
1

Probabilistic Graphical Models

Machine	Learning
Fall	2017

Supervised	Learning:	The	Setup

1

Spring

Instructor: Shandian Zhe
zhe@cs.utah.edu

School of Computing

2024

mailto:zhe@cs.Utah.edu

Outline

• Bayesian networks
• Markov random fields
• Inference

2

The task
• Compute the posterior of one or more subsets of

nodes given the observed nodes

3

394 8. GRAPHICAL MODELS

Figure 8.37 A graphical representation of Bayes’ theorem.
See the text for details.

x

y

x

y

x

y

(a) (b) (c)

to make the structure of those algorithms transparent. Specifically, we shall see that
many algorithms can be expressed in terms of the propagation of local messages
around the graph. In this section, we shall focus primarily on techniques for exact
inference, and in Chapter 10 we shall consider a number of approximate inference
algorithms.

To start with, let us consider the graphical interpretation of Bayes’ theorem.
Suppose we decompose the joint distribution p(x, y) over two variables x and y into
a product of factors in the form p(x, y) = p(x)p(y|x). This can be represented by
the directed graph shown in Figure 8.37(a). Now suppose we observe the value of
y, as indicated by the shaded node in Figure 8.37(b). We can view the marginal
distribution p(x) as a prior over the latent variable x, and our goal is to infer the
corresponding posterior distribution over x. Using the sum and product rules of
probability we can evaluate

p(y) =
∑

x′

p(y|x′)p(x′) (8.47)

which can then be used in Bayes’ theorem to calculate

p(x|y) =
p(y|x)p(x)

p(y)
. (8.48)

Thus the joint distribution is now expressed in terms of p(y) and p(x|y). From a
graphical perspective, the joint distribution p(x, y) is now represented by the graph
shown in Figure 8.37(c), in which the direction of the arrow is reversed. This is the
simplest example of an inference problem for a graphical model.

8.4.1 Inference on a chain
Now consider a more complex problem involving the chain of nodes of the form

shown in Figure 8.32. This example will lay the foundation for a discussion of exact
inference in more general graphs later in this section.

Specifically, we shall consider the undirected graph in Figure 8.32(b). We have
already seen that the directed chain can be transformed into an equivalent undirected
chain. Because the directed graph does not have any nodes with more than one
parent, this does not require the addition of any extra links, and the directed and
undirected versions of this graph express exactly the same set of conditional inde-
pendence statements.

394 8. GRAPHICAL MODELS

Figure 8.37 A graphical representation of Bayes’ theorem.
See the text for details.

x

y

x

y

x

y

(a) (b) (c)

to make the structure of those algorithms transparent. Specifically, we shall see that
many algorithms can be expressed in terms of the propagation of local messages
around the graph. In this section, we shall focus primarily on techniques for exact
inference, and in Chapter 10 we shall consider a number of approximate inference
algorithms.

To start with, let us consider the graphical interpretation of Bayes’ theorem.
Suppose we decompose the joint distribution p(x, y) over two variables x and y into
a product of factors in the form p(x, y) = p(x)p(y|x). This can be represented by
the directed graph shown in Figure 8.37(a). Now suppose we observe the value of
y, as indicated by the shaded node in Figure 8.37(b). We can view the marginal
distribution p(x) as a prior over the latent variable x, and our goal is to infer the
corresponding posterior distribution over x. Using the sum and product rules of
probability we can evaluate

p(y) =
∑

x′

p(y|x′)p(x′) (8.47)

which can then be used in Bayes’ theorem to calculate

p(x|y) =
p(y|x)p(x)

p(y)
. (8.48)

Thus the joint distribution is now expressed in terms of p(y) and p(x|y). From a
graphical perspective, the joint distribution p(x, y) is now represented by the graph
shown in Figure 8.37(c), in which the direction of the arrow is reversed. This is the
simplest example of an inference problem for a graphical model.

8.4.1 Inference on a chain
Now consider a more complex problem involving the chain of nodes of the form

shown in Figure 8.32. This example will lay the foundation for a discussion of exact
inference in more general graphs later in this section.

Specifically, we shall consider the undirected graph in Figure 8.32(b). We have
already seen that the directed chain can be transformed into an equivalent undirected
chain. Because the directed graph does not have any nodes with more than one
parent, this does not require the addition of any extra links, and the directed and
undirected versions of this graph express exactly the same set of conditional inde-
pendence statements.

394 8. GRAPHICAL MODELS

Figure 8.37 A graphical representation of Bayes’ theorem.
See the text for details.

x

y

x

y

x

y

(a) (b) (c)

to make the structure of those algorithms transparent. Specifically, we shall see that
many algorithms can be expressed in terms of the propagation of local messages
around the graph. In this section, we shall focus primarily on techniques for exact
inference, and in Chapter 10 we shall consider a number of approximate inference
algorithms.

To start with, let us consider the graphical interpretation of Bayes’ theorem.
Suppose we decompose the joint distribution p(x, y) over two variables x and y into
a product of factors in the form p(x, y) = p(x)p(y|x). This can be represented by
the directed graph shown in Figure 8.37(a). Now suppose we observe the value of
y, as indicated by the shaded node in Figure 8.37(b). We can view the marginal
distribution p(x) as a prior over the latent variable x, and our goal is to infer the
corresponding posterior distribution over x. Using the sum and product rules of
probability we can evaluate

p(y) =
∑

x′

p(y|x′)p(x′) (8.47)

which can then be used in Bayes’ theorem to calculate

p(x|y) =
p(y|x)p(x)

p(y)
. (8.48)

Thus the joint distribution is now expressed in terms of p(y) and p(x|y). From a
graphical perspective, the joint distribution p(x, y) is now represented by the graph
shown in Figure 8.37(c), in which the direction of the arrow is reversed. This is the
simplest example of an inference problem for a graphical model.

8.4.1 Inference on a chain
Now consider a more complex problem involving the chain of nodes of the form

shown in Figure 8.32. This example will lay the foundation for a discussion of exact
inference in more general graphs later in this section.

Specifically, we shall consider the undirected graph in Figure 8.32(b). We have
already seen that the directed chain can be transformed into an equivalent undirected
chain. Because the directed graph does not have any nodes with more than one
parent, this does not require the addition of any extra links, and the directed and
undirected versions of this graph express exactly the same set of conditional inde-
pendence statements.

The task
• Compute the posterior of one or more subsets of

nodes given the observed nodes

4

394 8. GRAPHICAL MODELS

Figure 8.37 A graphical representation of Bayes’ theorem.
See the text for details.

x

y

x

y

x

y

(a) (b) (c)

to make the structure of those algorithms transparent. Specifically, we shall see that
many algorithms can be expressed in terms of the propagation of local messages
around the graph. In this section, we shall focus primarily on techniques for exact
inference, and in Chapter 10 we shall consider a number of approximate inference
algorithms.

To start with, let us consider the graphical interpretation of Bayes’ theorem.
Suppose we decompose the joint distribution p(x, y) over two variables x and y into
a product of factors in the form p(x, y) = p(x)p(y|x). This can be represented by
the directed graph shown in Figure 8.37(a). Now suppose we observe the value of
y, as indicated by the shaded node in Figure 8.37(b). We can view the marginal
distribution p(x) as a prior over the latent variable x, and our goal is to infer the
corresponding posterior distribution over x. Using the sum and product rules of
probability we can evaluate

p(y) =
∑

x′

p(y|x′)p(x′) (8.47)

which can then be used in Bayes’ theorem to calculate

p(x|y) =
p(y|x)p(x)

p(y)
. (8.48)

Thus the joint distribution is now expressed in terms of p(y) and p(x|y). From a
graphical perspective, the joint distribution p(x, y) is now represented by the graph
shown in Figure 8.37(c), in which the direction of the arrow is reversed. This is the
simplest example of an inference problem for a graphical model.

8.4.1 Inference on a chain
Now consider a more complex problem involving the chain of nodes of the form

shown in Figure 8.32. This example will lay the foundation for a discussion of exact
inference in more general graphs later in this section.

Specifically, we shall consider the undirected graph in Figure 8.32(b). We have
already seen that the directed chain can be transformed into an equivalent undirected
chain. Because the directed graph does not have any nodes with more than one
parent, this does not require the addition of any extra links, and the directed and
undirected versions of this graph express exactly the same set of conditional inde-
pendence statements.

394 8. GRAPHICAL MODELS

Figure 8.37 A graphical representation of Bayes’ theorem.
See the text for details.

x

y

x

y

x

y

(a) (b) (c)

to make the structure of those algorithms transparent. Specifically, we shall see that
many algorithms can be expressed in terms of the propagation of local messages
around the graph. In this section, we shall focus primarily on techniques for exact
inference, and in Chapter 10 we shall consider a number of approximate inference
algorithms.

To start with, let us consider the graphical interpretation of Bayes’ theorem.
Suppose we decompose the joint distribution p(x, y) over two variables x and y into
a product of factors in the form p(x, y) = p(x)p(y|x). This can be represented by
the directed graph shown in Figure 8.37(a). Now suppose we observe the value of
y, as indicated by the shaded node in Figure 8.37(b). We can view the marginal
distribution p(x) as a prior over the latent variable x, and our goal is to infer the
corresponding posterior distribution over x. Using the sum and product rules of
probability we can evaluate

p(y) =
∑

x′

p(y|x′)p(x′) (8.47)

which can then be used in Bayes’ theorem to calculate

p(x|y) =
p(y|x)p(x)

p(y)
. (8.48)

Thus the joint distribution is now expressed in terms of p(y) and p(x|y). From a
graphical perspective, the joint distribution p(x, y) is now represented by the graph
shown in Figure 8.37(c), in which the direction of the arrow is reversed. This is the
simplest example of an inference problem for a graphical model.

8.4.1 Inference on a chain
Now consider a more complex problem involving the chain of nodes of the form

shown in Figure 8.32. This example will lay the foundation for a discussion of exact
inference in more general graphs later in this section.

Specifically, we shall consider the undirected graph in Figure 8.32(b). We have
already seen that the directed chain can be transformed into an equivalent undirected
chain. Because the directed graph does not have any nodes with more than one
parent, this does not require the addition of any extra links, and the directed and
undirected versions of this graph express exactly the same set of conditional inde-
pendence statements.

394 8. GRAPHICAL MODELS

Figure 8.37 A graphical representation of Bayes’ theorem.
See the text for details.

x

y

x

y

x

y

(a) (b) (c)

to make the structure of those algorithms transparent. Specifically, we shall see that
many algorithms can be expressed in terms of the propagation of local messages
around the graph. In this section, we shall focus primarily on techniques for exact
inference, and in Chapter 10 we shall consider a number of approximate inference
algorithms.

To start with, let us consider the graphical interpretation of Bayes’ theorem.
Suppose we decompose the joint distribution p(x, y) over two variables x and y into
a product of factors in the form p(x, y) = p(x)p(y|x). This can be represented by
the directed graph shown in Figure 8.37(a). Now suppose we observe the value of
y, as indicated by the shaded node in Figure 8.37(b). We can view the marginal
distribution p(x) as a prior over the latent variable x, and our goal is to infer the
corresponding posterior distribution over x. Using the sum and product rules of
probability we can evaluate

p(y) =
∑

x′

p(y|x′)p(x′) (8.47)

which can then be used in Bayes’ theorem to calculate

p(x|y) =
p(y|x)p(x)

p(y)
. (8.48)

Thus the joint distribution is now expressed in terms of p(y) and p(x|y). From a
graphical perspective, the joint distribution p(x, y) is now represented by the graph
shown in Figure 8.37(c), in which the direction of the arrow is reversed. This is the
simplest example of an inference problem for a graphical model.

8.4.1 Inference on a chain
Now consider a more complex problem involving the chain of nodes of the form

shown in Figure 8.32. This example will lay the foundation for a discussion of exact
inference in more general graphs later in this section.

Specifically, we shall consider the undirected graph in Figure 8.32(b). We have
already seen that the directed chain can be transformed into an equivalent undirected
chain. Because the directed graph does not have any nodes with more than one
parent, this does not require the addition of any extra links, and the directed and
undirected versions of this graph express exactly the same set of conditional inde-
pendence statements.

Key: compute the marginal of one or a subset of nodes!

5

Let us start with a chain
390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.45)

xN�1
<latexit sha1_base64="uC43FXzTPRlhUXGisSRRXlzci0U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXiSCOYBSQizk9lkyOzsMtMrhiUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSkHnAc825IB0oEglG0UvOpl96deZNeseSW3RnIMvEyUoIMtV7xq9OPWBJyhUxSY9qeG2M3pRoFk3xS6CSGx5SN6IC3LVU05Kabzs6dkBOr9EkQaVsKyUz9PZHS0Jhx6NvOkOLQLHpT8T+vnWBw1U2FihPkis0XBYkkGJHp76QvNGcox5ZQpoW9lbAh1ZShTahgQ/AWX14mjUrZOy9X7i9K1essjjwcwTGcggeXUIVbqEEdGIzgGV7hzYmdF+fd+Zi35pxs5hD+wPn8AdnRjz8=</latexit> xN

<latexit sha1_base64="VgtjKne+qIsYE4hPVHtWe6lP2EQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkqmLbQhrLZbtulm03YnYgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sFhw8SpZtxnsYx1K6SGS6G4jwIlbyWa0yiUvBmObqZ+85FrI2L1gOOEBxEdKNEXjKKV/KdudjfplspuxZ2BLBMvJ2XIUe+Wvjq9mKURV8gkNabtuQkGGdUomOSTYic1PKFsRAe8bamiETdBNjt2Qk6t0iP9WNtSSGbq74mMRsaMo9B2RhSHZtGbiv957RT7V0EmVJIiV2y+qJ9KgjGZfk56QnOGcmwJZVrYWwkbUk0Z2nyKNgRv8eVl0qhWvPNK9f6iXLvO4yjAMZzAGXhwCTW4hTr4wEDAM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A/2ljs0=</latexit>

6

Let us start with a chain

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.45)

xN�1
<latexit sha1_base64="uC43FXzTPRlhUXGisSRRXlzci0U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXiSCOYBSQizk9lkyOzsMtMrhiUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSkHnAc825IB0oEglG0UvOpl96deZNeseSW3RnIMvEyUoIMtV7xq9OPWBJyhUxSY9qeG2M3pRoFk3xS6CSGx5SN6IC3LVU05Kabzs6dkBOr9EkQaVsKyUz9PZHS0Jhx6NvOkOLQLHpT8T+vnWBw1U2FihPkis0XBYkkGJHp76QvNGcox5ZQpoW9lbAh1ZShTahgQ/AWX14mjUrZOy9X7i9K1essjjwcwTGcggeXUIVbqEEdGIzgGV7hzYmdF+fd+Zi35pxs5hD+wPn8AdnRjz8=</latexit> xN

