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Applications:
- Physical Simulation
- Governing Eq. Discovery
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Outline

* What is probabilistic machine learning

* Why probabilistic/Bayesian machine
learning

* Course requirements/policies
(homework assignments, projects, etc.)

e Basic knowledge review



What is machine learning

“A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.”

Tom Mitchell (1999)




Machine learning is the driving force of Al






Imagen

Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda
fairytale book. bike. It is wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.
There is a painting of flowers on the wall behind him.

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
fly event. golden glow is coming from the chest.



Machine learning is everywhere!

And you are probably already using it
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Machine learning is everywhere!

And you are probably already using it

Is an email spam?
Find all the people in this photo

If | like these three movies, what
should | watch next?

Based on your purchase history,
you might be interested in...

Will a stock price go up or down
tomorrow? By how much?

Handwriting recognition

What are the best ads to place on
this website?

| would like to read that Dutch
website in English

Ok Google, Drive this car for me.
And, fly this helicopter for me.

Does this genetic marker
correspond to Alzheimer’s
disease?



What is probabilistic learning?

In a nutshell, probabilistic learning is branch
of ML that uses probabilistic (or Bayesian)
principles for model design and algorithm
development.
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Probabilistic Learning

Prior distribution Data likelihood Posterior distribution
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Advantage

« Unified, principled mathematical framework
4 ) -

[Priors} 4 [ Data J = [PosteriorsT
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* Uncertainty reasoning

" Asthma: 60%

Ny
\J Heart disease: 30%

Healthy: 10%

Raining: 70%

Sunny: 30%
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How important is the uncertainty?

Tesla death smash probe: Neither driver nor autopilot saw the truck
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Challenges
* Modeling

Complex Knowledge/assumptions Valid Prior Distributions
E.o== =—===== Rotes A
Wagsny 7 :--- |- Yoo can.... i
S om |\ Eoeme 2. Yoo CANT...

< you CAN.. ..
4. >/Ou CANT

MCMC sampling

p(0|D) =

6
_fp 9)p(D 9 d Variational approximations

High dimensional integration
ghd 9 7 Belief propagation
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In this course

* We will cover both the classical and state-of-the-art
approaches to deal with these challenges.
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Overview of this course

Syllabus
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Warning

1. This course is math intensive and requires
a certain level of programming (with
Matlab, R or Python). Python components
may require TensorFlow and/or PyTorch.
The coding workload is not heavy, but
requests mathematical derivations and
careful debugging.

2. The workload is heavy (5-10 hours per-
week)
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How will you learn?

* Take classes to follow the math, understand the
models and algorithms

* Derive the math details by yourself!

* Finish the homework assignments to deepen your
understanding

* Implement and debug the models and algorithms
by yourself!

e Course project to enlarge your vision and practice
your capability
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This course

Focuses on the mathematic foundations, modeling and
algorithmic ideas in probabilistic learning

This course is not about

* Applying ML to specific tasks (e.g., image tagging and
autonomous driving)

* Using specific ML tools/libraries, e.g., scikit-learn and
PyTorch

* How to program and debug, e.g., with Python, R or
Matlab
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This course

is an advanced course for students who want to study

ML in depth or quickly get to the frontier research of
probabilistic learning

This course is not a preliminary course, e.g., entry-level
introduction of statistics. That means,

The content can be hard for some ones
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Don’t take this course if

* You are struggling with linear algebra, calculus or
basic statistical concepts

* You are sick of mathematical symbols, derivations,
proofs and calculations

* You do NOT feel good in programming and
debugging

21



We assume that

* You are not scared of math, statistics, calculus and
calculations; you are happy with them!

* You are comfortable with abstract symbols and
matrices operations

* You can pick-up Matlab/Python/R quickly (even if
you have never used them before)
* You enjoy debugging, step in, step out, print, etc.

* You can quickly learn how to use TensorFlow or

PyTorch or Jax by following the documentation and
searching for the online examples
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and Most Important

* You have planed for enough efforts
for this class (e.g., 5-10 hours per-
week)
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If you feel NOT right about any of these
assumptions

* Seriously consider whether to take this course

We want you to succeed

 We do not want to make you feel tortured
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Course information

e The course website contains all the detailed
information

* The course website is linked to my homepage

My home page http://www.cs.utah.edu/~zhe/

Course website https://www.cs.utah.edu/~zhe/teach/cs6190.html
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https://www.cs.utah.edu/~zhe/teach/cs6350.html
http://www.cs.utah.edu/~zhe/

Basics Review

Note: this review is neither compressive nor in depth. Due to
time limit, this review is just to point out key concepts and
computational rules as the guidance. We list the references
for you to check out details for future usage.
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Matrix/Vector Derivative

e Standard notations

— non-bold letters: scalars

a7b7aj7y7B7D7G7a7/Y7"'

