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Support vector machines

* Training by maximizing margin

The SVM objective

Solving the SVM optimization problem

e Support vectors, duals and kernels



SVM objective function

1

min -w'w+C Z max (0,1 — yi(w ' x; + b))

w,b 2
/

\ ™~

Regularization term:
* Maximize the margin

Empirical Loss:
* Hinge loss

* Imposes a preference over the e Penalizes weight vectors that make
hypothesis space and pushes for mistakes
better generalization

* Can be replaced with other * Can be replaced with other loss
regularization terms which impose functions which impose other

other preferences

preferences

A hyper-parameter that
controls the tradeoff
between a large margin and
a small hinge-loss
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Solving the SVM optimization problem

1
min §WTW +C Z max (0,1 — yi(w ' x; + b))

w,b
This function is convexinw, b
For convenience, use simplified notation:
W, < W
W < [w,b]

X < [x;,1]

1
min inTWO + C Z max (0,1 — yinxi)



Recall: Convex functions

A function f is convex if for every u, v in the domain, and for
every A € [0,1] we have

fAQu+ (A -Dv) <Af(w) + (1 -Df (V)




Recall: Convex functions

A function f is convex if for every u, v in the domain, and for
every A € [0,1] we have

fAQu+ (A -Dv) <Af(w) + (1 -Df (V)

From geometric perspective

Every tangent plane lies below the function

f(x)> fu)+ V(' (x—u)



Convex functions

f(x) =—x f(z) = z* f(z) = max(0, x)

Linear functions max is convex
Some ways to show that a function is convex:
r{ | T3
flx1,22) = = + 5 | |
a b 1. Using the definition of convexity

2. Showing that the second derivative is
nonnegative (for one dimensional functions)

3. Showing that the second derivative is
positive semi-definite (for vector functions)




Not all functions are convex

These are concave

AN

fAu+ (A -Dv) =2 Af(w) + (1 - Df(v)

These are neither -

AVAVE
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Convex functions are convenient

A function f is convex if for every u, v in the domain, and for every 1 €
10,1] we have

fAQu+ (A =Dv) <Af(w) + (1 -D)f ()

u \"

In general: Necessary condition for xto be a minimum for the function
fisVf(x)=0

For convex functions, this is both necessary and sufficient
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Solving the SVM optimization problem

1
min iwgw() + C Z max (0,1 — yinxi)

W

This function is convex in w

* This is a quadratic optimization problem because the objective is
guadratic

* Older methods: Used techniques from Quadratic Programming
— Very slow

* No constraints, can use gradient descent
— Still very slow!

12



Gradient descent

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°

e |terate till convergence:
— Compute the gradient of J at wt

— Update wt to get wt*! by taking
a step in the opposite direction
of the gradient

We are trying to minimize

1
J(w) = EWEI)_WQ + C’Z max(0, 1 — y;w ' x;)

1

J(w)
A

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction
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Gradient descent

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°

e |terate till convergence:
— Compute the gradient of J at wt

— Update wt to get wt*! by taking
a step in the opposite direction
of the gradient

We are trying to minimize

1
J(w) = EWEI)_WQ + C’Z max(0, 1 — y;w ' x;)

1

J(w)
A

<o e W

W2 Wl WO

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction
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Gradient descent

General strategy for minimizing
a function J(w)

e Start with an initial guess for
w, say w°

e |terate till convergence:
— Compute the gradient of J at wt

— Update wt to get wt*! by taking
a step in the opposite direction
of the gradient

We are trying to minimize

1
J(w) = EWEI)_WQ + C’Z max(0, 1 — y;w ' x;)

1

J(w)
A

S W

W3 W2 Wl WO

Intuition: The gradient is the direction
of steepest increase in the function. To
get to the minimum, go in the opposite
direction
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Gradient descent for SVM

We are trying to minimize

1. Initialize w° J(w) = 2wl wo + O3 max(0,1 — yiw x;)

2
2. Fort=0,1,2, ...
1. Compute gradient of J(w) at wt. Call it VJ(wt)

2. Update w as follows:
with = w! — rVJ(w)

r: Called the learning rate .
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Outline: Training SVM by optimization

v’ Review of convex functions and gradient descent
2. Stochastic gradient descent

Gradient descent vs stochastic gradient descent
Sub-derivatives of the hinge loss

Stochastic sub-gradient descent for SVM
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Comparison to perceptron
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Gradient descent for SVM

We are trying to minimize
1. Initialize w® Tw) = Zwdwo + O3 max(0,1 - yow " x,)
2. Fort=0,1, 2, ....

