on designing dynamical systems to over-

come the obstacles for efficient sampling caused by the undesirable properties of

the potential energy function. For example, the variable mass method presented in

Sec. 2.3.4 changes the Hamiltonian dynamics to the variable mass Hamiltonian sys-

tem in order to allow the particle moving faster in the region of the energy barrier.

In fact, rather than designing the dynamical system of HMC-like samplers, the dif-

ficulty of sampling could be reduced by another way—changing the potential energy

function itself.

This is achieved by the idea of change of variables. The aim to change the vari-

ables θ is to change the potential energy function that governs the dynamics. In the

transformed space, the undesirable properties of the potential energy function can be

removed, by carefully designing the formula for the new variable. The original idea is

from [9]. Such method, however, is very complicated, and extensive problem-specific

knowledge is needed.

The goal of this work is to make a general framework for changing variables, under

which simpler methods can be found to change the potential energy function to favor

better sampling. Moreover, less problem-specific knowledge is required, such that the

idea is more generally applicable. Note that the framework of designing dynamical
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systems presented in Chap. 2 is independent of any prior transformation. Therefore,

the method discussed in this chapter can be combined with methods in Chap. 2 to

make even more powerful sampling methods.

There are two examples to be shown for the purpose of demonstration. The first

one is a simple test problem—a double-well potential in 1-D. The task is to remove the

barrier in the transformed space by applying a simple change of variable. The second

one is a problem from machine learning—the relevance vector machine (RVM) [38].

The potential energy function of RVM has a smooth region combined with a spike

region. The spike region requires a very small time step size for HMC to have a rea-

sonable acceptance probability, while the smooth region cannot be sampled efficiently

with the same step size. The task for this problem is to remove the spike region, again

by a simple change of variables, such that the ordinary HMC is applicable.

5.1.1 The Method

Consider the change of variables

θ = g(ξ). (5.1)

where g is a one-on-one mapping from ξ to θ. Assume the probability density of θ

is ρθ(θ) = exp(−U(θ))/Z, and the probability density of ξ is ρξ(ξ) = exp(−U ′(ξ))/Z.

To find the potential energy function of ξ, consider an arbitrary subset A of the phase

space, ∫
A

1

Z
exp(−U ′(ξ))dξ = P(ξ ∈ A) = P(g−1(θ) ∈ A)

=

∫
g(A)

1

Z
exp(−U(θ))dθ =

∫
A

1

Z
exp(−U(g(ξ))| det(∂ξg(ξ))|dξ

=

∫
A

1

Z
exp(−U(g(ξ)) + log(| det(∂ξg(ξ))|))dξ

Therefore

U ′(ξ) = U(g(ξ))− log(| det(∂ξg(ξ))|). (5.2)
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The original HMC algorithm is modified to the algorithm of HMC with change of

variables (HMCcv) by changing the propagator from Ψ to Ψ̃, where

Ψ̃ = g ◦Ψ′ ◦ g−1.

The propagator Ψ′ is the discretized flow of the equations of motion

dξ = pdt,

dp = f ′dt,

where

f ′ = (∂ξg)Tf(g)−∇ξ log(| det(∂ξg)|). (5.3)

Note that in the actual implementation, g is only needed at the end of each MC step

to obtain samples in the original space, and g−1 is only needed once at the beginning

to transform the initial sample θ0 to ξ0.

5.1.2 Lowering the Energy Barrier

To use the idea of changing variables to lower the energy barrier, a function g(ξ)

needs to be found, such that in the space of ξ, the energy barrier is lowered and, at the

same time, the function itself is kept simple. REPSWA [9] uses Legendre polynomials

to approximate the potential function in the barrier region. This approximation is

complicated and requires extensive expert knowledge about the problem. The goal

in this section is to find a simple function that achieves the same.

Consider a 1-D double-well potential problem. To make the barrier flat, find a

monotonic function θ = g(ξ) such that the second term in Eq. (5.2), log(dg(ξ)/dξ),

is a “bell-shaped” function located in the barrier region. In this way, by subtracting

this term, the barrier in the potential energy function can be removed or lowered.

Letting log(dg(ξ)/dξ) = l(g), we have

dg

dξ
= exp(l(g)). (5.4)
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Figure 5.1. The graphs of U(θ) (a) and U ′(ξ) (b) in the 1-D double-well
potential problem.

Integrate Eq. (5.4) to get

ξ =

∫ g−1(ξ)

0

exp(−l(θ))dθ,

and

g(θ) =

∫ θ

0

exp(−l(θ′))dθ′.

Here l(θ′) is to be determined and must satisfy two conditions: (i) in order to have

a closed form for ξ, it must be integrable analytically; (ii) it must be “bell-shaped”.