— Bold small letters: vectors

aab7X7y777777°'°

— Bold capital: matrices

A X ZT,...
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Matrix/Vector Derivative

e scalar input, scalar output

y(r + dzr) = y(z) + a - dr + (high-order terms)

@:a<—>dy:a-dx
Ox

* vector input, scalar output

x = (x1,.. ,,mn)T, dx = (dzq, ... ,da:n)T

y(x T dX) — 3/<X) + adx + (high—order terms) We use row-vector to
represent gradient

4 ‘} adx

9y _ 9y Oy
ox 0xy " Oz,

)=a
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Matrix/Vector Derivative

* |n general, vector input, vector output

y = (yla--wym>—r X = (mla- o c 7Xn)T7 dx = (dxl" . "dxn)—r

y(x + dx) = y(x) + Adx + (high order terms)

\

What is this? What’ssize? 771 X T,

- Oy1 0y1 oyr ]
oxq Oxo e oxn,
8y 8y2 8y2 8y2
oz Oxo T Ox,
W _| @ A s dy = Adx
ox : :
| Oz Oxo e oxr,
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Matrix/Vector Derivative

y(xr + dx) = y(x) + a - dx + (high-order terms)
y(x + dx) = y(x) + adx + (high-order terms)
y(x + dx) = y(x) + Adx + (high order terms)

In all the cases, {a, a, A} are derivatives. We define
(partial) gradient as the derivative

dy
a_x_A

This is consistent with the definition of Jacobian. However, we
need to be aware if output is scalar, the gradient is a row vector
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Matrix/Vector Derivative

 What is the benefit of this notation? We can apply
the chain-rule in a natural way

y = f(X)7 X = g(Z)

y:m X1 X:n X1 Z:q X1
dy| | 9y | |ox
/82_(%( 0z
m X q o\

mxn X(d



Matrix/Vector Derivative

e Some literature uses the notation of derivative
transpose
dy

AT
ox

The benefit is for scalar y, the gradient is a column vector. The
cons is when doing the chain rule, you have to multiply from right
to left. Why?
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Matrix/Vector Derivative

* |n whichever case, the key to derive/compute the
derivative!

y(x + dx) = y(x) + Adx + (high order terms)

.

dy = Adx

* The general idea: recursively apply the chain rule
to get the target derivative!
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Matrix/Vector Derivative

* Take a scalar case as an example

1
y:3$+—2
X

Let’s do it together
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Matrix/Vector Derivative

* How to apply chain rule for matrices/vectors

like scalar case, we have a set of basic rules in matrix
world as well; just keep applying them recursively

0A = 0 (A is a constant)
d(aX) = adX
0X+Y) = 0X+0Y
I(Tr(X)) = Tr(0X)
0XY) = (0X)Y + X(9Y)
I(XoY) = (0X)oY +Xo(9Y)
0X®Y) = 0X)®Y +X®(0Y)
oxX ) = X'ox)x!
O(det(X)) = det(X)Tr(X 10X)
O(In(det(X))) = Tr(X '9X)
ox’ = (xX)T
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Matrix/Vector Derivative

* Let’s do several examples

y=(x+b)' (x+Db)

y = tr ((I + XXT)_l)
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Matrix/Vector Derivative

e Commonly used references

1. Old and New Matrix Algebra Useful for Statistics, By Tom Minka, 2001
2.Matrix Cookbook

e Strongly suggest the tutorial made by our TM for more
examples

https://www.youtube.com/watch?v=artvpNFSFgw
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https://tminka.github.io/papers/matrix/minka-matrix.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Basics Review

* Convex region/set
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Basic Knowledge Review

e Convex function f:X >R

* The input domain X is a convex region/set
Yoy, 29 € X,Vt € [0,1] : ftzy + (L —t)zs) < tf(zy) + (1 —t) f(za)-

f(x)

/-

tf (z1) + (1 = t) f (z2) (
ftrr + (1 —t)xs) >

1 try + (1 —t)zs Z2 39



Basic Knowledge Review

* Examples of convex functions

Single variable multivariable
flx) =€ f(x)=a'x+1b
f(x) = —log(x) f(x) = %XTX

* How to determine a convex function?

When differentiable ~ f(X) > f(y) + Vf(y) (x—y)

When twice differentiable VVf(x) =0
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Basic Knowledge Review

e Jensen’s inequality (for convex function)

When X is random variable

f(EX)) <E(f(X))

f(E@X)) < E(f(g(X)))
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Basic Knowledge Review

e Convex conjugate (Fenchel's duality)

for an arbitrary convex function f(-), there exists a duality function g(-)

f(z) = max Az —g(A)

9(N) = max Az — f(z)

Jensen’s equality and convex conjugate plays the
key role in approximate inference
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