1. Compute gradient of J(w) at wt. Call it VJ(wt)

Gradient of the SVM objective requires summing over the
entire training set
Slow, does not really scale

rraareatnerearningrate
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1
J(w) = §W(—)|_W0 + CZ max(0, 1 — y;w ' x;)

Stochastic gradient descent for SVM

Given a training set S = {(x, y,)}, x € R", y € {-1,1}
1. Initializew®=0 € R"
2. Forepoch=1..T:

3. Return final w
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1
J(w) = §W(—)|_W0 + CZ max(0, 1 — y;w ' x;)

Stochastic gradient descent for SVM

Given a training set S = {(x, y,)}, x € R", y € {-1,1}
1. Initializew®=0 € R"
2. Forepoch=1..T:

1. Pick a random example (x;, y,) from the training set S

3. Return final w
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1
J(w) = §W(—)|_W0 + CZ max(0, 1 — y;w ' x;)

Stochastic gradient descent for SVM

Given a training set S = {(x, y,)}, x € R", y € {-1,1}
1. Initializew®=0 € R"
2. Forepoch=1..T:

1. Pick a random example (x;, y,) from the training set S

2. Repeat (x;, y;) to make a full dataset and take the derivative of the
SVM obijective at the current wt?! to be VJ{(wt1)

3. Return final w

22



1
J(w) = §W(—)|_W0 + CZ max(0, 1 — y;w ' x;)

Stochastic gradient descent for SVM

Given a training set S = {(x, y,)}, x € R", y € {-1,1}
1. Initializew®=0 € R"
2. Forepoch=1..T:

1. Pick a random example (x;, y,) from the training set S

2. Repeat (x;, y;) to make a full dataset and take the derivative of the
SVM obijective at the current wt?! to be VJ{(wt1)

1
JHw) = §WJW0 +C - Nmax(0,1 — y;w ' x;)

3. Return final w
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1
J(w) = §W(—)|_W0 + CZ max(0, 1 — y;w ' x;)

Stochastic gradient descent for SVM

Given a training set S = {(x, y,)}, x € R", y € {-1,1}
1. Initializew®=0 € R"
2. Forepoch=1..T:

1. Pick a random example (x;, y,) from the training set S

2. Repeat (x;, y;) to make a full dataset and take the derivative of the
SVM obijective at the current wt?! to be VJ{(wt1)

1
JH(w) = 5w§ wo + C - (Wmax(0,1 — y,;w ' x;)

Number of training examples

3. Return final w
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1
J(w) = §W(—)|_W0 + CZ max(0, 1 — y;w ' x;)

Stochastic gradient descent for SVM

Given a training set S = {(x, y,)}, x € R", y € {-1,1}
1. Initializew®=0 € R"
2. Forepoch=1..T:

1. Pick a random example (x;, y,) from the training set S

2. Repeat (x;, y;) to make a full dataset and take the derivative of the
SVM obijective at the current wt?! to be VJ{(wt1)

1
JH(w) = 5vvgwo + C - Nmax(0,1 — inTXi)
3. Update: wt«wtl—y VIt (wt?l)

3. Return final w
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1
J(w) = §W(—)|_W0 + CZ max(0, 1 — y;w ' x;)

Stochastic gradient descent for SVM

Given a training set S = {(x, y,)}, x € ‘R", y € {-1,1}
1. Initializew®=0 € R"
2. Forepoch=1..T:

1. Pick a random example (x;, y,) from the training set S

2. Repeat (x;, y;) to make a full dataset and take the derivative of the
SVM obijective at the current wt?! to be VJ{(wt1)

3. Update: wt «wtl—y, Vit(wt?)
3. Return final w

This algorithm is guaranteed to converge to the minimum of J if y, is small enough.
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Outline: Training SVM by optimization

v’ Review of convex functions and gradient descent

v’ Stochastic gradient descent

3.