To this end, try

l(θ′) = − log(1− αsech2(
θ′

σ
)),

where 0 < α < 1 and σ > 0 are parameters to control the shape of the function in

order to fit the width and the height of the barrier. After some algebra, a formula for

ξ is found to be

ξ = θ − ασ tanh(
θ

σ
). (5.5)

Fig. 5.1 shows the graphs of U(θ) and U ′(ξ). It can be seen that the energy barrier

is greatly reduced in the transformed variable.

The method is tested in a 1-D double-well potential problem arising from a mixture

of Gaussians located at±1.5 with standard deviations 1. The integrator is the leapfrog
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(a) (b)

Figure 5.2. The trajectory of the samples for HMC (left) and HMC with
change of variables (right). The x-axis is the number of samples and the
y-axis is the position.

method for Hamiltonian dynamics. Table 5.1 shows the result of the experiment. In

the table, P is the acceptance probability, ε the probability of crossing the energy

barrier in a given step. The parameters α = 0.96 and σ = 3. The integration step

sizes for HMC and HMCcv are π/2 and π/3, respectively. The integration duration

is τ = 1. The number of samples is 103.

Table 5.1.
The acceptance probability and the crossing probability in a given step
for the method of changing variables in the 1-D double-well potential
problem. P is the acceptance probability, ε is the crossing probability, ∆t
is the step size, HMCcv is HMC with change of variables

P ε ∆t

HMC 0.82 2.24% π/2

HMCcv 0.80 47.71% π/3

Fig. 5.2 shows the trajectories of θ. It can be seen that the change of variables

helps a lot in crossing the energy barrier—about 20 times more events.
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5.1.3 Smoothing the Potential Energy Function

In some specific models in machine learning, such as the Relevance Vector Machine

(RVM) [38], the potential energy function has some spikes resulting in extremely

high frequency motions. Very small step sizes are required for HMC to work in

those particular regions, but in other regions, such step sizes are too small to explore

efficiently. A change of variables can solve this problem by removing the spikes from

the potential energy function so that uniformly larger step sizes can be applied.

The potential energy function of an RVM can be written as

U(θ) = θTAθ − bTθ +
N∑
i=1

1

2
log(α + θ2

i ), (5.6)

where A and b are obtained from the data, and α is a very small positive value close

to zero. This function consists of a quadratic term and a logarithm term. The step

size for HMC to sample efficiently in most of the regions in the state space fails for

sampling the region corresponding to the logarithm term.

To remove the logarithm term, equate the logarithm term to the second term in

U ′ (Eq. (5.2)):

log(| det(∂ξg(ξ))| =
N∑
i=1

1

2
log(α + g2

i ).

Note that if each gi is chosen to be a function of θi alone, we have

log |dgi
dξi
| = log

√
α + g2

i .

After some algebra, the equation above gives

1√
g2
i + α

dgi = dξ.

Integrate both sides to obtain a formula for ξi:

ξi = log(θi +
√
θ2
i + α).

Then the potential function in the ξ space becomes

U ′(ξ) = g(ξ)TAg(ξ)− bTg(ξ),
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Figure 5.3. The graphs of U(θ) (a) and U ′(ξ) (b) in the 1-D RVM problem.

The test problem for this example is a 1-D RVM model. The potential energy

function is

U(θ) = Aθ2 − bθ +
1

2
log(α + θ2),

with A = 0.5, b = 4 and α = 10−9.

Fig. 5.3 shows the graph of U(θ) and U ′(ξ).

With the same integration step size ∆t = 0.5, both ordinary HMC and HMC

with change of variables achieve > 95% overall acceptance probability. However,

ordinary HMC does not sample the region around 0 accurately. The actual acceptance

probability in that region is close to 0. Fig. 5.4 shows the number of samples in the

region around 0 obtained by ordinary HMC and HMC with change of variables. It

can be seen that the histogram obtained by ordinary HMC is not consistent with

the desired result, while HMC with change of variables performs well. To be able to

sample accuratetly in this region, the integration step size for ordinary HMC must

be less than 2.5× 10−5. However, this step size is extremely inefficient for the entire

region.
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(a) (b) (c)

Figure 5.4. Histogram of the number of samples in the region near 0. (a)
The target distribution, (b) HMC, and (c) HMCcv
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5.2 Two-stage Simplified Takahashi-Imada Method

An improvement in the accuracy of integrating the Hamiltonian system is pre-

sented in this section. The leapfrog method, though simple, has only second order

accuracy. Fourth order accuracy is achieved by the Takahashi-Imada method [39],

which uses the information of the Hessian of the potential energy function. The sim-

plified Takahashi-Imada method [14] avoids the computation of the Hessian. It ap-

proximates the Hessian by the evaluation of the force. In [15], the advantage of using

a two-stage Hessian based integrator is discussed. Combining the ideas of Refs. [14]

and [15], a new fourth order numerical integrator, called the two-stage Takahashi-

Imada method is proposed. Experiments are performed on some test problems, and

promising results are obtained.

