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This lecture: Computational Learning Theory

• The Theory of Generalization

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
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Where are we?

• The Theory of Generalization
– When can be trust the learning algorithm?
– What functions can be learned?
– Batch Learning

• Probably Approximately Correct (PAC) learning

• Positive and negative learnability results

• Agnostic Learning

• Shattering and the VC dimension
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This section

1. Analyze a simple algorithm for learning conjunctions

2. Define the PAC model of learning

3. Make formal connections to the principle of Occam’s razor
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Formulating the theory of prediction

In the general case, we have 
– X: instance space, Y: output space = {+1, -1}

– D: an unknown distribution over X

– f: an unknown target function X → Y, taken from a concept class C

– h: a hypothesis function X → Y that the learning algorithm selects from a 
hypothesis class H

– S: a set of m training examples drawn from D, labeled with f

– errD(h): The true error of any hypothesis h

– errS(h): The empirical error or training error or observed error of h
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Theoretical questions

• Can we describe or bound the true error (errD) given the 
empirical error (errS)?

• Is a concept class C learnable?

• Is it possible to learn C using only the functions in H using the 
supervised protocol?

• How many examples does an algorithm need to guarantee 
good performance?
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Requirements of Learning

• Cannot expect a learner to learn a concept exactly
– There will generally be multiple concepts consistent with the available 

data (which represent a small fraction of the available instance space)
– Unseen examples could potentially have any label    
– We “agree” to misclassify uncommon examples that do not show up in the 

training set

• Cannot always expect to learn a close approximation to the target 
concept
– Sometimes (only in rare learning situations, we hope) the training set will 

not be representative (will contain uncommon examples) 

• The only realistic expectation of a good learner is that with high 
probability it will learn a close approximation to the target concept
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Probably approximately correctness

• The only realistic expectation of a good learner is that 
with high probability it will learn a close approximation 
to the target concept

• In Probably Approximately Correct (PAC) learning, one 
requires that 
– given small parameters ² and ±, 
– With probability at least 1 - ±, a learner produces a hypothesis 

with error at most ²

• The only reason we can hope for this is the consistent 
distribution assumption
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PAC Learnability

Consider a  concept class C defined over an instance space X (containing 
instances of length n),  and a learner L using a hypothesis space H

The concept class C is PAC learnable by L using H if
for all f 2 C,
for all distribution D over X, and fixed 0< e, d < 1, 
given m examples sampled independently according to D, the algorithm L 
produces, with probability at least (1- d), a hypothesis h 2 H that has 
error at most e, 
where m is polynomial in 1/ e, 1/ d, n and size(H)

The concept class C is efficiently learnable if L can produce the hypothesis 
in time that is polynomial in 1/ e, 1/ d, n and size(H)
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PAC Learnability

• We impose two limitations
• Polynomial sample complexity  (information theoretic constraint)

– Is there enough information in the sample to distinguish a hypothesis h that 
approximate f ?  

• Polynomial time complexity (computational complexity)
– Is there an efficient algorithm that can process the sample and produce a 

good hypothesis h ? 

To be PAC learnable, there must be a hypothesis h Î H with arbitrary small 
error for every f Î C. We assume H Ê C. (Properly PAC learnable if H=C) 

Worst Case definition: the algorithm must meet its accuracy 
– for every distribution (The distribution free assumption)
– for every target function f in the class C 
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