Gradient descent vs stochastic gradient descent

4. Sub-derivatives of the hinge loss
5.
6. Comparison to perceptron

Stochastic sub-gradient descent for SVM
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Gradient Descent vs SGD

Gradient descent



Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

&

Stochastic Gradient descent
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

Stochastic Gradient descent
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Gradient Descent vs SGD

Q > 4
<

Many more updates than gradient descent, but each
individual update is less computationally expensive

N ——

Stochastic Gradient descent
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Outline: Training SVM by optimization

v’ Review of convex functions and gradient descent
v’ Stochastic gradient descent

v’ Gradient descent vs stochastic gradient descent
4. Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron
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1
J(w) = §W(—)|_W0 + CZ max(0, 1 — y;w ' x;)

Stochastic gradient descent for SVM

Given a training set S = {(x, y,)}, x € ‘R", y € {-1,1}
1. Initializew®=0 € R"
2. Forepoch=1..T:

1. Pick a random example (x;, y,) from the training set S

2. Treat (x;, y,) as a full dataset and take the derivative of the SVM
objective at the current wt?! to be VJ{(wt1)

3. Update: wt «wtl—y, Vit(wt?)
3. Return final w

What is the derivative of the hinge loss with respect to w?
(The hinge loss is not a differentiable function!)
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Hinge loss is not differentiable!

What is the derivative of the hinge loss with respect to w?

1
JH(w) = §W3—W0 -@X(O, 1 - @
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Detour: Sub-gradients

Generalization of gradients to non-differentiable functions

(Remember that every tangent lies below the function for
convex functions)

Informally, a sub-tangent at a point is any line lies below the
function at the point.

A sub-gradient is the slope of that line

50



Sub-gradients

Formally, g is a subgradient to f at x if

fy) > fx)+g'(y—x) forally

f(x)

[Example from Boyd]
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Sub-gradients

Formally, g is a subgradient to f at x if
fy) > fx)+g'(y—x) forally

f is differentiable at x, f(:c)
Tangent at this point

f(x1) + g'_lz"(w — a:l)

g, is a gradient at x, s

[Example from Boyd]
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Sub-gradients

Formally, g is a subgradient to f at x if
fy) > fx)+g'(y—x) forally

f is differentiable at x, f( )
Tangent at this point Z

f(x1) + g'_lz"(w — a:l)

f(mz) + gg(az — x3)
o f(z2) + gg(w — 3)

""""
. -

-
—

g, is a gradient at x;

il T x g, and g, is are both
subgradients at x,

53
[Example from Boyd]



Sub-gradient of the SVM objective

1
J'(w) = §W(_)rwo +C - Nmax(0,1 — y;w ' x;)

General strategy: First solve the max and
compute the gradient for each case
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Sub-gradient of the SVM objective

1
J'(w) = §W(_)rwo +C - Nmax(0,1 — y;w ' x;)

General strategy: First solve the max and
compute the gradient for each case

vt (wo; 0] if max(0,1 —y,wX) =0
| [wo;0] — C - Ny;x; otherwise
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Outline: Training SVM by optimization

v’ Review of convex functions and gradient descent
v’ Stochastic gradient descent

v’ Gradient descent vs stochastic gradient descent
v’ Sub-derivatives of the hinge loss

5. Stochastic sub-gradient descent for SVM

6. Comparison to perceptron
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Stochastic sub-gradient descent for SVM

o (wq; 0] if max(0,1 —y;,w¥) =0
| [wo;0] — C - Ny;x; otherwise

Given a training set S ={(x, y))}, x € R", y € {-1,1}
1. Initialize w® =0 € R"

