Probabilistic Graphical Models
Spring 2024

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing

THE
U UNIVERSITY
OF UTAH

mailto:zhe@cs.Utah.edu

Outline

* Bayesian networks
e Markov random fields

* |Inference

The task

 Compute the posterior of one or more subsets of
nodes given the observed nodes

X X X

The task

 Compute the posterior of one or more subsets of
nodes given the observed nodes

X X X

p(y) = ;p(yhﬁ')p(m’) p(zly) = p(?/;(?:)gl)?(w)

Key: compute the marginal of one or a subset of nodes!

Let us start with a chain

T To LN-—1 TN

Let us start with a chain

p(X) — l1”1,2(51717 $2)¢2,3($27 5173) e ¢N—1,N(IN—1> 33N)

A

Let us start with a chain

T To LN-—1 TN

p(X) — %¢1,2($17 $2)¢2,3($27 5173) e ¢N—1,N(IN—1> 33N)

Each node takes K states and so each potential is a K x K table

Let us start with a chain

X1 X9 LN—-1 TN
1
p(X) — E¢1,2(CC17 $2)¢2,3($27 5173) v ¢N—1,N(IN—1> 33N)

Each node takes K states and so each potential is a K x K table

Let us consider to infer the marginal of a node x,

Let us start with a chain

X1 X9 LN—-1 TN
1
p(X) — E¢1,2($17 $2)¢2,3($27 373) v ¢N—1,N(IN—1> CCN)

Each node takes K states and so each potential is a K x K table

Let us consider to infer the marginal of a node x,

D INDIPIED VL

Tn—1Ln+1

Let us start with a chain

X1 X9 LN—-1 TN
1
p(X) — E¢1,2(CC17 $2)¢2,3($27 5173) v ¢N—1,N(IN—1> 33N)

Each node takes K states and so each potential is a K x K table

Let us consider to infer the marginal of a node x,

Z Z Z ZP How much cost?

Tn—1Ln+1

10

Let us start with a chain

X1 X9 LN—-1 TN
1
p(X) — E¢1,2(CC17 $2)¢2,3($27 5173) v ¢N—1,N(IN—1> 33N)

Each node takes K states and so each potential is a K x K table

Let us consider to infer the marginal of a node x,

Z Z Z ZP How much cost?

Tn—1Ln+1 O(K*KN'l)
11

Let us start with a chain

T To LN-—1 TN
O—0O— -+ —O0—0
p(X) — E¢1,2(CC17 $2)¢2,3($27 373) Ce ¢N—1,N(IN—1> 33N)

D INDIPIED VL

Tn—1 Ln+1

How to reduce the cost?

Key observations: many terms are repeated in the calculation, so we
can use the distributive law to save products and sums

a1b1 + a1ba + agby + asbs = a1(by + b2) + az(by + b2) = (a1 + a2)(by + b2)

12

Let us start with a chain

p(zn) = %
{Z Y1 (Tn1,) - [Z ool) [Z wl,g(xl,xz)” }
_ fro(n) i
ann+1 | Trop1) [Zw N (@N—, g;N)] 5

~"

1e(Tn)

13

Let us start with a chain

pln) = %
[z bt [[St | }
_ ta(@n) i
> bnntr @ Tat) [ZW LN (@N1, q;N)]
i s (@n) i
pa(zn) pp(Tn) messages

14

Recursively,

pa(Tn) = Z Un-1,n(Tn-1,Tn) Z

Ln—1 Ty —_2

= Z wn—l,n(xn—hmn):ua(xn_l)'

pp(@n) = Y Cniin(TngrTn) | D

Tn+1 Trt2

— Z ¢n+1,n(xn+1,5€n),u5(£€n+1).

15

Initial message

:Zlﬂl,g(ﬂjl,ﬂfg) ,LL5 LN — 1 Zle 1,N xN 17$N)
L1

p(Ty) = %Ma (Tn)ps(Tn)

Question: What is Z? Z = Z to(Tn) g (Tn)

Ln

16

Summary: inference on a chain

* To compute local marginals:
— Compute and store all forward messages, ta(zn)
— Compute and store all backward messages, ps(zn)
— Compute Z at any node x,,
— Compute
1
P(Tn) = S tha(Tn)1s(Tn)

Z
for all variables required

What is the cost? O(NK?)

Question: how to infer the marginal of two neighboring variables?

17

Let us generalize the idea to trees

Tree-structured MRF Tree-structured Bayesian network

Why trees: tree structures can guarantee exact inference (we
will see it later)

18

Factor graphs — bipartite graphs

L1 9 X3

fa, fb fc fd
p(x) — fa(ajla 332)fb(3717 ﬂ?z)fc(l'% 1‘3)fd(333)

p(x) = H fs(%s)

19

Factor graphs — multiple choices

f
p(X> — p(fﬂl)p(@) f(a’;l’aj27x3> _ fa(z1) = p(21)
p(x3|x1,5€2> p(xl)p(xg)p(3|x1,x2) fb(:c2) — p(xQ)

fc(iUl,QfQ,.Tg) — p(3}3|$1, 332>

20

Factor graphs for undirected graphs

I T2 951 To Iy X2
fa
f(xla X2, 373)
Jo
I3 L3 x3
w(:cl,xg,xg) f(.’131,$2,$3> fa(xlaanxB)fb(x%xB)