<latexit sha1_base64="VgtjKne+qIsYE4hPVHtWe6lP2EQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkqmLbQhrLZbtulm03YnYgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sFhw8SpZtxnsYx1K6SGS6G4jwIlbyWa0yiUvBmObqZ+85FrI2L1gOOEBxEdKNEXjKKV/KdudjfplspuxZ2BLBMvJ2XIUe+Wvjq9mKURV8gkNabtuQkGGdUomOSTYic1PKFsRAe8bamiETdBNjt2Qk6t0iP9WNtSSGbq74mMRsaMo9B2RhSHZtGbiv957RT7V0EmVJIiV2y+qJ9KgjGZfk56QnOGcmwJZVrYWwkbUk0Z2nyKNgRv8eVl0qhWvPNK9f6iXLvO4yjAMZzAGXhwCTW4hTr4wEDAM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A/2ljs0=</latexit>

7

Let us start with a chain

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

Each node takes K states and so each potential is a K x K table

390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.45)

xN�1
<latexit sha1_base64="uC43FXzTPRlhUXGisSRRXlzci0U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXiSCOYBSQizk9lkyOzsMtMrhiUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSkHnAc825IB0oEglG0UvOpl96deZNeseSW3RnIMvEyUoIMtV7xq9OPWBJyhUxSY9qeG2M3pRoFk3xS6CSGx5SN6IC3LVU05Kabzs6dkBOr9EkQaVsKyUz9PZHS0Jhx6NvOkOLQLHpT8T+vnWBw1U2FihPkis0XBYkkGJHp76QvNGcox5ZQpoW9lbAh1ZShTahgQ/AWX14mjUrZOy9X7i9K1essjjwcwTGcggeXUIVbqEEdGIzgGV7hzYmdF+fd+Zi35pxs5hD+wPn8AdnRjz8=</latexit> xN

<latexit sha1_base64="VgtjKne+qIsYE4hPVHtWe6lP2EQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkqmLbQhrLZbtulm03YnYgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sFhw8SpZtxnsYx1K6SGS6G4jwIlbyWa0yiUvBmObqZ+85FrI2L1gOOEBxEdKNEXjKKV/KdudjfplspuxZ2BLBMvJ2XIUe+Wvjq9mKURV8gkNabtuQkGGdUomOSTYic1PKFsRAe8bamiETdBNjt2Qk6t0iP9WNtSSGbq74mMRsaMo9B2RhSHZtGbiv957RT7V0EmVJIiV2y+qJ9KgjGZfk56QnOGcmwJZVrYWwkbUk0Z2nyKNgRv8eVl0qhWvPNK9f6iXLvO4yjAMZzAGXhwCTW4hTr4wEDAM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A/2ljs0=</latexit>

8

Let us start with a chain

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

Each node takes K states and so each potential is a K x K table

Let us consider to infer the marginal of a node xn

390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.45)

xN�1
<latexit sha1_base64="uC43FXzTPRlhUXGisSRRXlzci0U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXiSCOYBSQizk9lkyOzsMtMrhiUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSkHnAc825IB0oEglG0UvOpl96deZNeseSW3RnIMvEyUoIMtV7xq9OPWBJyhUxSY9qeG2M3pRoFk3xS6CSGx5SN6IC3LVU05Kabzs6dkBOr9EkQaVsKyUz9PZHS0Jhx6NvOkOLQLHpT8T+vnWBw1U2FihPkis0XBYkkGJHp76QvNGcox5ZQpoW9lbAh1ZShTahgQ/AWX14mjUrZOy9X7i9K1essjjwcwTGcggeXUIVbqEEdGIzgGV7hzYmdF+fd+Zi35pxs5hD+wPn8AdnRjz8=</latexit> xN

<latexit sha1_base64="VgtjKne+qIsYE4hPVHtWe6lP2EQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkqmLbQhrLZbtulm03YnYgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sFhw8SpZtxnsYx1K6SGS6G4jwIlbyWa0yiUvBmObqZ+85FrI2L1gOOEBxEdKNEXjKKV/KdudjfplspuxZ2BLBMvJ2XIUe+Wvjq9mKURV8gkNabtuQkGGdUomOSTYic1PKFsRAe8bamiETdBNjt2Qk6t0iP9WNtSSGbq74mMRsaMo9B2RhSHZtGbiv957RT7V0EmVJIiV2y+qJ9KgjGZfk56QnOGcmwJZVrYWwkbUk0Z2nyKNgRv8eVl0qhWvPNK9f6iXLvO4yjAMZzAGXhwCTW4hTr4wEDAM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A/2ljs0=</latexit>

9

Let us start with a chain

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

Each node takes K states and so each potential is a K x K table

Let us consider to infer the marginal of a node xn

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.45)

xN�1
<latexit sha1_base64="uC43FXzTPRlhUXGisSRRXlzci0U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXiSCOYBSQizk9lkyOzsMtMrhiUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSkHnAc825IB0oEglG0UvOpl96deZNeseSW3RnIMvEyUoIMtV7xq9OPWBJyhUxSY9qeG2M3pRoFk3xS6CSGx5SN6IC3LVU05Kabzs6dkBOr9EkQaVsKyUz9PZHS0Jhx6NvOkOLQLHpT8T+vnWBw1U2FihPkis0XBYkkGJHp76QvNGcox5ZQpoW9lbAh1ZShTahgQ/AWX14mjUrZOy9X7i9K1essjjwcwTGcggeXUIVbqEEdGIzgGV7hzYmdF+fd+Zi35pxs5hD+wPn8AdnRjz8=</latexit> xN

<latexit sha1_base64="VgtjKne+qIsYE4hPVHtWe6lP2EQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkqmLbQhrLZbtulm03YnYgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sFhw8SpZtxnsYx1K6SGS6G4jwIlbyWa0yiUvBmObqZ+85FrI2L1gOOEBxEdKNEXjKKV/KdudjfplspuxZ2BLBMvJ2XIUe+Wvjq9mKURV8gkNabtuQkGGdUomOSTYic1PKFsRAe8bamiETdBNjt2Qk6t0iP9WNtSSGbq74mMRsaMo9B2RhSHZtGbiv957RT7V0EmVJIiV2y+qJ9KgjGZfk56QnOGcmwJZVrYWwkbUk0Z2nyKNgRv8eVl0qhWvPNK9f6iXLvO4yjAMZzAGXhwCTW4hTr4wEDAM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A/2ljs0=</latexit>

10

Let us start with a chain

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

Each node takes K states and so each potential is a K x K table

Let us consider to infer the marginal of a node xn

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

How much cost?

390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.45)

xN�1
<latexit sha1_base64="uC43FXzTPRlhUXGisSRRXlzci0U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXiSCOYBSQizk9lkyOzsMtMrhiUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSkHnAc825IB0oEglG0UvOpl96deZNeseSW3RnIMvEyUoIMtV7xq9OPWBJyhUxSY9qeG2M3pRoFk3xS6CSGx5SN6IC3LVU05Kabzs6dkBOr9EkQaVsKyUz9PZHS0Jhx6NvOkOLQLHpT8T+vnWBw1U2FihPkis0XBYkkGJHp76QvNGcox5ZQpoW9lbAh1ZShTahgQ/AWX14mjUrZOy9X7i9K1essjjwcwTGcggeXUIVbqEEdGIzgGV7hzYmdF+fd+Zi35pxs5hD+wPn8AdnRjz8=</latexit> xN

<latexit sha1_base64="VgtjKne+qIsYE4hPVHtWe6lP2EQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkqmLbQhrLZbtulm03YnYgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sFhw8SpZtxnsYx1K6SGS6G4jwIlbyWa0yiUvBmObqZ+85FrI2L1gOOEBxEdKNEXjKKV/KdudjfplspuxZ2BLBMvJ2XIUe+Wvjq9mKURV8gkNabtuQkGGdUomOSTYic1PKFsRAe8bamiETdBNjt2Qk6t0iP9WNtSSGbq74mMRsaMo9B2RhSHZtGbiv957RT7V0EmVJIiV2y+qJ9KgjGZfk56QnOGcmwJZVrYWwkbUk0Z2nyKNgRv8eVl0qhWvPNK9f6iXLvO4yjAMZzAGXhwCTW4hTr4wEDAM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A/2ljs0=</latexit>

11

Let us start with a chain

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

Each node takes K states and so each potential is a K x K table

Let us consider to infer the marginal of a node xn

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

How much cost?

O(K*KN-1)

390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.45)

xN�1
<latexit sha1_base64="uC43FXzTPRlhUXGisSRRXlzci0U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXiSCOYBSQizk9lkyOzsMtMrhiUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSkHnAc825IB0oEglG0UvOpl96deZNeseSW3RnIMvEyUoIMtV7xq9OPWBJyhUxSY9qeG2M3pRoFk3xS6CSGx5SN6IC3LVU05Kabzs6dkBOr9EkQaVsKyUz9PZHS0Jhx6NvOkOLQLHpT8T+vnWBw1U2FihPkis0XBYkkGJHp76QvNGcox5ZQpoW9lbAh1ZShTahgQ/AWX14mjUrZOy9X7i9K1essjjwcwTGcggeXUIVbqEEdGIzgGV7hzYmdF+fd+Zi35pxs5hD+wPn8AdnRjz8=</latexit> xN

<latexit sha1_base64="VgtjKne+qIsYE4hPVHtWe6lP2EQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkqmLbQhrLZbtulm03YnYgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sFhw8SpZtxnsYx1K6SGS6G4jwIlbyWa0yiUvBmObqZ+85FrI2L1gOOEBxEdKNEXjKKV/KdudjfplspuxZ2BLBMvJ2XIUe+Wvjq9mKURV8gkNabtuQkGGdUomOSTYic1PKFsRAe8bamiETdBNjt2Qk6t0iP9WNtSSGbq74mMRsaMo9B2RhSHZtGbiv957RT7V0EmVJIiV2y+qJ9KgjGZfk56QnOGcmwJZVrYWwkbUk0Z2nyKNgRv8eVl0qhWvPNK9f6iXLvO4yjAMZzAGXhwCTW4hTr4wEDAM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A/2ljs0=</latexit>

12

Let us start with a chain
8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

8.4. Inference in Graphical Models 395

The joint distribution for this graph takes the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.49)

We shall consider the specific case in which the N nodes represent discrete vari-
ables each having K states, in which case each potential function ψn−1,n(xn−1, xn)
comprises an K ×K table, and so the joint distribution has (N − 1)K2 parameters.

Let us consider the inference problem of finding the marginal distribution p(xn)
for a specific node xn that is part way along the chain. Note that, for the moment,
there are no observed nodes. By definition, the required marginal is obtained by
summing the joint distribution over all variables except xn, so that

p(xn) =
∑

x1

· · ·
∑

xn−1

∑

xn+1

· · ·
∑

xN

p(x). (8.50)

In a naive implementation, we would first evaluate the joint distribution and
then perform the summations explicitly. The joint distribution can be represented as
a set of numbers, one for each possible value for x. Because there are N variables
each with K states, there are KN values for x and so evaluation and storage of the
joint distribution, as well as marginalization to obtain p(xn), all involve storage and
computation that scale exponentially with the length N of the chain.

We can, however, obtain a much more efficient algorithm by exploiting the con-
ditional independence properties of the graphical model. If we substitute the factor-
ized expression (8.49) for the joint distribution into (8.50), then we can rearrange the
order of the summations and the multiplications to allow the required marginal to be
evaluated much more efficiently. Consider for instance the summation over xN . The
potential ψN−1,N (xN−1, xN) is the only one that depends on xN , and so we can
perform the summation ∑

xN

ψN−1,N (xN−1, xN) (8.51)

first to give a function of xN−1. We can then use this to perform the summation
over xN−1, which will involve only this new function together with the potential
ψN−2,N−1(xN−2, xN−1), because this is the only other place that xN−1 appears.
Similarly, the summation over x1 involves only the potential ψ1,2(x1, x2) and so
can be performed separately to give a function of x2, and so on. Because each
summation effectively removes a variable from the distribution, this can be viewed
as the removal of a node from the graph.

If we group the potentials and summations together in this way, we can express

How to reduce the cost?

Key observations: many terms are repeated in the calculation, so we
can use the distributive law to save products and sums

390 8. GRAPHICAL MODELS

Figure 8.32 (a) Example of a directed
graph. (b) The equivalent undirected
graph.

(a)
x1 x2 xN−1 xN

(b)
x1 x2 xN−1xN

will have converged to a local maximum of the probability. This need not, however,
correspond to the global maximum.

For the purposes of this simple illustration, we have fixed the parameters to be
β = 1.0, η = 2.1 and h = 0. Note that leaving h = 0 simply means that the prior
probabilities of the two states of xi are equal. Starting with the observed noisy image
as the initial configuration, we run ICM until convergence, leading to the de-noised
image shown in the lower left panel of Figure 8.30. Note that if we set β = 0,
which effectively removes the links between neighbouring pixels, then the global
most probable solution is given by xi = yi for all i, corresponding to the observed
noisy image.Exercise 8.14

Later we shall discuss a more effective algorithm for finding high probability so-
lutions called the max-product algorithm, which typically leads to better solutions,Section 8.4
although this is still not guaranteed to find the global maximum of the posterior dis-
tribution. However, for certain classes of model, including the one given by (8.42),
there exist efficient algorithms based on graph cuts that are guaranteed to find the
global maximum (Greig et al., 1989; Boykov et al., 2001; Kolmogorov and Zabih,
2004). The lower right panel of Figure 8.30 shows the result of applying a graph-cut
algorithm to the de-noising problem.