3. Returnw
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Stochastic sub-gradient descent for SVM

o (wq; 0] if max(0,1 —y;,w¥) =0
| [wo;0] — C - Ny;x; otherwise

Given a training set S ={(x, y))}, x € R", y € {-1,1}
1. Initialize w®=0 € R"
2. Forepoch=1..T:

3. Returnw
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Stochastic sub-gradient descent for SVM

o (wq; 0] if max(0,1 —y;,w¥) =0
| [wo;0] — C - Ny;x; otherwise

Given a training set S ={(x, y))}, x € R", y € {-1,1}
1. Initialize w®=0 € R"
2. Forepoch=1..T:

1. For each training example (x, y;) € S:

Update w « w -y, VJt

3. Returnw
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Stochastic sub-gradient descent for SVM

o (wq; 0] if max(0,1 —y;,w¥) =0
| [wo;0] — C - Ny;x; otherwise

Given a training set S ={(x, y))}, x € R", y € {-1,1}
1. Initialize w®=0 € R"
2. Forepoch=1..T:

1. For each training example (x, y;) € S:
Ify. wix. <1,
w <« (1-y,) [wy; 0] + Y, C Ny, x
else

w, < (1-y,) w,

3. Returnw
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Stochastic sub-gradient descent for SVM

Given a training set S ={(x, y))}, x € R", y € {-1,1}
1. Initialize w® =0 € R"

2. Forepoch=1..T:

Y.: learning rate, many
1. For each training example (x, y;) € S: tweaks possible

Ify,wix; < 1, Important to shuffle examples at
w < (1-y,) [wy; 0]+, C Ny, X, the start of each epoch

else

w, < (1-y,) w,

3. Returnw
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Stochastic sub-gradient descent for SVM

Given a training set S ={(x, y))}, x € R", y € {-1,1}

1. Initialize w? =0 € R

2. Forepoch=1..T:
Shuffle the training set
2. For each training example (x, y.) € S:
Ify. wix, <1,
w <« (1-y,) [wy; 0] + Y, C Ny, x
else

w, < (1-y,) wy

3. Returnw

Y.: learning rate, many
tweaks possible
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Convergence and learning rates

With enough iterations, it will converge in expectation

Provided the step sizes are “square summable, but not
summable”

* Step sizes y, are positive

e Sum of squares of step sizes over t = 1 to o is not infinite

e Sum of step sizes over t = 1 to o is infinity

: _ Yo _ Yo
* Some examples: y; = et Of Ve = 15
C
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Convergence and learning rates

 Number of iterations to get to accuracy within €

* For strongly convex functions, N examples, d
dimensional:
— Gradient descent: O(Nd In(1/€))
— Stochastic gradient descent: O(d/e)

* More subtleties involved, but SGD is generally
preferable when the data size is huge
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Stochastic sub-gradient descent for SVM

Given a training set S ={(x, y))}, x € R", y € {-1,1}
1. Initialize w®=0 € R"
2. Forepoch=1..T:

Shuffle the training set

2. For each training example (x, y.) € S:
Ify. wix, <1,

W« (1-y,) [wg; 0] + ¥, CNy; x; Compare with the Perceptron update:
else If yw'x. < 0, update w <« w +ry. x.

w, < (1-y,) w,

3. Returnw
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Perceptron vs. SVM

e Perceptron: Stochastic sub-gradient descent for a
different loss

— No regularization though

T
LPerceptron (y, X, W) — max((), —Yyw X)
 SVM optimizes the hinge loss
— With regularization
T
Lnge(y, X, W) — maX(Oa 1 — Yyw X)
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SVM summary from optimization perspective

 Minimize regularized hinge loss

e Solve using stochastic gradient descent
— Very fast, run time does not depend on number of examples

— Compare with Perceptron algorithm: similar framework with
different objectives!

— Compare with Perceptron algorithm: Perceptron does not
maximize margin width

e Perceptron variants can force a margin

* Other successful optimization algorithms exist
— Eg: Dual coordinate descent, implemented in 1iblinear

Questions?
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