= Y(z1,22,73) = Y(x1,T2,3)

21

Overview: The Sum-Product algorithm

* Objective:
— efficient, exact inference to find marginals

— When several marginals are required, allow
computations to be shared

Key idea: Distributive Law

a1b1 + a1bs + agby 4+ asby = a1 (by + ba) + az(by + b2) = (a1 + a2) (b1 + b2)

22

The Sum-Product algorithm

Given a tree-structured graphical model

<
G
e
ne(x): factor nodes that are
o neighbors of x
p(x) = p(x)

X.: variables in the subtree that
connect to x via the factor node

p(x) = H Fo(z,Xs) f.

8€ne($) 23

The Sum-Product algorithm

Fy(z, X)

piz) =]] ZFs(ans)}—E/Vhythisistrue?}

s€ne(x) L Xs

= |)

s€ne(x)

Nfs—m:(x) = Z 18y o)

Xs

24

The Sum-Product algorithm

Message from factor node

/ to variable node
7

Fy(z, X)

piz) =]] ZFs(ans)}_E/Vhythisistrue?}

s€ne(x) L Xs

= |)

senel®) M, —>a: ZF ag, X

25

The Sum-Product algorithm

LM

Fs(vas) — fs(ajaxl) v o 7£CM)G1 (ajlaXSl) .. GM (:CM7XSM)

Xsm : variables in the subtree that connect to x first through x,,, and then
through the factor node f.

Different Xsm do not overlap. Why? 26

The Sum-Product algorithm

Fs(x7XS) — fs(x7x17 <o 7xM)G1 (331,X81> .. GM (xM7XSM)

Hdistribute the summation
pf.—z(x) = S:...S:fs(az,xl,...,xM) r ZGm(azm,Xsm)]
1 T M meEne(fs)\x LXzm
— y:...y:fs(x,xl,...,xM) r [uxm_)fs(mm)]
1 T M méEne(fs)\x

27

The Sum-Product algorithm

Fs<x7X8) — fs(x7x17 <o 7xM)G1 (331,X81> .. GM (xM7XSM)

idistribute the summation
pf.—z(x) = S:...S:fs(az,xl,...,x]\/[) r ZGm(acm,Xsm)]
1 T M meEne(fs)\x LXzm
— S:...y:fs(x,xl,...,xM) r [uxm_)fs(mm)]
1 T M méEne(fs)\x

Message from a
variable node to a
factor node

The Sum-Product algorithm

O How to compute the

message from a variable
to a factor?

IU/xm_>fs (xm) = Z Gm(xm7Xsm)
Xsm

Very similar to how we compute p(x),
but with a small difference

29

The Sum-Product algorithm

fy— £ (Tm) = Z G (Tm, Xsm) = Z H Fi(zm, Xomi)

Xsm, Xsm. lEne(me)\fs

= H I = (Tm)

lene(zm)\ fs

The Sum-Product algorithm

* Now we have two message passing rules

(] From a factor node to a variable node

i o) = > o) fl@wa,.zm)] tea—r(@m)

mene(fs)\x

(] From a variable node to a factor node

/’Lxm_>fs (xm) — H ,ufl—m:m(xm)

lene(xm)\fs

Alternately pass messages!

31

The Sum-Product algorithm

* Initial messages on the leaves

32

The Sum-Product algorithm

* How to conduct the order of message passing?

1. Pick an arbitrary node as the root

2. Compute and propagate messages from the leaf
nodes to the root, and store received messages at every
node

3. Compute and propagate messages from the root the
leaf nodes, storing the messages at every node

33

The Sum-Product algorithm

e After the message passing done, how to compute
the marginals?

s€ne(x) L X

piz) = J[D FlaX) = f\x -
i
= H ff,—a(T)

Just multiple the received messages of the variable, and
normalize as necessary!

34

The Sum-Product algorithm

* Why do we need normalization
— Undirected graphical models (MRF)

1
p(X) - Z H wc (Xc) The potentials are not normalization
C

— Some nodes have been observed

We actually fix the value of the observed
nodes in message computation

35

The Sum-Product algorithm: example

L4 p(x) = fa(1,22) fo (22, 23) fe(T2, T4)

36

The sum-product algorithm: example

— —bm—b —
O B nm O
Mwl_)fa(wl) = 1
A-fc Nfa—>x2(x2) — Zfa(xlaxQ)
O Bas—fo(Ta) = 1
= lufc_>l’2<x2) — Zf6($27x4>
M£U2—>fb(x2) — :ufa—>332(x2):ufc—>$2<$2)

pfy—zs(T3) = Z fo(@2, 23) oy — f, -

37

The sum-product algorithm: example

X1 L2 L3
— 4—/\4 <
O—8—0O—=—C)
fa fb
l-f M$3—>fb($3) = 1
| C Py (T2) = Y folw2, 23)
O Harf (B2) = fhfy s (©2) 1,y (2)
Ty Btz (Z1) = Zfa(xl,@)u@_)fa(:cg)
M$2—>fc(x2) — /J’fa—>$2($2):ufb—>$2(x2)

pf,—ay(Te) = Z Je(@2, Ba) fay — £, (T2).