8.3.4 Relation to directed graphs
We have introduced two graphical frameworks for representing probability dis-

tributions, corresponding to directed and undirected graphs, and it is instructive to
discuss the relation between these. Consider first the problem of taking a model that
is specified using a directed graph and trying to convert it to an undirected graph. In
some cases this is straightforward, as in the simple example in Figure 8.32. Here the
joint distribution for the directed graph is given as a product of conditionals in the
form

p(x) = p(x1)p(x2|x1)p(x3|x2) · · · p(xN |xN−1). (8.44)

Now let us convert this to an undirected graph representation, as shown in Fig-
ure 8.32. In the undirected graph, the maximal cliques are simply the pairs of neigh-
bouring nodes, and so from (8.39) we wish to write the joint distribution in the form

p(x) =
1
Z

ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N (xN−1, xN). (8.45)

xN�1
<latexit sha1_base64="uC43FXzTPRlhUXGisSRRXlzci0U=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgxbAbBT0GvXiSCOYBSQizk9lkyOzsMtMrhiUf4cWDIl79Hm/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90c3Ubz5ybUSkHnAc825IB0oEglG0UvOpl96deZNeseSW3RnIMvEyUoIMtV7xq9OPWBJyhUxSY9qeG2M3pRoFk3xS6CSGx5SN6IC3LVU05Kabzs6dkBOr9EkQaVsKyUz9PZHS0Jhx6NvOkOLQLHpT8T+vnWBw1U2FihPkis0XBYkkGJHp76QvNGcox5ZQpoW9lbAh1ZShTahgQ/AWX14mjUrZOy9X7i9K1essjjwcwTGcggeXUIVbqEEdGIzgGV7hzYmdF+fd+Zi35pxs5hD+wPn8AdnRjz8=</latexit> xN

<latexit sha1_base64="VgtjKne+qIsYE4hPVHtWe6lP2EQ=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kkqmLbQhrLZbtulm03YnYgl9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSKFQdf9dlZW19Y3Ngtbxe2d3b390sFhw8SpZtxnsYx1K6SGS6G4jwIlbyWa0yiUvBmObqZ+85FrI2L1gOOEBxEdKNEXjKKV/KdudjfplspuxZ2BLBMvJ2XIUe+Wvjq9mKURV8gkNabtuQkGGdUomOSTYic1PKFsRAe8bamiETdBNjt2Qk6t0iP9WNtSSGbq74mMRsaMo9B2RhSHZtGbiv957RT7V0EmVJIiV2y+qJ9KgjGZfk56QnOGcmwJZVrYWwkbUk0Z2nyKNgRv8eVl0qhWvPNK9f6iXLvO4yjAMZzAGXhwCTW4hTr4wEDAM7zCm6OcF+fd+Zi3rjj5zBH8gfP5A/2ljs0=</latexit>

<latexit sha1_base64="0/t/kGBoeihSPErhp58ZLPbFTMU=">AAACQXicbZBNS8MwGMdTX+d8q3r0EhzChjDaMtTLYOjF4wT3AlspaZZuYekLSSqMsq/mxW/gzbsXD4p49WLWdjA3Hwj88nuekOTvRowKaRiv2tr6xubWdmGnuLu3f3CoHx23RRhzTFo4ZCHvukgQRgPSklQy0o04Qb7LSMcd3876nUfCBQ2DBzmJiO2jYUA9ipFUytG7yDFdx4QXMAUrBWtuFFh11ShnQu0qmV8Q9TKaT1cWtKOXjKqRFlwFM4cSyKvp6C/9QYhjnwQSMyREzzQiaSeIS4oZmRb7sSARwmM0JD2FAfKJsJM0gSk8V2YAvZCrFUiY2sUTCfKFmPiumvSRHInl3kz+1+vF0ru2ExpEsSQBzi7yYgZlCGdxwgHlBEs2UYAwp+qtEI8QR1iq0IsqBHP5y6vQtqrmZbV2Xys1bvI4CuAUnIEyMMEVaIA70AQtgMETeAMf4FN71t61L+07G13T8jMn4E9pP7++gKY/</latexit>

a1b1 + a1b2 + a2b1 + a2b2 = a1(b1 + b2) + a2(b1 + b2) = (a1 + a2)(b1 + b2)

13

Let us start with a chain
396 8. GRAPHICAL MODELS

the desired marginal in the form

p(xn) =
1
Z⎡

⎣
∑

xn−1

ψn−1,n(xn−1, xn) · · ·

[
∑

x2

ψ2,3(x2, x3)

[
∑

x1

ψ1,2(x1, x2)

]]
· · ·

⎤

⎦

︸ ︷︷ ︸
µα(xn)

⎡

⎣
∑

xn+1

ψn,n+1(xn, xn+1) · · ·

[
∑

xN

ψN−1,N (xN−1, xN)

]
· · ·

⎤

⎦

︸ ︷︷ ︸
µβ(xn)

. (8.52)

The reader is encouraged to study this re-ordering carefully as the underlying idea
forms the basis for the later discussion of the general sum-product algorithm. Here
the key concept that we are exploiting is that multiplication is distributive over addi-
tion, so that

ab + ac = a(b + c) (8.53)

in which the left-hand side involves three arithmetic operations whereas the right-
hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal using
this re-ordered expression. We have to perform N − 1 summations each of which is
over K states and each of which involves a function of two variables. For instance,
the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
K × K numbers. We have to sum this table over x1 for each value of x2 and so this
has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwards

14

Let us start with a chain
396 8. GRAPHICAL MODELS

the desired marginal in the form

p(xn) =
1
Z⎡

⎣
∑

xn−1

ψn−1,n(xn−1, xn) · · ·

[
∑

x2

ψ2,3(x2, x3)

[
∑

x1

ψ1,2(x1, x2)

]]
· · ·

⎤

⎦

︸ ︷︷ ︸
µα(xn)

⎡

⎣
∑

xn+1

ψn,n+1(xn, xn+1) · · ·

[
∑

xN

ψN−1,N (xN−1, xN)

]
· · ·

⎤

⎦

︸ ︷︷ ︸
µβ(xn)

. (8.52)

The reader is encouraged to study this re-ordering carefully as the underlying idea
forms the basis for the later discussion of the general sum-product algorithm. Here
the key concept that we are exploiting is that multiplication is distributive over addi-
tion, so that

ab + ac = a(b + c) (8.53)

in which the left-hand side involves three arithmetic operations whereas the right-
hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal using
this re-ordered expression. We have to perform N − 1 summations each of which is
over K states and each of which involves a function of two variables. For instance,
the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
K × K numbers. We have to sum this table over x1 for each value of x2 and so this
has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwards

8.4. Inference in Graphical Models 397

Figure 8.38 The marginal distribution
p(xn) for a node xn along the chain is ob-
tained by multiplying the two messages
µα(xn) and µβ(xn), and then normaliz-
ing. These messages can themselves
be evaluated recursively by passing mes-
sages from both ends of the chain to-
wards node xn.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

along the chain to node xn from node xn+1. Note that each of the messages com-
prises a set of K values, one for each choice of xn, and so the product of two mes-
sages should be interpreted as the point-wise multiplication of the elements of the
two messages to give another set of K values.

The message µα(xn) can be evaluated recursively because

µα(xn) =
∑

xn−1

ψn−1,n(xn−1, xn)

⎡

⎣
∑

xn−2

· · ·

⎤

⎦

=
∑

xn−1

ψn−1,n(xn−1, xn)µα(xn−1). (8.55)

We therefore first evaluate

µα(x2) =
∑

x1

ψ1,2(x1, x2) (8.56)

and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using

µβ(xn) =
∑

xn+1

ψn+1,n(xn+1, xn)

⎡

⎣
∑

xn+2

· · ·

⎤

⎦

=
∑

xn+1

ψn+1,n(xn+1, xn)µβ(xn+1). (8.57)

This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).

messages

15

Recursively,8.4. Inference in Graphical Models 397

Figure 8.38 The marginal distribution
p(xn) for a node xn along the chain is ob-
tained by multiplying the two messages
µα(xn) and µβ(xn), and then normaliz-
ing. These messages can themselves
be evaluated recursively by passing mes-
sages from both ends of the chain to-
wards node xn.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

along the chain to node xn from node xn+1. Note that each of the messages com-
prises a set of K values, one for each choice of xn, and so the product of two mes-
sages should be interpreted as the point-wise multiplication of the elements of the
two messages to give another set of K values.

The message µα(xn) can be evaluated recursively because

µα(xn) =
∑

xn−1

ψn−1,n(xn−1, xn)

⎡

⎣
∑

xn−2

· · ·

⎤

⎦

=
∑

xn−1

ψn−1,n(xn−1, xn)µα(xn−1). (8.55)

We therefore first evaluate

µα(x2) =
∑

x1

ψ1,2(x1, x2) (8.56)

and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using

µβ(xn) =
∑

xn+1

ψn+1,n(xn+1, xn)

⎡

⎣
∑

xn+2

· · ·

⎤

⎦

=
∑

xn+1

ψn+1,n(xn+1, xn)µβ(xn+1). (8.57)

This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).

8.4. Inference in Graphical Models 397

Figure 8.38 The marginal distribution
p(xn) for a node xn along the chain is ob-
tained by multiplying the two messages
µα(xn) and µβ(xn), and then normaliz-
ing. These messages can themselves
be evaluated recursively by passing mes-
sages from both ends of the chain to-
wards node xn.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

along the chain to node xn from node xn+1. Note that each of the messages com-
prises a set of K values, one for each choice of xn, and so the product of two mes-
sages should be interpreted as the point-wise multiplication of the elements of the
two messages to give another set of K values.

The message µα(xn) can be evaluated recursively because

µα(xn) =
∑

xn−1

ψn−1,n(xn−1, xn)

⎡

⎣
∑

xn−2

· · ·

⎤

⎦

=
∑

xn−1

ψn−1,n(xn−1, xn)µα(xn−1). (8.55)

We therefore first evaluate

µα(x2) =
∑

x1

ψ1,2(x1, x2) (8.56)

and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using

µβ(xn) =
∑

xn+1

ψn+1,n(xn+1, xn)

⎡

⎣
∑

xn+2

· · ·

⎤

⎦

=
∑

xn+1

ψn+1,n(xn+1, xn)µβ(xn+1). (8.57)

This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).

8.4. Inference in Graphical Models 397

Figure 8.38 The marginal distribution
p(xn) for a node xn along the chain is ob-
tained by multiplying the two messages
µα(xn) and µβ(xn), and then normaliz-
ing. These messages can themselves
be evaluated recursively by passing mes-
sages from both ends of the chain to-
wards node xn.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

along the chain to node xn from node xn+1. Note that each of the messages com-
prises a set of K values, one for each choice of xn, and so the product of two mes-
sages should be interpreted as the point-wise multiplication of the elements of the
two messages to give another set of K values.

The message µα(xn) can be evaluated recursively because

µα(xn) =
∑

xn−1

ψn−1,n(xn−1, xn)

⎡

⎣
∑

xn−2

· · ·

⎤

⎦

=
∑

xn−1

ψn−1,n(xn−1, xn)µα(xn−1). (8.55)

We therefore first evaluate

µα(x2) =
∑

x1

ψ1,2(x1, x2) (8.56)

and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using

µβ(xn) =
∑

xn+1

ψn+1,n(xn+1, xn)

⎡

⎣
∑

xn+2

· · ·

⎤

⎦

=
∑

xn+1

ψn+1,n(xn+1, xn)µβ(xn+1). (8.57)

This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).

Initial message

16

8.4. Inference in Graphical Models 397

Figure 8.38 The marginal distribution
p(xn) for a node xn along the chain is ob-
tained by multiplying the two messages
µα(xn) and µβ(xn), and then normaliz-
ing. These messages can themselves
be evaluated recursively by passing mes-
sages from both ends of the chain to-
wards node xn.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

along the chain to node xn from node xn+1. Note that each of the messages com-
prises a set of K values, one for each choice of xn, and so the product of two mes-
sages should be interpreted as the point-wise multiplication of the elements of the
two messages to give another set of K values.

The message µα(xn) can be evaluated recursively because

µα(xn) =
∑

xn−1

ψn−1,n(xn−1, xn)

⎡

⎣
∑

xn−2

· · ·

⎤

⎦

=
∑

xn−1

ψn−1,n(xn−1, xn)µα(xn−1). (8.55)

We therefore first evaluate

µα(x2) =
∑

x1

ψ1,2(x1, x2) (8.56)

and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using

µβ(xn) =
∑

xn+1

ψn+1,n(xn+1, xn)

⎡

⎣
∑

xn+2

· · ·

⎤

⎦

=
∑

xn+1

ψn+1,n(xn+1, xn)µβ(xn+1). (8.57)

This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).

8.4. Inference in Graphical Models 397

Figure 8.38 The marginal distribution
p(xn) for a node xn along the chain is ob-
tained by multiplying the two messages
µα(xn) and µβ(xn), and then normaliz-
ing. These messages can themselves
be evaluated recursively by passing mes-
sages from both ends of the chain to-
wards node xn.

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

along the chain to node xn from node xn+1. Note that each of the messages com-
prises a set of K values, one for each choice of xn, and so the product of two mes-
sages should be interpreted as the point-wise multiplication of the elements of the
two messages to give another set of K values.

The message µα(xn) can be evaluated recursively because

µα(xn) =
∑

xn−1

ψn−1,n(xn−1, xn)

⎡

⎣
∑

xn−2

· · ·

⎤

⎦

=
∑

xn−1

ψn−1,n(xn−1, xn)µα(xn−1). (8.55)

We therefore first evaluate

µα(x2) =
∑

x1

ψ1,2(x1, x2) (8.56)

and then apply (8.55) repeatedly until we reach the desired node. Note carefully the
structure of the message passing equation. The outgoing message µα(xn) in (8.55)
is obtained by multiplying the incoming message µα(xn−1) by the local potential
involving the node variable and the outgoing variable and then summing over the
node variable.

Similarly, the message µβ(xn) can be evaluated recursively by starting with
node xN and using

µβ(xn) =
∑

xn+1

ψn+1,n(xn+1, xn)

⎡

⎣
∑

xn+2

· · ·

⎤

⎦

=
∑

xn+1

ψn+1,n(xn+1, xn)µβ(xn+1). (8.57)

This recursive message passing is illustrated in Figure 8.38. The normalization con-
stant Z is easily evaluated by summing the right-hand side of (8.54) over all states
of xn, an operation that requires only O(K) computation.

Graphs of the form shown in Figure 8.38 are called Markov chains, and the
corresponding message passing equations represent an example of the Chapman-
Kolmogorov equations for Markov processes (Papoulis, 1984).

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

⌘n = w>�(xn)

E[tn|⌘n] = yn =
dg(⌘n)

d⌘n

f
�1

N (tn|
d�1X

j=0

wjx
j
n,�

2)

N (w|0,↵I)

p(x2|x1) =
p(x1,x2)

p(x1)

p(x1, . . . ,xn) =p(x1)p(x2|x1)p(x3|x1,x2) . . .

p(xn|x1, . . . ,xn�1) (4)

p(a, b, c) = p(a)p(b|a)p(c|a, b)
p(a, b, c) = p(b)p(c|b)p(a|b, c)

p(a, b, c) = p(c)p(b|c)p(a|b, c) = p(c)p(b|c)p(a|c)

µ�(xN�1) =
X

xN

 N�1,N (xN�1, xN)

Z =
X

xn

µ↵(xn)µ�(xn)

8

396 8. GRAPHICAL MODELS

the desired marginal in the form

p(xn) =
1
Z⎡

⎣
∑

xn−1

ψn−1,n(xn−1, xn) · · ·

[
∑

x2

ψ2,3(x2, x3)

[
∑

x1

ψ1,2(x1, x2)

]]
· · ·

⎤

⎦

︸ ︷︷ ︸
µα(xn)

⎡

⎣
∑

xn+1

ψn,n+1(xn, xn+1) · · ·

[
∑

xN

ψN−1,N (xN−1, xN)

]
· · ·

⎤

⎦

︸ ︷︷ ︸
µβ(xn)

. (8.52)

The reader is encouraged to study this re-ordering carefully as the underlying idea
forms the basis for the later discussion of the general sum-product algorithm. Here
the key concept that we are exploiting is that multiplication is distributive over addi-
tion, so that

ab + ac = a(b + c) (8.53)

in which the left-hand side involves three arithmetic operations whereas the right-
hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal using
this re-ordered expression. We have to perform N − 1 summations each of which is
over K states and each of which involves a function of two variables. For instance,
the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
K × K numbers. We have to sum this table over x1 for each value of x2 and so this
has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwardsQuestion: What is Z?