Recall the leapfrog method introduced in Sec. 2.1. It has second order accuracy,

i.e., the global error is bounded by O(∆t2) [14].

The goal here is to find a numerical integrator with higher order accuracy. Fourth

order accuracy can be achieved by the Takahashi-Imada method [39], which adds the

expression ∆t2(∇θf(θ))f(θ)/12 to every force evaluation in the leapfrog method for

solving the Hamiltonian system, namely

p1/2 = p0 +
1

2
(I +

1

12
(∆t)2∇θf(θ0))f(θ0)∆t. (5.7)

Note that this method requires evaluating the Hessian −∇θf of the potential energy

function.

To avoid the evaluation of the Hessian, (I + (∆t)2∇θf(θ)/12)f(θ) is replaced by

f(θ + (∆t)2f(θ)/12) to obtain the simplified Takahashi-Imada method [14]:

p1/2 = p0 +
1

2
f(θ0 +

1

12
(∆t)2f(θ0))∆t,

θ1 = θ0 + p1/2∆t,

p1 = p1/2 +
1

2
f(θ1 +

1

12
(∆t)2f(θ1))∆t. (5.8)
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It is of effective order four when combining with the mapping χ∆t : (θ,p) → (θ̂, p̂)

defined by

θ̂ = θ +
1

12
(∆t)2f(θ),

p = p̂ +
1

12
(∆t)2∇θf(θ)p̂.

Let Ψ∆t denote the flow of the simplified Takahashi-Imada method (Eq. (5.8)). Ef-

fective order four means that the χ∆t ◦Ψ∆t ◦χ−1
∆t approximates the exact flow Φ∆t to

order four.

The two-stage method

p1/6 = p0 +
1

6
f(θ0)∆t,

θ1/2 = θ0 +
1

2
p1/6∆t,

p5/6 = p1/6 +
2

3
(I +

∆t2

24
∇θf(θ1/2))f(θ1/2)∆t,

θ1 = θ1/2 +
1

2
p5/6∆t,

p1 = p6/5 +
1

6
f(θ1)∆t. (5.9)

has fourth order accuracy [15], which does not require any transformation. However,

similar to the Takahashi-Imada method, this method also requires evaluating the

Hessian.

Therefore, by the same idea of the simplified Takahashi-Imada method, using

the first derivative to approximate the second derivative, the two-stage simplified

Takahashi-Imada method is obtained by changing the third step of the two-stage

method to

p5/6 = p1/6 +
2

3
f(θ1/2 +

∆t2

24
f(θ1/2))∆t. (5.10)

The stability condition for the linear test equation with f(θ) = −ω2θ of both sim-

plified Takahashi-Imada method and two-stage simplified Takahashi-Imada method

is ω∆t < 2
√

3. The leapfrog method requires one force evaluation per integration

step, the simplified Takahashi-Imada method requires two force evaluations per step,
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and the two-stage simplified Takahashi-Imada method requires three force evalua-

tions. However, empirical evidence, given below, shows that the two-stage simplified

Takahashi-Imada method is more efficient than the other two methods, when the

same number of force evaluations are performed for a given integration interval.

Experiments are performed on two test problems. The first one is anN -dimensional

Gaussian problem, which has the potential energy U(θ) = θTθ/2, Let ∆t = 1/3 for

HMC, ∆t = 2/3 for simplified Takahashi-Imada, and ∆t = 1 for two-stage simplified

Takahashi-Imada. The integration interval τ = 2 and the number of samples T = 104.

Fig. 5.5 shows the acceptance probability vs. the dimensionality.

The second test problem is again a double-well potential problem similar to the

one described in Sec. 2.3.3. The difference is that this test problem has a much

higher dimension than that in Sec. 2.3.3. Let ∆t = π/6 for HMC, ∆t = π/3 for

simplified Takahashi-Imada, and ∆t = π/2 for two-stage simplified Takahashi-Imada.

The integration interval τ = π, and the number of samples T = 104. Fig. 5.6 shows

the acceptance probability vs. the dimensionality.

With the chosen ∆t and τ , the number of force evaluations for all methods in one

Monte Carlo step are all equal to 6. With the same computation cost, it can be seen

that the two-stage simplified Takahashi-Imada method has much higher acceptance

probability, implying more efficiency, than the other two methods.

5.3 Discussion and Conclusion

The idea of changing variables reduces the difficulty of sampling by transforming

the original variable to a new variable. More work needs to be done, however, to

make it generally applicable in practice. For example, for the purpose of lowering the

energy barrier, a formula of changing variables needs to be found in higher dimen-

sional problems. Techniques for adaptively locating and measuring the shape of the

barrier may also be needed. For the two-stage simplified Takahashi-Imada method,

preliminary results show the superiority over the leapfrog method. More evidence,
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especially that from real applications, are still desired to further justify the utility of

the method.
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