38

The sum-product algorithm: example

O B—_ = O
a b
B2
p(ra) = Hf, —>m2($2)ﬂfb—>x2($2)uf e, (T2)

O = [Zfa Xy, 332] !Zfb X2, 563] !ch To, x4]
— YYYfa 51?1 L2 fb L2, lL’s)fc(fUz 5E4)

1 T2 Ty

= 222)

1 T3 Ty

39

The sum-product algorithm: implementation

(A Step 1. Pick a root node x and arrange the graph
Into a tree

1 Step 2.
For each child factor f of x

Us_x(x) = Collect(f, x)

1 Step 3.
For each child factor f of x
Distribute (x, f)

40

The sum-product algorithm: implementation

Collect (x, f)
if x is a leaf, return 1
for each child factor f; of x (note: not including f)

,ufj_>x(x) = Collect(f;, x)
return []; Moy (X)

Collect (f, x)
if fis a leaf, return f(x)
for each child variable x; of f (note: not including x)

,uxj_)f(x) = Collect(x;, f)
return le,...,xM 11 (@8 #1 a0 p Zo07) Hj ﬂxj—>f(x)

41

The sum-product algorithm: implementation

Distribute (x, f)
compute and store u,_,r(x) directly
if fis a leaf, return
for each child variable x; of f (note: not including x)
Distribute (f, x;)

Distribute (f, x)
compute and store ps_,,(x) directly
if x is a leaf, return
for each child factor f; of x (note: not including f)
Distribute(x, 1))

42

What about general graphs?

* In general graphs that contain cycles, sum-product
cannot guarantee exact inference

* The exact inference on general graphs is called
Junction tree algorithm

— It first merges factors and turns the initial graph into a
junction tree and then run a sum-product-like algorithm

— Intractable on graphs with large factors

43

Loopy belief propagation (LBP)

* We can still apply sum-product on general graphs as
an approximate inference algorithm

* First initialize all the messages with 1 (or random)

 Run sum-product (with any message passing order)
repeatedly until convergence (not guaranteed!)

e Often works really well, sometimes totally fail

e Striking connections between LBP and decoding
(turbo codes) in information theory

44

The max-sum algorithm

* A simple variant of the sum-product algorithm

* Objective: an efficient algorithm to find
— The value x,, ., that maximizes p(x)

— The value of p(x.,.,)

* Very important in many tasks, e.g., structure
prediction, decision,

45

The max-sum algorithm

* In general, maximum marginals # joint maximum

r=0 xx=1
y =20 0.3 0.4
y=1 0.3 0.0

argmaxp(x,y) =1 arg max p(x) = 0

X X

46

Maximizing over a chain

1 T2 LN —1 TN
p(x™*) = max p(x) = max...max p(x)

X Z1 M

max - - - max [2(1,22) - - - UN—1,N(TN-1,ZN)]
1 TN

max [max {101,2(951,%2) ["H;;%XwN—l,N(xN—l,xN)] “

Z1 Z2

47

Observation

e We still have the distributive law
max(ab, ac) = amax(b, ¢)

So we can simply replace sum by max in the sum-
product algorithm!

48

Observation

* Generalizes to tree-structured factor graph

m)?xp(x) = max H L5 fs(xn, Xs)
fsE€Ene(x,)

49

Observation

* To enhance numerical stability, we take log

In (maxp(x)) = max In p(x).

X X

The distributive law still holds

max(a + b, a 4+ ¢) = a + max(b, ¢)

So we only need to replace sum by max, product by sum
in the sum-product algorithm

50

The max-sum algorithm

Initialization message (leaf nodes)
po—g(z) =0 pf—z(z) =In f(z)

Message passing (recursively)

/‘Lf—mZ(x) — max 1nf<xax17'“ + Z M, — f lem
Lgeoey T M
méene(fs)\z
po—p(z) = Z pf,—z(2)

51

The max-sum algorithm

* First pass from leaves to the root and the second
pass from the root to leaves

e Termination

pmaX — maé}X Z Mfe—m:(x)
s€ne(x)
M = argmax Z ,ufs_m(ili)
v | s€ne(x) |

52

The max-sum algorithm

* How to find the global configuration x,,._, that gives
the maximum probability?

* We need to store a quantity to tell us how to trace
back to the variable value that maximizes the
previous sub-problem (back-tracking)

* So each message can contain two component: (1) the
max-sum value (2) the variable value that gives the
max-sum (i.e., argmax)

53

The max-sum algorithm

k:1D D D

The max-sum algorithm

* This is essentially dynamic programming

* For hidden Markov models, this is known as Viterbi
algorithm

55

What you need to know

e Factor graph definition
e Sum-product algorithm
* Message-passing

e Accurate for tree-structured graphs, not guaranteed
to be accurate for graphs with cycles

* Loopy belief propagation
* Max-product algorithm, max-sum
* Be able to implement the algorithms!

56