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

⌘n = w>�(xn)

E[tn|⌘n] = yn =
dg(⌘n)

d⌘n

f
�1

N (tn|
d�1X

j=0

wjx
j
n,�

2)

N (w|0,↵I)

p(x2|x1) =
p(x1,x2)

p(x1)

p(x1, . . . ,xn) =p(x1)p(x2|x1)p(x3|x1,x2) . . .

p(xn|x1, . . . ,xn�1) (4)

p(a, b, c) = p(a)p(b|a)p(c|a, b)
p(a, b, c) = p(b)p(c|b)p(a|b, c)

p(a, b, c) = p(c)p(b|c)p(a|b, c) = p(c)p(b|c)p(a|c)

µ�(xN�1) =
X

xN

 N�1,N (xN�1, xN)

Z =
X

xn

µ↵(xn)µ�(xn)

8

Summary: inference on a chain

• To compute local marginals:
– Compute and store all forward messages,
– Compute and store all backward messages,
– Compute Z at any node xm
– Compute

for all variables required

17

396 8. GRAPHICAL MODELS

the desired marginal in the form

p(xn) =
1
Z⎡

⎣
∑

xn−1

ψn−1,n(xn−1, xn) · · ·

[
∑

x2

ψ2,3(x2, x3)

[
∑

x1

ψ1,2(x1, x2)

]]
· · ·

⎤

⎦

︸ ︷︷ ︸
µα(xn)

⎡

⎣
∑

xn+1

ψn,n+1(xn, xn+1) · · ·

[
∑

xN

ψN−1,N (xN−1, xN)

]
· · ·

⎤

⎦

︸ ︷︷ ︸
µβ(xn)

. (8.52)

The reader is encouraged to study this re-ordering carefully as the underlying idea
forms the basis for the later discussion of the general sum-product algorithm. Here
the key concept that we are exploiting is that multiplication is distributive over addi-
tion, so that

ab + ac = a(b + c) (8.53)

in which the left-hand side involves three arithmetic operations whereas the right-
hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal using
this re-ordered expression. We have to perform N − 1 summations each of which is
over K states and each of which involves a function of two variables. For instance,
the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
K × K numbers. We have to sum this table over x1 for each value of x2 and so this
has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwards

396 8. GRAPHICAL MODELS

the desired marginal in the form

p(xn) =
1
Z⎡

⎣
∑

xn−1

ψn−1,n(xn−1, xn) · · ·

[
∑

x2

ψ2,3(x2, x3)

[
∑

x1

ψ1,2(x1, x2)

]]
· · ·

⎤

⎦

︸ ︷︷ ︸
µα(xn)

⎡

⎣
∑

xn+1

ψn,n+1(xn, xn+1) · · ·

[
∑

xN

ψN−1,N (xN−1, xN)

]
· · ·

⎤

⎦

︸ ︷︷ ︸
µβ(xn)

. (8.52)

The reader is encouraged to study this re-ordering carefully as the underlying idea
forms the basis for the later discussion of the general sum-product algorithm. Here
the key concept that we are exploiting is that multiplication is distributive over addi-
tion, so that

ab + ac = a(b + c) (8.53)

in which the left-hand side involves three arithmetic operations whereas the right-
hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal using
this re-ordered expression. We have to perform N − 1 summations each of which is
over K states and each of which involves a function of two variables. For instance,
the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
K × K numbers. We have to sum this table over x1 for each value of x2 and so this
has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwards

396 8. GRAPHICAL MODELS

the desired marginal in the form

p(xn) =
1
Z⎡

⎣
∑

xn−1

ψn−1,n(xn−1, xn) · · ·

[
∑

x2

ψ2,3(x2, x3)

[
∑

x1

ψ1,2(x1, x2)

]]
· · ·

⎤

⎦

︸ ︷︷ ︸
µα(xn)

⎡

⎣
∑

xn+1

ψn,n+1(xn, xn+1) · · ·

[
∑

xN

ψN−1,N (xN−1, xN)

]
· · ·

⎤

⎦

︸ ︷︷ ︸
µβ(xn)

. (8.52)

The reader is encouraged to study this re-ordering carefully as the underlying idea
forms the basis for the later discussion of the general sum-product algorithm. Here
the key concept that we are exploiting is that multiplication is distributive over addi-
tion, so that

ab + ac = a(b + c) (8.53)

in which the left-hand side involves three arithmetic operations whereas the right-
hand side reduces this to two operations.

Let us work out the computational cost of evaluating the required marginal using
this re-ordered expression. We have to perform N − 1 summations each of which is
over K states and each of which involves a function of two variables. For instance,
the summation over x1 involves only the function ψ1,2(x1, x2), which is a table of
K × K numbers. We have to sum this table over x1 for each value of x2 and so this
has O(K2) cost. The resulting vector of K numbers is multiplied by the matrix of
numbers ψ2,3(x2, x3) and so is again O(K2). Because there are N − 1 summations
and multiplications of this kind, the total cost of evaluating the marginal p(xn) is
O(NK2). This is linear in the length of the chain, in contrast to the exponential cost
of a naive approach. We have therefore been able to exploit the many conditional
independence properties of this simple graph in order to obtain an efficient calcula-
tion. If the graph had been fully connected, there would have been no conditional
independence properties, and we would have been forced to work directly with the
full joint distribution.

We now give a powerful interpretation of this calculation in terms of the passing
of local messages around on the graph. From (8.52) we see that the expression for the
marginal p(xn) decomposes into the product of two factors times the normalization
constant

p(xn) =
1
Z

µα(xn)µβ(xn). (8.54)

We shall interpret µα(xn) as a message passed forwards along the chain from node
xn−1 to node xn. Similarly, µβ(xn) can be viewed as a message passed backwards

What is the cost? O(NK2)

Question: how to infer the marginal of two neighboring variables?

Let us generalize the idea to trees

18

Tree-structured MRF Tree-structured Bayesian network

Why trees: tree structures can guarantee exact inference (we
will see it later)

8.4. Inference in Graphical Models 399

Figure 8.39 Examples of tree-
structured graphs, showing (a) an
undirected tree, (b) a directed tree,
and (c) a directed polytree.

(a) (b) (c)

that can be interpreted in terms of messages passed along the chain. More generally,
inference can be performed efficiently using local message passing on a broader
class of graphs called trees. In particular, we shall shortly generalize the message
passing formalism derived above for chains to give the sum-product algorithm, which
provides an efficient framework for exact inference in tree-structured graphs.

In the case of an undirected graph, a tree is defined as a graph in which there
is one, and only one, path between any pair of nodes. Such graphs therefore do not
have loops. In the case of directed graphs, a tree is defined such that there is a single
node, called the root, which has no parents, and all other nodes have one parent. If
we convert a directed tree into an undirected graph, we see that the moralization step
will not add any links as all nodes have at most one parent, and as a consequence the
corresponding moralized graph will be an undirected tree. Examples of undirected
and directed trees are shown in Figure 8.39(a) and 8.39(b). Note that a distribution
represented as a directed tree can easily be converted into one represented by an
undirected tree, and vice versa.Exercise 8.18

If there are nodes in a directed graph that have more than one parent, but there is
still only one path (ignoring the direction of the arrows) between any two nodes, then
the graph is a called a polytree, as illustrated in Figure 8.39(c). Such a graph will
have more than one node with the property of having no parents, and furthermore,
the corresponding moralized undirected graph will have loops.

8.4.3 Factor graphs
The sum-product algorithm that we derive in the next section is applicable to

undirected and directed trees and to polytrees. It can be cast in a particularly simple
and general form if we first introduce a new graphical construction called a factor
graph (Frey, 1998; Kschischnang et al., 2001).

Both directed and undirected graphs allow a global function of several vari-
ables to be expressed as a product of factors over subsets of those variables. Factor
graphs make this decomposition explicit by introducing additional nodes for the fac-
tors themselves in addition to the nodes representing the variables. They also allow
us to be more explicit about the details of the factorization, as we shall see.

Let us write the joint distribution over a set of variables in the form of a product
of factors

p(x) =
∏

s

fs(xs) (8.59)

where xs denotes a subset of the variables. For convenience, we shall denote the

8.4. Inference in Graphical Models 399

Figure 8.39 Examples of tree-
structured graphs, showing (a) an
undirected tree, (b) a directed tree,
and (c) a directed polytree.

(a) (b) (c)

that can be interpreted in terms of messages passed along the chain. More generally,
inference can be performed efficiently using local message passing on a broader
class of graphs called trees. In particular, we shall shortly generalize the message
passing formalism derived above for chains to give the sum-product algorithm, which
provides an efficient framework for exact inference in tree-structured graphs.

In the case of an undirected graph, a tree is defined as a graph in which there
is one, and only one, path between any pair of nodes. Such graphs therefore do not
have loops. In the case of directed graphs, a tree is defined such that there is a single
node, called the root, which has no parents, and all other nodes have one parent. If
we convert a directed tree into an undirected graph, we see that the moralization step
will not add any links as all nodes have at most one parent, and as a consequence the
corresponding moralized graph will be an undirected tree. Examples of undirected
and directed trees are shown in Figure 8.39(a) and 8.39(b). Note that a distribution
represented as a directed tree can easily be converted into one represented by an
undirected tree, and vice versa.Exercise 8.18

If there are nodes in a directed graph that have more than one parent, but there is
still only one path (ignoring the direction of the arrows) between any two nodes, then
the graph is a called a polytree, as illustrated in Figure 8.39(c). Such a graph will
have more than one node with the property of having no parents, and furthermore,
the corresponding moralized undirected graph will have loops.

8.4.3 Factor graphs
The sum-product algorithm that we derive in the next section is applicable to

undirected and directed trees and to polytrees. It can be cast in a particularly simple
and general form if we first introduce a new graphical construction called a factor
graph (Frey, 1998; Kschischnang et al., 2001).

Both directed and undirected graphs allow a global function of several vari-
ables to be expressed as a product of factors over subsets of those variables. Factor
graphs make this decomposition explicit by introducing additional nodes for the fac-
tors themselves in addition to the nodes representing the variables. They also allow
us to be more explicit about the details of the factorization, as we shall see.

Let us write the joint distribution over a set of variables in the form of a product
of factors

p(x) =
∏

s

fs(xs) (8.59)

where xs denotes a subset of the variables. For convenience, we shall denote the

Factor graphs – bipartite graphs

19

400 8. GRAPHICAL MODELS

Figure 8.40 Example of a factor graph, which corresponds
to the factorization (8.60).

x1 x2 x3

fa fb fc fd

individual variables by xi, however, as in earlier discussions, these can comprise
groups of variables (such as vectors or matrices). Each factor fs is a function of a
corresponding set of variables xs.

Directed graphs, whose factorization is defined by (8.5), represent special cases
of (8.59) in which the factors fs(xs) are local conditional distributions. Similarly,
undirected graphs, given by (8.39), are a special case in which the factors are po-
tential functions over the maximal cliques (the normalizing coefficient 1/Z can be
viewed as a factor defined over the empty set of variables).

In a factor graph, there is a node (depicted as usual by a circle) for every variable
in the distribution, as was the case for directed and undirected graphs. There are also
additional nodes (depicted by small squares) for each factor fs(xs) in the joint dis-
tribution. Finally, there are undirected links connecting each factor node to all of the
variables nodes on which that factor depends. Consider, for example, a distribution
that is expressed in terms of the factorization

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). (8.60)

This can be expressed by the factor graph shown in Figure 8.40. Note that there are
two factors fa(x1, x2) and fb(x1, x2) that are defined over the same set of variables.
In an undirected graph, the product of two such factors would simply be lumped
together into the same clique potential. Similarly, fc(x2, x3) and fd(x3) could be
combined into a single potential over x2 and x3. The factor graph, however, keeps
such factors explicit and so is able to convey more detailed information about the
underlying factorization.

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fa

fb

(c)

Figure 8.41 (a) An undirected graph with a single clique potential ψ(x1, x2, x3). (b) A factor graph with factor
f(x1, x2, x3) = ψ(x1, x2, x3) representing the same distribution as the undirected graph. (c) A different factor
graph representing the same distribution, whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ψ(x1, x2, x3).

400 8. GRAPHICAL MODELS

Figure 8.40 Example of a factor graph, which corresponds
to the factorization (8.60).

x1 x2 x3

fa fb fc fd

individual variables by xi, however, as in earlier discussions, these can comprise
groups of variables (such as vectors or matrices). Each factor fs is a function of a
corresponding set of variables xs.

Directed graphs, whose factorization is defined by (8.5), represent special cases
of (8.59) in which the factors fs(xs) are local conditional distributions. Similarly,
undirected graphs, given by (8.39), are a special case in which the factors are po-
tential functions over the maximal cliques (the normalizing coefficient 1/Z can be
viewed as a factor defined over the empty set of variables).

In a factor graph, there is a node (depicted as usual by a circle) for every variable
in the distribution, as was the case for directed and undirected graphs. There are also
additional nodes (depicted by small squares) for each factor fs(xs) in the joint dis-
tribution. Finally, there are undirected links connecting each factor node to all of the
variables nodes on which that factor depends. Consider, for example, a distribution
that is expressed in terms of the factorization

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). (8.60)

This can be expressed by the factor graph shown in Figure 8.40. Note that there are
two factors fa(x1, x2) and fb(x1, x2) that are defined over the same set of variables.
In an undirected graph, the product of two such factors would simply be lumped
together into the same clique potential. Similarly, fc(x2, x3) and fd(x3) could be
combined into a single potential over x2 and x3. The factor graph, however, keeps
such factors explicit and so is able to convey more detailed information about the
underlying factorization.

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fa

fb

(c)

Figure 8.41 (a) An undirected graph with a single clique potential ψ(x1, x2, x3). (b) A factor graph with factor
f(x1, x2, x3) = ψ(x1, x2, x3) representing the same distribution as the undirected graph. (c) A different factor
graph representing the same distribution, whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ψ(x1, x2, x3).

8.4. Inference in Graphical Models 399

Figure 8.39 Examples of tree-
structured graphs, showing (a) an
undirected tree, (b) a directed tree,
and (c) a directed polytree.

(a) (b) (c)

that can be interpreted in terms of messages passed along the chain. More generally,
inference can be performed efficiently using local message passing on a broader
class of graphs called trees. In particular, we shall shortly generalize the message
passing formalism derived above for chains to give the sum-product algorithm, which
provides an efficient framework for exact inference in tree-structured graphs.

In the case of an undirected graph, a tree is defined as a graph in which there
is one, and only one, path between any pair of nodes. Such graphs therefore do not
have loops. In the case of directed graphs, a tree is defined such that there is a single
node, called the root, which has no parents, and all other nodes have one parent. If
we convert a directed tree into an undirected graph, we see that the moralization step
will not add any links as all nodes have at most one parent, and as a consequence the
corresponding moralized graph will be an undirected tree. Examples of undirected
and directed trees are shown in Figure 8.39(a) and 8.39(b). Note that a distribution
represented as a directed tree can easily be converted into one represented by an
undirected tree, and vice versa.Exercise 8.18

If there are nodes in a directed graph that have more than one parent, but there is
still only one path (ignoring the direction of the arrows) between any two nodes, then
the graph is a called a polytree, as illustrated in Figure 8.39(c). Such a graph will
have more than one node with the property of having no parents, and furthermore,
the corresponding moralized undirected graph will have loops.

8.4.3 Factor graphs
The sum-product algorithm that we derive in the next section is applicable to

undirected and directed trees and to polytrees. It can be cast in a particularly simple
and general form if we first introduce a new graphical construction called a factor
graph (Frey, 1998; Kschischnang et al., 2001).

Both directed and undirected graphs allow a global function of several vari-
ables to be expressed as a product of factors over subsets of those variables. Factor
graphs make this decomposition explicit by introducing additional nodes for the fac-
tors themselves in addition to the nodes representing the variables. They also allow
us to be more explicit about the details of the factorization, as we shall see.

Let us write the joint distribution over a set of variables in the form of a product
of factors

p(x) =
∏

s

fs(xs) (8.59)

where xs denotes a subset of the variables. For convenience, we shall denote the

Factor graphs – multiple choices

20

8.4. Inference in Graphical Models 401

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fc

fa fb

(c)

Figure 8.42 (a) A directed graph with the factorization p(x1)p(x2)p(x3|x1, x2). (b) A factor graph representing
the same distribution as the directed graph, whose factor satisfies f(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2). (c)
A different factor graph representing the same distribution with factors fa(x1) = p(x1), fb(x2) = p(x2) and
fc(x1, x2, x3) = p(x3|x1, x2).

Factor graphs are said to be bipartite because they consist of two distinct kinds
of nodes, and all links go between nodes of opposite type. In general, factor graphs
can therefore always be drawn as two rows of nodes (variable nodes at the top and
factor nodes at the bottom) with links between the rows, as shown in the example in
Figure 8.40. In some situations, however, other ways of laying out the graph may
be more intuitive, for example when the factor graph is derived from a directed or
undirected graph, as we shall see.

If we are given a distribution that is expressed in terms of an undirected graph,
then we can readily convert it to a factor graph. To do this, we create variable nodes
corresponding to the nodes in the original undirected graph, and then create addi-
tional factor nodes corresponding to the maximal cliques xs. The factors fs(xs) are
then set equal to the clique potentials. Note that there may be several different factor
graphs that correspond to the same undirected graph. These concepts are illustrated
in Figure 8.41.

Similarly, to convert a directed graph to a factor graph, we simply create variable
nodes in the factor graph corresponding to the nodes of the directed graph, and then
create factor nodes corresponding to the conditional distributions, and then finally
add the appropriate links. Again, there can be multiple factor graphs all of which
correspond to the same directed graph. The conversion of a directed graph to a
factor graph is illustrated in Figure 8.42.

We have already noted the importance of tree-structured graphs for performing
efficient inference. If we take a directed or undirected tree and convert it into a factor
graph, then the result will again be a tree (in other words, the factor graph will have
no loops, and there will be one and only one path connecting any two nodes). In
the case of a directed polytree, conversion to an undirected graph results in loops
due to the moralization step, whereas conversion to a factor graph again results in a
tree, as illustrated in Figure 8.43. In fact, local cycles in a directed graph due to
links connecting parents of a node can be removed on conversion to a factor graph
by defining the appropriate factor function, as shown in Figure 8.44.

We have seen that multiple different factor graphs can represent the same di-
rected or undirected graph. This allows factor graphs to be more specific about the

8.4. Inference in Graphical Models 401

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fc

fa fb

(c)

Figure 8.42 (a) A directed graph with the factorization p(x1)p(x2)p(x3|x1, x2). (b) A factor graph representing
the same distribution as the directed graph, whose factor satisfies f(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2). (c)
A different factor graph representing the same distribution with factors fa(x1) = p(x1), fb(x2) = p(x2) and
fc(x1, x2, x3) = p(x3|x1, x2).

Factor graphs are said to be bipartite because they consist of two distinct kinds
of nodes, and all links go between nodes of opposite type. In general, factor graphs
can therefore always be drawn as two rows of nodes (variable nodes at the top and
factor nodes at the bottom) with links between the rows, as shown in the example in
Figure 8.40. In some situations, however, other ways of laying out the graph may
be more intuitive, for example when the factor graph is derived from a directed or
undirected graph, as we shall see.

If we are given a distribution that is expressed in terms of an undirected graph,
then we can readily convert it to a factor graph. To do this, we create variable nodes
corresponding to the nodes in the original undirected graph, and then create addi-
tional factor nodes corresponding to the maximal cliques xs. The factors fs(xs) are
then set equal to the clique potentials. Note that there may be several different factor
graphs that correspond to the same undirected graph. These concepts are illustrated
in Figure 8.41.

Similarly, to convert a directed graph to a factor graph, we simply create variable
nodes in the factor graph corresponding to the nodes of the directed graph, and then
create factor nodes corresponding to the conditional distributions, and then finally
add the appropriate links. Again, there can be multiple factor graphs all of which
correspond to the same directed graph. The conversion of a directed graph to a
factor graph is illustrated in Figure 8.42.

We have already noted the importance of tree-structured graphs for performing
efficient inference. If we take a directed or undirected tree and convert it into a factor
graph, then the result will again be a tree (in other words, the factor graph will have
no loops, and there will be one and only one path connecting any two nodes). In
the case of a directed polytree, conversion to an undirected graph results in loops
due to the moralization step, whereas conversion to a factor graph again results in a
tree, as illustrated in Figure 8.43. In fact, local cycles in a directed graph due to
links connecting parents of a node can be removed on conversion to a factor graph
by defining the appropriate factor function, as shown in Figure 8.44.

We have seen that multiple different factor graphs can represent the same di-
rected or undirected graph. This allows factor graphs to be more specific about the

8.4. Inference in Graphical Models 401

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fc

fa fb

(c)

Figure 8.42 (a) A directed graph with the factorization p(x1)p(x2)p(x3|x1, x2). (b) A factor graph representing
the same distribution as the directed graph, whose factor satisfies f(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2). (c)
A different factor graph representing the same distribution with factors fa(x1) = p(x1), fb(x2) = p(x2) and
fc(x1, x2, x3) = p(x3|x1, x2).

Factor graphs are said to be bipartite because they consist of two distinct kinds
of nodes, and all links go between nodes of opposite type. In general, factor graphs
can therefore always be drawn as two rows of nodes (variable nodes at the top and
factor nodes at the bottom) with links between the rows, as shown in the example in
Figure 8.40. In some situations, however, other ways of laying out the graph may
be more intuitive, for example when the factor graph is derived from a directed or
undirected graph, as we shall see.

If we are given a distribution that is expressed in terms of an undirected graph,
then we can readily convert it to a factor graph. To do this, we create variable nodes
corresponding to the nodes in the original undirected graph, and then create addi-
tional factor nodes corresponding to the maximal cliques xs. The factors fs(xs) are
then set equal to the clique potentials. Note that there may be several different factor
graphs that correspond to the same undirected graph. These concepts are illustrated
in Figure 8.41.

Similarly, to convert a directed graph to a factor graph, we simply create variable
nodes in the factor graph corresponding to the nodes of the directed graph, and then
create factor nodes corresponding to the conditional distributions, and then finally
add the appropriate links. Again, there can be multiple factor graphs all of which
correspond to the same directed graph. The conversion of a directed graph to a
factor graph is illustrated in Figure 8.42.

We have already noted the importance of tree-structured graphs for performing
efficient inference. If we take a directed or undirected tree and convert it into a factor
graph, then the result will again be a tree (in other words, the factor graph will have
no loops, and there will be one and only one path connecting any two nodes). In
the case of a directed polytree, conversion to an undirected graph results in loops
due to the moralization step, whereas conversion to a factor graph again results in a
tree, as illustrated in Figure 8.43. In fact, local cycles in a directed graph due to
links connecting parents of a node can be removed on conversion to a factor graph
by defining the appropriate factor function, as shown in Figure 8.44.

We have seen that multiple different factor graphs can represent the same di-
rected or undirected graph. This allows factor graphs to be more specific about the

Factor(Graphs(from(Directed(Graphs(Factor(Graphs(from(Directed(Graphs(Factor(Graphs(from(Directed(Graphs(Factor(Graphs(from(Directed(Graphs(

Factor graphs for undirected graphs

21

402 8. GRAPHICAL MODELS

(a) (b) (c)

Figure 8.43 (a) A directed polytree. (b) The result of converting the polytree into an undirected graph showing
the creation of loops. (c) The result of converting the polytree into a factor graph, which retains the tree structure.

precise form of the factorization. Figure 8.45 shows an example of a fully connected
undirected graph along with two different factor graphs. In (b), the joint distri-
bution is given by a general form p(x) = f(x1, x2, x3), whereas in (c), it is given
by the more specific factorization p(x) = fa(x1, x2)fb(x1, x3)fc(x2, x3). It should
be emphasized that the factorization in (c) does not correspond to any conditional
independence properties.

8.4.4 The sum-product algorithm
We shall now make use of the factor graph framework to derive a powerful class

of efficient, exact inference algorithms that are applicable to tree-structured graphs.
Here we shall focus on the problem of evaluating local marginals over nodes or
subsets of nodes, which will lead us to the sum-product algorithm. Later we shall
modify the technique to allow the most probable state to be found, giving rise to the
max-sum algorithm.

Also we shall suppose that all of the variables in the model are discrete, and
so marginalization corresponds to performing sums. The framework, however, is
equally applicable to linear-Gaussian models in which case marginalization involves
integration, and we shall consider an example of this in detail when we discuss linear
dynamical systems.Section 13.3

Figure 8.44 (a) A fragment of a di-
rected graph having a lo-
cal cycle. (b) Conversion
to a fragment of a factor
graph having a tree struc-
ture, in which f(x1, x2, x3) =
p(x1)p(x2|x1)p(x3|x1, x2).

x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)

402 8. GRAPHICAL MODELS

(a) (b) (c)

Figure 8.43 (a) A directed polytree. (b) The result of converting the polytree into an undirected graph showing
the creation of loops. (c) The result of converting the polytree into a factor graph, which retains the tree structure.

precise form of the factorization. Figure 8.45 shows an example of a fully connected
undirected graph along with two different factor graphs. In (b), the joint distri-
bution is given by a general form p(x) = f(x1, x2, x3), whereas in (c), it is given
by the more specific factorization p(x) = fa(x1, x2)fb(x1, x3)fc(x2, x3). It should
be emphasized that the factorization in (c) does not correspond to any conditional
independence properties.

8.4.4 The sum-product algorithm
We shall now make use of the factor graph framework to derive a powerful class

of efficient, exact inference algorithms that are applicable to tree-structured graphs.
Here we shall focus on the problem of evaluating local marginals over nodes or
subsets of nodes, which will lead us to the sum-product algorithm. Later we shall
modify the technique to allow the most probable state to be found, giving rise to the
max-sum algorithm.

Also we shall suppose that all of the variables in the model are discrete, and
so marginalization corresponds to performing sums. The framework, however, is
equally applicable to linear-Gaussian models in which case marginalization involves
integration, and we shall consider an example of this in detail when we discuss linear
dynamical systems.Section 13.3

Figure 8.44 (a) A fragment of a di-
rected graph having a lo-
cal cycle. (b) Conversion
to a fragment of a factor
graph having a tree struc-
ture, in which f(x1, x2, x3) =
p(x1)p(x2|x1)p(x3|x1, x2).

x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)

400 8. GRAPHICAL MODELS

Figure 8.40 Example of a factor graph, which corresponds
to the factorization (8.60).

x1 x2 x3

fa fb fc fd

individual variables by xi, however, as in earlier discussions, these can comprise
groups of variables (such as vectors or matrices). Each factor fs is a function of a
corresponding set of variables xs.

Directed graphs, whose factorization is defined by (8.5), represent special cases
of (8.59) in which the factors fs(xs) are local conditional distributions. Similarly,
undirected graphs, given by (8.39), are a special case in which the factors are po-
tential functions over the maximal cliques (the normalizing coefficient 1/Z can be
viewed as a factor defined over the empty set of variables).

In a factor graph, there is a node (depicted as usual by a circle) for every variable
in the distribution, as was the case for directed and undirected graphs. There are also
additional nodes (depicted by small squares) for each factor fs(xs) in the joint dis-
tribution. Finally, there are undirected links connecting each factor node to all of the
variables nodes on which that factor depends. Consider, for example, a distribution
that is expressed in terms of the factorization

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). (8.60)

This can be expressed by the factor graph shown in Figure 8.40. Note that there are
two factors fa(x1, x2) and fb(x1, x2) that are defined over the same set of variables.
In an undirected graph, the product of two such factors would simply be lumped
together into the same clique potential. Similarly, fc(x2, x3) and fd(x3) could be
combined into a single potential over x2 and x3. The factor graph, however, keeps
such factors explicit and so is able to convey more detailed information about the
underlying factorization.

x1 x2

x3

(a)

x1 x2

x3

f

(b)

x1 x2

x3

fa

fb

(c)

Figure 8.41 (a) An undirected graph with a single clique potential ψ(x1, x2, x3). (b) A factor graph with factor
f(x1, x2, x3) = ψ(x1, x2, x3) representing the same distribution as the undirected graph. (c) A different factor
graph representing the same distribution, whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ψ(x1, x2, x3).

Factor(Graphs(from(Undirected(Graphs(Factor(Graphs(from(Undirected(Graphs(Factor(Graphs(from(Undirected(Graphs(

Overview: The Sum-Product algorithm

• Objective:
– efficient, exact inference to find marginals
– When several marginals are required, allow

computations to be shared

22

Key idea: Distributive Law
<latexit sha1_base64="0/t/kGBoeihSPErhp58ZLPbFTMU=">AAACQXicbZBNS8MwGMdTX+d8q3r0EhzChjDaMtTLYOjF4wT3AlspaZZuYekLSSqMsq/mxW/gzbsXD4p49WLWdjA3Hwj88nuekOTvRowKaRiv2tr6xubWdmGnuLu3f3CoHx23RRhzTFo4ZCHvukgQRgPSklQy0o04Qb7LSMcd3876nUfCBQ2DBzmJiO2jYUA9ipFUytG7yDFdx4QXMAUrBWtuFFh11ShnQu0qmV8Q9TKaT1cWtKOXjKqRFlwFM4cSyKvp6C/9QYhjnwQSMyREzzQiaSeIS4oZmRb7sSARwmM0JD2FAfKJsJM0gSk8V2YAvZCrFUiY2sUTCfKFmPiumvSRHInl3kz+1+vF0ru2ExpEsSQBzi7yYgZlCGdxwgHlBEs2UYAwp+qtEI8QR1iq0IsqBHP5y6vQtqrmZbV2Xys1bvI4CuAUnIEyMMEVaIA70AQtgMETeAMf4FN71t61L+07G13T8jMn4E9pP7++gKY/</latexit>

a1b1 + a1b2 + a2b1 + a2b2 = a1(b1 + b2) + a2(b1 + b2) = (a1 + a2)(b1 + b2)

The Sum-Product algorithm

23

Given a tree-structured graphical model

8.4. Inference in Graphical Models 403

x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)

x1 x2

x3

fa

fcfb

(c)

Figure 8.45 (a) A fully connected undirected graph. (b) and (c) Two factor graphs each of which corresponds
to the undirected graph in (a).

There is an algorithm for exact inference on directed graphs without loops known
as belief propagation (Pearl, 1988; Lauritzen and Spiegelhalter, 1988), and is equiv-
alent to a special case of the sum-product algorithm. Here we shall consider only the
sum-product algorithm because it is simpler to derive and to apply, as well as being
more general.

We shall assume that the original graph is an undirected tree or a directed tree or
polytree, so that the corresponding factor graph has a tree structure. We first convert
the original graph into a factor graph so that we can deal with both directed and
undirected models using the same framework. Our goal is to exploit the structure of
the graph to achieve two things: (i) to obtain an efficient, exact inference algorithm
for finding marginals; (ii) in situations where several marginals are required to allow
computations to be shared efficiently.

We begin by considering the problem of finding the marginal p(x) for partic-
ular variable node x. For the moment, we shall suppose that all of the variables
are hidden. Later we shall see how to modify the algorithm to incorporate evidence
corresponding to observed variables. By definition, the marginal is obtained by sum-
ming the joint distribution over all variables except x so that

p(x) =
∑

x\x

p(x) (8.61)

where x \ x denotes the set of variables in x with variable x omitted. The idea is
to substitute for p(x) using the factor graph expression (8.59) and then interchange
summations and products in order to obtain an efficient algorithm. Consider the
fragment of graph shown in Figure 8.46 in which we see that the tree structure of
the graph allows us to partition the factors in the joint distribution into groups, with
one group associated with each of the factor nodes that is a neighbour of the variable
node x. We see that the joint distribution can be written as a product of the form

p(x) =
∏

s∈ne(x)

Fs(x, Xs) (8.62)

ne(x) denotes the set of factor nodes that are neighbours of x, and Xs denotes the
set of all variables in the subtree connected to the variable node x via the factor node

8.4. Inference in Graphical Models 403

x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)

x1 x2

x3

fa

fcfb

(c)

Figure 8.45 (a) A fully connected undirected graph. (b) and (c) Two factor graphs each of which corresponds
to the undirected graph in (a).

There is an algorithm for exact inference on directed graphs without loops known
as belief propagation (Pearl, 1988; Lauritzen and Spiegelhalter, 1988), and is equiv-
alent to a special case of the sum-product algorithm. Here we shall consider only the
sum-product algorithm because it is simpler to derive and to apply, as well as being
more general.

We shall assume that the original graph is an undirected tree or a directed tree or
polytree, so that the corresponding factor graph has a tree structure. We first convert
the original graph into a factor graph so that we can deal with both directed and
undirected models using the same framework. Our goal is to exploit the structure of
the graph to achieve two things: (i) to obtain an efficient, exact inference algorithm
for finding marginals; (ii) in situations where several marginals are required to allow
computations to be shared efficiently.

We begin by considering the problem of finding the marginal p(x) for partic-
ular variable node x. For the moment, we shall suppose that all of the variables
are hidden. Later we shall see how to modify the algorithm to incorporate evidence
corresponding to observed variables. By definition, the marginal is obtained by sum-
ming the joint distribution over all variables except x so that

p(x) =
∑

x\x

p(x) (8.61)

where x \ x denotes the set of variables in x with variable x omitted. The idea is
to substitute for p(x) using the factor graph expression (8.59) and then interchange
summations and products in order to obtain an efficient algorithm. Consider the
fragment of graph shown in Figure 8.46 in which we see that the tree structure of
the graph allows us to partition the factors in the joint distribution into groups, with
one group associated with each of the factor nodes that is a neighbour of the variable
node x. We see that the joint distribution can be written as a product of the form

p(x) =
∏

s∈ne(x)

Fs(x, Xs) (8.62)

ne(x) denotes the set of factor nodes that are neighbours of x, and Xs denotes the
set of all variables in the subtree connected to the variable node x via the factor node

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)
F

s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

ne(x): factor nodes that are
neighbors of x

Xs: variables in the subtree that
connect to x via the factor node
fs

24

The Sum-Product algorithm

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)
F

s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Why this is true?

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

25

The Sum-Product algorithm

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)
F

s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Why this is true?

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Message from factor node
to variable node

26

The Sum-Product algorithm

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

: variables in the subtree that connect to x first through xm and then
through the factor node fs

Different do not overlap. Why?

8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

27

The Sum-Product algorithm

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

distribute the summation

28

The Sum-Product algorithm

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Message from a
variable node to a
factor node

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

⌘n = w>�(xn)

E[tn|⌘n] = yn =
dg(⌘n)

d⌘n

f
�1

N (tn|
d�1X

j=0

wjx
j
n,�

2)

N (w|0,↵I)

p(x2|x1) =
p(x1,x2)

p(x1)

p(x1, . . . ,xn) =p(x1)p(x2|x1)p(x3|x1,x2) . . .

p(xn|x1, . . . ,xn�1) (4)

p(a, b, c) = p(a)p(b|a)p(c|a, b)
p(a, b, c) = p(b)p(c|b)p(a|b, c)

p(a, b, c) = p(c)p(b|c)p(a|b, c) = p(c)p(b|c)p(a|c)

µ�(xN�1) =
X

xN

 N�1,N (xN�1, xN)

Z =
X

xn

µ↵(xn)µ�(xn)

µxm!fs(xm)

8

distribute the summation

29

8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

The Sum-Product algorithm8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

⌘n = w>�(xn)

E[tn|⌘n] = yn =
dg(⌘n)

d⌘n

f
�1

N (tn|
d�1X

j=0

wjx
j
n,�

2)

N (w|0,↵I)

p(x2|x1) =
p(x1,x2)

p(x1)

p(x1, . . . ,xn) =p(x1)p(x2|x1)p(x3|x1,x2) . . .

p(xn|x1, . . . ,xn�1) (4)

p(a, b, c) = p(a)p(b|a)p(c|a, b)
p(a, b, c) = p(b)p(c|b)p(a|b, c)

p(a, b, c) = p(c)p(b|c)p(a|b, c) = p(c)p(b|c)p(a|c)

µ�(xN�1) =
X

xN

 N�1,N (xN�1, xN)

Z =
X

xn

µ↵(xn)µ�(xn)

µxm!fs(xm)

8

How to compute the
message from a variable
to a factor?

Very similar to how we compute p(x),
but with a small difference

30

406 8. GRAPHICAL MODELS

Figure 8.48 Illustration of the evaluation of the message sent by a
variable node to an adjacent factor node.

xm

fl

fL

fs

Fl(xm, Xml)

then obtain

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[
∑

Xml

Fl(xm, Xml)

]

=
∏

l∈ne(xm)\fs

µfl→xm(xm) (8.69)

where we have used the definition (8.64) of the messages passed from factor nodes to
variable nodes. Thus to evaluate the message sent by a variable node to an adjacent
factor node along the connecting link, we simply take the product of the incoming
messages along all of the other links. Note that any variable node that has only
two neighbours performs no computation but simply passes messages through un-
changed. Also, we note that a variable node can send a message to a factor node
once it has received incoming messages from all other neighbouring factor nodes.

Recall that our goal is to calculate the marginal for variable node x, and that this
marginal is given by the product of incoming messages along all of the links arriving
at that node. Each of these messages can be computed recursively in terms of other
messages. In order to start this recursion, we can view the node x as the root of the
tree and begin at the leaf nodes. From the definition (8.69), we see that if a leaf node
is a variable node, then the message that it sends along its one and only link is given
by

µx→f (x) = 1 (8.70)

as illustrated in Figure 8.49(a). Similarly, if the leaf node is a factor node, we see
from (8.66) that the message sent should take the form

µf→x(x) = f(x) (8.71)

Figure 8.49 The sum-product algorithm
begins with messages sent
by the leaf nodes, which de-
pend on whether the leaf
node is (a) a variable node,
or (b) a factor node.

x f

µx→f (x) = 1

(a)

xf

µf→x(x) = f(x)

(b)

8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

⌘n = w>�(xn)

E[tn|⌘n] = yn =
dg(⌘n)

d⌘n

f
�1

N (tn|
d�1X

j=0

wjx
j
n,�

2)

N (w|0,↵I)

p(x2|x1) =
p(x1,x2)

p(x1)

p(x1, . . . ,xn) =p(x1)p(x2|x1)p(x3|x1,x2) . . .

p(xn|x1, . . . ,xn�1) (4)

p(a, b, c) = p(a)p(b|a)p(c|a, b)
p(a, b, c) = p(b)p(c|b)p(a|b, c)

p(a, b, c) = p(c)p(b|c)p(a|b, c) = p(c)p(b|c)p(a|c)

µ�(xN�1) =
X

xN

 N�1,N (xN�1, xN)

Z =
X

xn

µ↵(xn)µ�(xn)

µxm!fs(xm)

8

The Sum-Product algorithm
The(Sum/Product(Algorithm((6)(

How to compute the
message from a variable
node to a factor node
efficiently?

Do the same thing just as
when we compute p(x), but
with a small difference.

8.4. Inference in Graphical Models 405

Figure 8.47 Illustration of the factorization of the subgraph as-
sociated with factor node fs.

xm

xM

x
fs

µxM→fs(xM)

µfs→x(x)

Gm(xm, Xsm)

where ne(fs) denotes the set of variable nodes that are neighbours of the factor node
fs, and ne(fs) \ x denotes the same set but with node x removed. Here we have
defined the following messages from variable nodes to factor nodes

µxm→fs(xm) ≡
∑

Xsm

Gm(xm, Xsm). (8.67)

We have therefore introduced two distinct kinds of message, those that go from factor
nodes to variable nodes denoted µf→x(x), and those that go from variable nodes to
factor nodes denoted µx→f (x). In each case, we see that messages passed along a
link are always a function of the variable associated with the variable node that link
connects to.

The result (8.66) says that to evaluate the message sent by a factor node to a vari-
able node along the link connecting them, take the product of the incoming messages
along all other links coming into the factor node, multiply by the factor associated
with that node, and then marginalize over all of the variables associated with the
incoming messages. This is illustrated in Figure 8.47. It is important to note that
a factor node can send a message to a variable node once it has received incoming
messages from all other neighbouring variable nodes.

Finally, we derive an expression for evaluating the messages from variable nodes
to factor nodes, again by making use of the (sub-)graph factorization. From Fig-
ure 8.48, we see that term Gm(xm, Xsm) associated with node xm is given by a
product of terms Fl(xm, Xml) each associated with one of the factor nodes fl that is
linked to node xm (excluding node fs), so that

Gm(xm, Xsm) =
∏

l∈ne(xm)\fs

Fl(xm, Xml) (8.68)

where the product is taken over all neighbours of node xm except for node fs. Note
that each of the factors Fl(xm, Xml) represents a subtree of the original graph of
precisely the same kind as introduced in (8.62). Substituting (8.68) into (8.67), we

• Now we have two message passing rules

31

The Sum-Product algorithm

q From a factor node to a variable node

q From a variable node to a factor node

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

406 8. GRAPHICAL MODELS

Figure 8.48 Illustration of the evaluation of the message sent by a
variable node to an adjacent factor node.

xm

fl

fL

fs

Fl(xm, Xml)

then obtain

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[
∑

Xml

Fl(xm, Xml)

]

=
∏

l∈ne(xm)\fs

µfl→xm(xm) (8.69)

where we have used the definition (8.64) of the messages passed from factor nodes to
variable nodes. Thus to evaluate the message sent by a variable node to an adjacent
factor node along the connecting link, we simply take the product of the incoming
messages along all of the other links. Note that any variable node that has only
two neighbours performs no computation but simply passes messages through un-
changed. Also, we note that a variable node can send a message to a factor node
once it has received incoming messages from all other neighbouring factor nodes.

Recall that our goal is to calculate the marginal for variable node x, and that this
marginal is given by the product of incoming messages along all of the links arriving
at that node. Each of these messages can be computed recursively in terms of other
messages. In order to start this recursion, we can view the node x as the root of the
tree and begin at the leaf nodes. From the definition (8.69), we see that if a leaf node
is a variable node, then the message that it sends along its one and only link is given
by

µx→f (x) = 1 (8.70)

as illustrated in Figure 8.49(a). Similarly, if the leaf node is a factor node, we see
from (8.66) that the message sent should take the form

µf→x(x) = f(x) (8.71)

Figure 8.49 The sum-product algorithm
begins with messages sent
by the leaf nodes, which de-
pend on whether the leaf
node is (a) a variable node,
or (b) a factor node.

x f

µx→f (x) = 1

(a)

xf

µf→x(x) = f(x)

(b)

406 8. GRAPHICAL MODELS

Figure 8.48 Illustration of the evaluation of the message sent by a
variable node to an adjacent factor node.

xm

fl

fL

fs

Fl(xm, Xml)

then obtain

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[
∑

Xml

Fl(xm, Xml)

]

=
∏

l∈ne(xm)\fs

µfl→xm(xm) (8.69)

where we have used the definition (8.64) of the messages passed from factor nodes to
variable nodes. Thus to evaluate the message sent by a variable node to an adjacent
factor node along the connecting link, we simply take the product of the incoming
messages along all of the other links. Note that any variable node that has only
two neighbours performs no computation but simply passes messages through un-
changed. Also, we note that a variable node can send a message to a factor node
once it has received incoming messages from all other neighbouring factor nodes.

Recall that our goal is to calculate the marginal for variable node x, and that this
marginal is given by the product of incoming messages along all of the links arriving
at that node. Each of these messages can be computed recursively in terms of other
messages. In order to start this recursion, we can view the node x as the root of the
tree and begin at the leaf nodes. From the definition (8.69), we see that if a leaf node
is a variable node, then the message that it sends along its one and only link is given
by

µx→f (x) = 1 (8.70)

as illustrated in Figure 8.49(a). Similarly, if the leaf node is a factor node, we see
from (8.66) that the message sent should take the form

µf→x(x) = f(x) (8.71)

Figure 8.49 The sum-product algorithm
begins with messages sent
by the leaf nodes, which de-
pend on whether the leaf
node is (a) a variable node,
or (b) a factor node.

x f

µx→f (x) = 1

(a)

xf

µf→x(x) = f(x)

(b)

Alternately pass messages!

• Initial messages on the leaves

32

The Sum-Product algorithm

406 8. GRAPHICAL MODELS

Figure 8.48 Illustration of the evaluation of the message sent by a
variable node to an adjacent factor node.

xm

fl

fL

fs

Fl(xm, Xml)

then obtain

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[
∑

Xml

Fl(xm, Xml)

]

=
∏

l∈ne(xm)\fs

µfl→xm(xm) (8.69)

where we have used the definition (8.64) of the messages passed from factor nodes to
variable nodes. Thus to evaluate the message sent by a variable node to an adjacent
factor node along the connecting link, we simply take the product of the incoming
messages along all of the other links. Note that any variable node that has only
two neighbours performs no computation but simply passes messages through un-
changed. Also, we note that a variable node can send a message to a factor node
once it has received incoming messages from all other neighbouring factor nodes.

Recall that our goal is to calculate the marginal for variable node x, and that this
marginal is given by the product of incoming messages along all of the links arriving
at that node. Each of these messages can be computed recursively in terms of other
messages. In order to start this recursion, we can view the node x as the root of the
tree and begin at the leaf nodes. From the definition (8.69), we see that if a leaf node
is a variable node, then the message that it sends along its one and only link is given
by

µx→f (x) = 1 (8.70)

as illustrated in Figure 8.49(a). Similarly, if the leaf node is a factor node, we see
from (8.66) that the message sent should take the form

µf→x(x) = f(x) (8.71)

Figure 8.49 The sum-product algorithm
begins with messages sent
by the leaf nodes, which de-
pend on whether the leaf
node is (a) a variable node,
or (b) a factor node.

x f

µx→f (x) = 1

(a)

xf

µf→x(x) = f(x)

(b)

406 8. GRAPHICAL MODELS

Figure 8.48 Illustration of the evaluation of the message sent by a
variable node to an adjacent factor node.

xm

fl

fL

fs

Fl(xm, Xml)

then obtain

µxm→fs(xm) =
∏

l∈ne(xm)\fs

[
∑

Xml

Fl(xm, Xml)

]

=
∏

l∈ne(xm)\fs

µfl→xm(xm) (8.69)

where we have used the definition (8.64) of the messages passed from factor nodes to
variable nodes. Thus to evaluate the message sent by a variable node to an adjacent
factor node along the connecting link, we simply take the product of the incoming
messages along all of the other links. Note that any variable node that has only
two neighbours performs no computation but simply passes messages through un-
changed. Also, we note that a variable node can send a message to a factor node
once it has received incoming messages from all other neighbouring factor nodes.

Recall that our goal is to calculate the marginal for variable node x, and that this
marginal is given by the product of incoming messages along all of the links arriving
at that node. Each of these messages can be computed recursively in terms of other
messages. In order to start this recursion, we can view the node x as the root of the
tree and begin at the leaf nodes. From the definition (8.69), we see that if a leaf node
is a variable node, then the message that it sends along its one and only link is given
by

µx→f (x) = 1 (8.70)

as illustrated in Figure 8.49(a). Similarly, if the leaf node is a factor node, we see
from (8.66) that the message sent should take the form

µf→x(x) = f(x) (8.71)

Figure 8.49 The sum-product algorithm
begins with messages sent
by the leaf nodes, which de-
pend on whether the leaf
node is (a) a variable node,
or (b) a factor node.

x f

µx→f (x) = 1

(a)

xf

µf→x(x) = f(x)

(b)

The Sum-Product algorithm

• How to conduct the order of message passing?

33

1. Pick an arbitrary node as the root

2. Compute and propagate messages from the leaf
nodes to the root, and store received messages at every
node

3. Compute and propagate messages from the root the
leaf nodes, storing the messages at every node

The Sum-Product algorithm

• After the message passing done, how to compute
the marginals?

34

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

Just multiple the received messages of the variable, and
normalize as necessary!

404 8. GRAPHICAL MODELS

Figure 8.46 A fragment of a factor graph illustrating the
evaluation of the marginal p(x).

xfs

µfs→x(x)

F
s
(x

,X
s
)

fs, and Fs(x, Xs) represents the product of all the factors in the group associated
with factor fs.

Substituting (8.62) into (8.61) and interchanging the sums and products, we ob-
tain

p(x) =
∏

s∈ne(x)

[
∑

Xs

Fs(x, Xs)

]

=
∏

s∈ne(x)

µfs→x(x). (8.63)

Here we have introduced a set of functions µfs→x(x), defined by

µfs→x(x) ≡
∑

Xs

Fs(x, Xs) (8.64)

which can be viewed as messages from the factor nodes fs to the variable node x.
We see that the required marginal p(x) is given by the product of all the incoming
messages arriving at node x.

In order to evaluate these messages, we again turn to Figure 8.46 and note that
each factor Fs(x, Xs) is described by a factor (sub-)graph and so can itself be fac-
torized. In particular, we can write

Fs(x, Xs) = fs(x, x1, . . . , xM)G1 (x1, Xs1) . . . GM (xM , XsM) (8.65)

where, for convenience, we have denoted the variables associated with factor fx, in
addition to x, by x1, . . . , xM . This factorization is illustrated in Figure 8.47. Note
that the set of variables {x, x1, . . . , xM} is the set of variables on which the factor
fs depends, and so it can also be denoted xs, using the notation of (8.59).

Substituting (8.65) into (8.64) we obtain

µfs→x(x) =
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

[
∑

Xxm

Gm(xm, Xsm)

]

=
∑

x1

. . .
∑

xM

fs(x, x1, . . . , xM)
∏

m∈ne(fs)\x

µxm→fs(xm) (8.66)

• Why do we need normalization
– Undirected graphical models (MRF)

– Some nodes have been observed

35

The Sum-Product algorithm
386 8. GRAPHICAL MODELS

the joint distribution is written as a product of potential functions ψC(xC) over the
maximal cliques of the graph

p(x) =
1
Z

∏

C

ψC(xC). (8.39)

Here the quantity Z, sometimes called the partition function, is a normalization con-
stant and is given by

Z =
∑

x

∏

C

ψC(xC) (8.40)

which ensures that the distribution p(x) given by (8.39) is correctly normalized.
By considering only potential functions which satisfy ψC(xC) ! 0 we ensure that
p(x) ! 0. In (8.40) we have assumed that x comprises discrete variables, but the
framework is equally applicable to continuous variables, or a combination of the two,
in which the summation is replaced by the appropriate combination of summation
and integration.

Note that we do not restrict the choice of potential functions to those that have a
specific probabilistic interpretation as marginal or conditional distributions. This is
in contrast to directed graphs in which each factor represents the conditional distribu-
tion of the corresponding variable, conditioned on the state of its parents. However,
in special cases, for instance where the undirected graph is constructed by starting
with a directed graph, the potential functions may indeed have such an interpretation,
as we shall see shortly.

One consequence of the generality of the potential functions ψC(xC) is that
their product will in general not be correctly normalized. We therefore have to in-
troduce an explicit normalization factor given by (8.40). Recall that for directed
graphs, the joint distribution was automatically normalized as a consequence of the
normalization of each of the conditional distributions in the factorization.

The presence of this normalization constant is one of the major limitations of
undirected graphs. If we have a model with M discrete nodes each having K states,
then the evaluation of the normalization term involves summing over KM states and
so (in the worst case) is exponential in the size of the model. The partition function
is needed for parameter learning because it will be a function of any parameters that
govern the potential functions ψC(xC). However, for evaluation of local conditional
distributions, the partition function is not needed because a conditional is the ratio
of two marginals, and the partition function cancels between numerator and denom-
inator when evaluating this ratio. Similarly, for evaluating local marginal probabil-
ities we can work with the unnormalized joint distribution and then normalize the
marginals explicitly at the end. Provided the marginals only involves a small number
of variables, the evaluation of their normalization coefficient will be feasible.

So far, we have discussed the notion of conditional independence based on sim-
ple graph separation and we have proposed a factorization of the joint distribution
that is intended to correspond to this conditional independence structure. However,
we have not made any formal connection between conditional independence and
factorization for undirected graphs. To do so we need to restrict attention to poten-
tial functions ψC(xC) that are strictly positive (i.e., never zero or negative for any

The potentials are not normalization

We actually fix the value of the observed
nodes in message computation

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

36

The Sum-Product algorithm: example

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

37

410 8. GRAPHICAL MODELS

x1 x2 x3

x4

(a)

x1 x2 x3

x4

(b)

Figure 8.52 Flow of messages for the sum-product algorithm applied to the example graph in Figure 8.51. (a)
From the leaf nodes x1 and x4 towards the root node x3. (b) From the root node towards the leaf nodes.

One message has now passed in each direction across each link, and we can now
evaluate the marginals. As a simple check, let us verify that the marginal p(x2) is
given by the correct expression. Using (8.63) and substituting for the messages using
the above results, we have

p̃(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=

[
∑

x1

fa(x1, x2)

][
∑

x3

fb(x2, x3)

][
∑

x4

fc(x2, x4)

]

=
∑

x1

∑

x2

∑

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
∑

x1

∑

x3

∑

x4

p̃(x) (8.86)

as required.
So far, we have assumed that all of the variables in the graph are hidden. In most

practical applications, a subset of the variables will be observed, and we wish to cal-
culate posterior distributions conditioned on these observations. Observed nodes are
easily handled within the sum-product algorithm as follows. Suppose we partition x
into hidden variables h and observed variables v, and that the observed value of v
is denoted v̂. Then we simply multiply the joint distribution p(x) by

∏
i I(vi, v̂i),

where I(v, v̂) = 1 if v = v̂ and I(v, v̂) = 0 otherwise. This product corresponds
to p(h,v = v̂) and hence is an unnormalized version of p(h|v = v̂). By run-
ning the sum-product algorithm, we can efficiently calculate the posterior marginals
p(hi|v = v̂) up to a normalization coefficient whose value can be found efficiently
using a local computation. Any summations over variables in v then collapse into a
single term.

We have assumed throughout this section that we are dealing with discrete vari-
ables. However, there is nothing specific to discrete variables either in the graphical
framework or in the probabilistic construction of the sum-product algorithm. For

The sum-product algorithm: example

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

38

The sum-product algorithm: example
410 8. GRAPHICAL MODELS

x1 x2 x3

x4

(a)

x1 x2 x3

x4

(b)

Figure 8.52 Flow of messages for the sum-product algorithm applied to the example graph in Figure 8.51. (a)
From the leaf nodes x1 and x4 towards the root node x3. (b) From the root node towards the leaf nodes.

One message has now passed in each direction across each link, and we can now
evaluate the marginals. As a simple check, let us verify that the marginal p(x2) is
given by the correct expression. Using (8.63) and substituting for the messages using
the above results, we have

p̃(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=

[
∑

x1

fa(x1, x2)

][
∑

x3

fb(x2, x3)

][
∑

x4

fc(x2, x4)

]

=
∑

x1

∑

x2

∑

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
∑

x1

∑

x3

∑

x4

p̃(x) (8.86)

as required.
So far, we have assumed that all of the variables in the graph are hidden. In most

practical applications, a subset of the variables will be observed, and we wish to cal-
culate posterior distributions conditioned on these observations. Observed nodes are
easily handled within the sum-product algorithm as follows. Suppose we partition x
into hidden variables h and observed variables v, and that the observed value of v
is denoted v̂. Then we simply multiply the joint distribution p(x) by

∏
i I(vi, v̂i),

where I(v, v̂) = 1 if v = v̂ and I(v, v̂) = 0 otherwise. This product corresponds
to p(h,v = v̂) and hence is an unnormalized version of p(h|v = v̂). By run-
ning the sum-product algorithm, we can efficiently calculate the posterior marginals
p(hi|v = v̂) up to a normalization coefficient whose value can be found efficiently
using a local computation. Any summations over variables in v then collapse into a
single term.

We have assumed throughout this section that we are dealing with discrete vari-
ables. However, there is nothing specific to discrete variables either in the graphical
framework or in the probabilistic construction of the sum-product algorithm. For

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

39

8.4. Inference in Graphical Models 409

Figure 8.51 A simple factor graph used to illustrate the
sum-product algorithm.

x1 x2 x3

x4

fa fb

fc

graph whose unnormalized joint distribution is given by

p̃(x) = fa(x1, x2)fb(x2, x3)fc(x2, x4). (8.73)

In order to apply the sum-product algorithm to this graph, let us designate node x3

as the root, in which case there are two leaf nodes x1 and x4. Starting with the leaf
nodes, we then have the following sequence of six messages

µx1→fa(x1) = 1 (8.74)

µfa→x2(x2) =
∑

x1

fa(x1, x2) (8.75)

µx4→fc(x4) = 1 (8.76)

µfc→x2(x2) =
∑

x4

fc(x2, x4) (8.77)

µx2→fb(x2) = µfa→x2(x2)µfc→x2(x2) (8.78)

µfb→x3(x3) =
∑

x2

fb(x2, x3)µx2→fb . (8.79)

The direction of flow of these messages is illustrated in Figure 8.52. Once this mes-
sage propagation is complete, we can then propagate messages from the root node
out to the leaf nodes, and these are given by

µx3→fb(x3) = 1 (8.80)

µfb→x2(x2) =
∑

x3

fb(x2, x3) (8.81)

µx2→fa(x2) = µfb→x2(x2)µfc→x2(x2) (8.82)

µfa→x1(x1) =
∑

x2

fa(x1, x2)µx2→fa(x2) (8.83)

µx2→fc(x2) = µfa→x2(x2)µfb→x2(x2) (8.84)

µfc→x4(x4) =
∑

x2

fc(x2, x4)µx2→fc(x2). (8.85)

410 8. GRAPHICAL MODELS

x1 x2 x3

x4

(a)

x1 x2 x3

x4

(b)

Figure 8.52 Flow of messages for the sum-product algorithm applied to the example graph in Figure 8.51. (a)
From the leaf nodes x1 and x4 towards the root node x3. (b) From the root node towards the leaf nodes.

One message has now passed in each direction across each link, and we can now
evaluate the marginals. As a simple check, let us verify that the marginal p(x2) is
given by the correct expression. Using (8.63) and substituting for the messages using
the above results, we have

p̃(x2) = µfa→x2(x2)µfb→x2(x2)µfc→x2(x2)

=

[
∑

x1

fa(x1, x2)

][
∑

x3

fb(x2, x3)

][
∑

x4

fc(x2, x4)

]

=
∑

x1

∑

x2

∑

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
∑

x1

∑

x3

∑

x4

p̃(x) (8.86)

as required.
So far, we have assumed that all of the variables in the graph are hidden. In most

practical applications, a subset of the variables will be observed, and we wish to cal-
culate posterior distributions conditioned on these observations. Observed nodes are
easily handled within the sum-product algorithm as follows. Suppose we partition x
into hidden variables h and observed variables v, and that the observed value of v
is denoted v̂. Then we simply multiply the joint distribution p(x) by

∏
i I(vi, v̂i),

where I(v, v̂) = 1 if v = v̂ and I(v, v̂) = 0 otherwise. This product corresponds
to p(h,v = v̂) and hence is an unnormalized version of p(h|v = v̂). By run-
ning the sum-product algorithm, we can efficiently calculate the posterior marginals
p(hi|v = v̂) up to a normalization coefficient whose value can be found efficiently
using a local computation. Any summations over variables in v then collapse into a
single term.

We have assumed throughout this section that we are dealing with discrete vari-
ables. However, there is nothing specific to discrete variables either in the graphical
framework or in the probabilistic construction of the sum-product algorithm. For

The sum-product algorithm: example

The sum-product algorithm: implementation

40

qStep 1. Pick a root node x and arrange the graph
into a tree

qStep 2.
 For each child factor f of x
 𝜇!→#(𝑥) = Collect(f, x)

qStep 3.
 For each child factor f of x
 Distribute (x, f)

The sum-product algorithm: implementation

41

Collect (x, f)
 if x is a leaf, return 1
 for each child factor fj of x (note: not including f)
 𝜇!!→#(𝑥) = Collect(fj, x)
 return ∏$ 𝜇!!→#(𝑥)

Collect (f, x)
 if f is a leaf, return f(x)
 for each child variable xj of f (note: not including x)
 𝜇#!→𝑓(𝑥) = Collect(xj, f)
 return ∑#",…,## 𝑓(𝑥, 𝑥', … , 𝑥()∏ 𝑗	𝜇#!→𝑓(𝑥)

42

Distribute (x, f)
 compute and store 𝜇#→!(𝑥)	directly
 if f is a leaf, return
 for each child variable xj of f (note: not including x)
 Distribute (f, xj)

Distribute (f, x)
 compute and store 𝜇!→#(𝑥)	directly
 if x is a leaf, return
 for each child factor fj of x (note: not including f)
 Distribute(x, fj)

The sum-product algorithm: implementation

What about general graphs?

• In general graphs that contain cycles, sum-product
cannot guarantee exact inference

• The exact inference on general graphs is called
Junction tree algorithm
– It first merges factors and turns the initial graph into a

junction tree and then run a sum-product-like algorithm
– Intractable on graphs with large factors

43

Loopy belief propagation (LBP)

• We can still apply sum-product on general graphs as
an approximate inference algorithm

• First initialize all the messages with 1 (or random)
• Run sum-product (with any message passing order)

repeatedly until convergence (not guaranteed!)
• Often works really well, sometimes totally fail
• Striking connections between LBP and decoding

(turbo codes) in information theory

44

The max-sum algorithm

• A simple variant of the sum-product algorithm
• Objective: an efficient algorithm to find
– The value xmax that maximizes p(x)
– The value of p(xmax)

• Very important in many tasks, e.g., structure
prediction, decision, ….

45

The max-sum algorithm

• In general, maximum marginals ≠ joint maximum

46

8.4. Inference in Graphical Models 411

Table 8.1 Example of a joint distribution over two binary variables for
which the maximum of the joint distribution occurs for dif-
ferent variable values compared to the maxima of the two
marginals.

x = 0 x = 1
y = 0 0.3 0.4
y = 1 0.3 0.0

continuous variables the summations are simply replaced by integrations. We shall
give an example of the sum-product algorithm applied to a graph of linear-Gaussian
variables when we consider linear dynamical systems.Section 13.3

8.4.5 The max-sum algorithm
The sum-product algorithm allows us to take a joint distribution p(x) expressed

as a factor graph and efficiently find marginals over the component variables. Two
other common tasks are to find a setting of the variables that has the largest prob-
ability and to find the value of that probability. These can be addressed through a
closely related algorithm called max-sum, which can be viewed as an application of
dynamic programming in the context of graphical models (Cormen et al., 2001).

A simple approach to finding latent variable values having high probability
would be to run the sum-product algorithm to obtain the marginals p(xi) for ev-
ery variable, and then, for each marginal in turn, to find the value x⋆

i that maximizes
that marginal. However, this would give the set of values that are individually the
most probable. In practice, we typically wish to find the set of values that jointly
have the largest probability, in other words the vector xmax that maximizes the joint
distribution, so that

xmax = arg max
x

p(x) (8.87)

for which the corresponding value of the joint probability will be given by

p(xmax) = max
x

p(x). (8.88)

In general, xmax is not the same as the set of x⋆
i values, as we can easily show using

a simple example. Consider the joint distribution p(x, y) over two binary variables
x, y ∈ {0, 1} given in Table 8.1. The joint distribution is maximized by setting x =
1 and y = 0, corresponding the value 0.4. However, the marginal for p(x), obtained
by summing over both values of y, is given by p(x = 0) = 0.6 and p(x = 1) = 0.4,
and similarly the marginal for y is given by p(y = 0) = 0.7 and p(y = 1) = 0.3,
and so the marginals are maximized by x = 0 and y = 0, which corresponds to a
value of 0.3 for the joint distribution. In fact, it is not difficult to construct examples
for which the set of individually most probable values has probability zero under the
joint distribution.Exercise 8.27

We therefore seek an efficient algorithm for finding the value of x that maxi-
mizes the joint distribution p(x) and that will allow us to obtain the value of the
joint distribution at its maximum. To address the second of these problems, we shall
simply write out the max operator in terms of its components

max
x

p(x) = max
x1

. . .max
xM

p(x) (8.89)

The Max‐Sum Algorithm (1)

Objective: an efficient algorithm for finding
i. the value xmax that maximises p(x);

ii. the value of p(xmax).

In general, maximum marginals ≠ joint maximum.

Maximizing over a chain

47

The Max‐Sum Algorithm (2)

Maximizing over a chain (max‐product)
The Max‐Sum Algorithm (2)

Maximizing over a chain (max‐product)

Observation

• We still have the distributive law

48

412 8. GRAPHICAL MODELS

where M is the total number of variables, and then substitute for p(x) using its
expansion in terms of a product of factors. In deriving the sum-product algorithm,
we made use of the distributive law (8.53) for multiplication. Here we make use of
the analogous law for the max operator

max(ab, ac) = amax(b, c) (8.90)

which holds if a ! 0 (as will always be the case for the factors in a graphical model).
This allows us to exchange products with maximizations.

Consider first the simple example of a chain of nodes described by (8.49). The
evaluation of the probability maximum can be written as

max
x

p(x) =
1
Z

max
x1

· · ·max
xN

[ψ1,2(x1, x2) · · ·ψN−1,N (xN−1, xN)]

=
1
Z

max
x1

[
ψ1,2(x1, x2)

[
· · ·max

xN

ψN−1,N (xN−1, xN)
]]

.

As with the calculation of marginals, we see that exchanging the max and product
operators results in a much more efficient computation, and one that is easily inter-
preted in terms of messages passed from node xN backwards along the chain to node
x1.

We can readily generalize this result to arbitrary tree-structured factor graphs
by substituting the expression (8.59) for the factor graph expansion into (8.89) and
again exchanging maximizations with products. The structure of this calculation is
identical to that of the sum-product algorithm, and so we can simply translate those
results into the present context. In particular, suppose that we designate a particular
variable node as the ‘root’ of the graph. Then we start a set of messages propagating
inwards from the leaves of the tree towards the root, with each node sending its
message towards the root once it has received all incoming messages from its other
neighbours. The final maximization is performed over the product of all messages
arriving at the root node, and gives the maximum value for p(x). This could be called
the max-product algorithm and is identical to the sum-product algorithm except that
summations are replaced by maximizations. Note that at this stage, messages have
been sent from leaves to the root, but not in the other direction.

In practice, products of many small probabilities can lead to numerical under-
flow problems, and so it is convenient to work with the logarithm of the joint distri-
bution. The logarithm is a monotonic function, so that if a > b then ln a > ln b, and
hence the max operator and the logarithm function can be interchanged, so that

ln
(
max

x
p(x)

)
= max

x
ln p(x). (8.91)

The distributive property is preserved because

max(a + b, a + c) = a + max(b, c). (8.92)

Thus taking the logarithm simply has the effect of replacing the products in the
max-product algorithm with sums, and so we obtain the max-sum algorithm. From

So we can simply replace sum by max in the sum-
product algorithm!

Observation

• Generalizes to tree-structured factor graph

49

The Max‐Sum Algorithm (3)

Generalizes to tree‐structured factor graph

maximizing as close to the leaf nodes as possible

• To enhance numerical stability, we take log

50

Observation

412 8. GRAPHICAL MODELS

where M is the total number of variables, and then substitute for p(x) using its
expansion in terms of a product of factors. In deriving the sum-product algorithm,
we made use of the distributive law (8.53) for multiplication. Here we make use of
the analogous law for the max operator

max(ab, ac) = amax(b, c) (8.90)

which holds if a ! 0 (as will always be the case for the factors in a graphical model).
This allows us to exchange products with maximizations.

Consider first the simple example of a chain of nodes described by (8.49). The
evaluation of the probability maximum can be written as

max
x

p(x) =
1
Z

max
x1

· · ·max
xN

[ψ1,2(x1, x2) · · ·ψN−1,N (xN−1, xN)]

=
1
Z

max
x1

[
ψ1,2(x1, x2)

[
· · ·max

xN

ψN−1,N (xN−1, xN)
]]

.

As with the calculation of marginals, we see that exchanging the max and product
operators results in a much more efficient computation, and one that is easily inter-
preted in terms of messages passed from node xN backwards along the chain to node
x1.

We can readily generalize this result to arbitrary tree-structured factor graphs
by substituting the expression (8.59) for the factor graph expansion into (8.89) and
again exchanging maximizations with products. The structure of this calculation is
identical to that of the sum-product algorithm, and so we can simply translate those
results into the present context. In particular, suppose that we designate a particular
variable node as the ‘root’ of the graph. Then we start a set of messages propagating
inwards from the leaves of the tree towards the root, with each node sending its
message towards the root once it has received all incoming messages from its other
neighbours. The final maximization is performed over the product of all messages
arriving at the root node, and gives the maximum value for p(x). This could be called
the max-product algorithm and is identical to the sum-product algorithm except that
summations are replaced by maximizations. Note that at this stage, messages have
been sent from leaves to the root, but not in the other direction.

In practice, products of many small probabilities can lead to numerical under-
flow problems, and so it is convenient to work with the logarithm of the joint distri-
bution. The logarithm is a monotonic function, so that if a > b then ln a > ln b, and
hence the max operator and the logarithm function can be interchanged, so that

ln
(
max

x
p(x)

)
= max

x
ln p(x). (8.91)

The distributive property is preserved because

max(a + b, a + c) = a + max(b, c). (8.92)

Thus taking the logarithm simply has the effect of replacing the products in the
max-product algorithm with sums, and so we obtain the max-sum algorithm. From

412 8. GRAPHICAL MODELS

where M is the total number of variables, and then substitute for p(x) using its
expansion in terms of a product of factors. In deriving the sum-product algorithm,
we made use of the distributive law (8.53) for multiplication. Here we make use of
the analogous law for the max operator

max(ab, ac) = amax(b, c) (8.90)

which holds if a ! 0 (as will always be the case for the factors in a graphical model).
This allows us to exchange products with maximizations.

Consider first the simple example of a chain of nodes described by (8.49). The
evaluation of the probability maximum can be written as

max
x

p(x) =
1
Z

max
x1

· · ·max
xN

[ψ1,2(x1, x2) · · ·ψN−1,N (xN−1, xN)]

=
1
Z

max
x1

[
ψ1,2(x1, x2)

[
· · ·max

xN

ψN−1,N (xN−1, xN)
]]

.

As with the calculation of marginals, we see that exchanging the max and product
operators results in a much more efficient computation, and one that is easily inter-
preted in terms of messages passed from node xN backwards along the chain to node
x1.

We can readily generalize this result to arbitrary tree-structured factor graphs
by substituting the expression (8.59) for the factor graph expansion into (8.89) and
again exchanging maximizations with products. The structure of this calculation is
identical to that of the sum-product algorithm, and so we can simply translate those
results into the present context. In particular, suppose that we designate a particular
variable node as the ‘root’ of the graph. Then we start a set of messages propagating
inwards from the leaves of the tree towards the root, with each node sending its
message towards the root once it has received all incoming messages from its other
neighbours. The final maximization is performed over the product of all messages
arriving at the root node, and gives the maximum value for p(x). This could be called
the max-product algorithm and is identical to the sum-product algorithm except that
summations are replaced by maximizations. Note that at this stage, messages have
been sent from leaves to the root, but not in the other direction.

In practice, products of many small probabilities can lead to numerical under-
flow problems, and so it is convenient to work with the logarithm of the joint distri-
bution. The logarithm is a monotonic function, so that if a > b then ln a > ln b, and
hence the max operator and the logarithm function can be interchanged, so that

ln
(
max

x
p(x)

)
= max

x
ln p(x). (8.91)

The distributive property is preserved because

max(a + b, a + c) = a + max(b, c). (8.92)

Thus taking the logarithm simply has the effect of replacing the products in the
max-product algorithm with sums, and so we obtain the max-sum algorithm. From

The distributive law still holds

So we only need to replace sum by max, product by sum
in the sum-product algorithm

The max-sum algorithm

Initialization message (leaf nodes)

51

The Max‐Sum Algorithm (5)

Initialization (leaf nodes)

RecursionMessage passing (recursively)

The Max‐Sum Algorithm (5)

Initialization (leaf nodes)

Recursion

The Max‐Sum Algorithm (5)

Initialization (leaf nodes)

Recursion

• First pass from leaves to the root and the second
pass from the root to leaves

• Termination

52

The max-sum algorithm

The Max‐Sum Algorithm (6)

Termination:

The max-sum algorithm

• How to find the global configuration xmax that gives
the maximum probability?

• We need to store a quantity to tell us how to trace
back to the variable value that maximizes the
previous sub-problem (back-tracking)

• So each message can contain two component: (1) the
max-sum value (2) the variable value that gives the
max-sum (i.e., argmax)

53

The max-sum algorithm

54

414 8. GRAPHICAL MODELS

Figure 8.53 A lattice, or trellis, diagram show-
ing explicitly the K possible states (one per row
of the diagram) for each of the variables xn in the
chain model. In this illustration K = 3. The ar-
row shows the direction of message passing in the
max-product algorithm. For every state k of each
variable xn (corresponding to column n of the dia-
gram) the function φ(xn) defines a unique state at
the previous variable, indicated by the black lines.
The two paths through the lattice correspond to
configurations that give the global maximum of the
joint probability distribution, and either of these
can be found by tracing back along the black lines
in the opposite direction to the arrow.

k = 1

k = 2

k = 3

n − 2 n − 1 n n + 1

corresponding to the graph shown in Figure 8.38. Suppose we take node xN to be
the root node. Then in the first phase, we propagate messages from the leaf node x1

to the root node using

µxn→fn,n+1(xn) = µfn−1,n→xn(xn)

µfn−1,n→xn(xn) = max
xn−1

[
ln fn−1,n(xn−1, xn) + µxn−1→fn−1,n(xn)

]

which follow from applying (8.94) and (8.93) to this particular graph. The initial
message sent from the leaf node is simply

µx1→f1,2(x1) = 0. (8.99)

The most probable value for xN is then given by

xmax
N = arg max

xN

[
µfN−1,N→xN (xN)

]
. (8.100)

Now we need to determine the states of the previous variables that correspond to the
same maximizing configuration. This can be done by keeping track of which values
of the variables gave rise to the maximum state of each variable, in other words by
storing quantities given by

φ(xn) = arg max
xn−1

[
ln fn−1,n(xn−1, xn) + µxn−1→fn−1,n(xn)

]
. (8.101)

To understand better what is happening, it is helpful to represent the chain of vari-
ables in terms of a lattice or trellis diagram as shown in Figure 8.53. Note that this
is not a probabilistic graphical model because the nodes represent individual states
of variables, while each variable corresponds to a column of such states in the di-
agram. For each state of a given variable, there is a unique state of the previous
variable that maximizes the probability (ties are broken either systematically or at
random), corresponding to the function φ(xn) given by (8.101), and this is indicated

The max-sum algorithm

• This is essentially dynamic programming

• For hidden Markov models, this is known as Viterbi
algorithm

55

What you need to know

• Factor graph definition
• Sum-product algorithm
• Message-passing
• Accurate for tree-structured graphs, not guaranteed

to be accurate for graphs with cycles
• Loopy belief propagation
• Max-product algorithm, max-sum
• Be able to implement the algorithms!

56

