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This lecture: Computational Learning Theory

The Theory of Generalization

Probably Approximately Correct (PAC) learning

Positive and negative learnability results

Agnostic Learning

e Shattering and the VC dimension



Where are we?

 The Theory of Generalization
— When can be trust the learning algorithm?
— What functions can be learned?
— Batch Learning

* Probably Approximately Correct (PAC) learning
e Positive and negative learnability results
* Agnostic Learning

e Shattering and the VC dimension



This section

1. Analyze a simple algorithm for learning conjunctions
2. Define the PAC model of learning

3. Make formal connections to the principle of Occam’s razor
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Formulating the theory of prediction

All the notation we have so far on one slide

In the general case, we have
— X:instance space, Y: output space = {+1, -1}
— D:an unknown distribution over X
— f: an unknown target function X — Y, taken from a concept class C

— h:a hypothesis function X = Y that the learning algorithm selects from a
hypothesis class H

— S: aset of m training examples drawn from D, labeled with f
— errp(h): The true error of any hypothesis h
— err¢(h): The empirical error or training error or observed error of h



Theoretical questions

* (Can we describe or bound the true error (errp) given the
empirical error (errg)?

* |s aconcept class Clearnable?

* Isit possible to learn C using only the functions in H using the
supervised protocol?

* How many examples does an algorithm need to guarantee
good performance?



Requirements of Learning

 Cannot expect a learner to learn a concept exactly

— There will generally be multiple concepts consistent with the available
data (which represent a small fraction of the available instance space)

— Unseen examples could potentially have any label

— We “agree” to misclassify uncommon examples that do not show up in the
training set
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Requirements of Learning

Cannot expect a learner to learn a concept exactly

— There will generally be multiple concepts consistent with the available
data (which represent a small fraction of the available instance space)

— Unseen examples could potentially have any label

— We “agree” to misclassify uncommon examples that do not show up in the
training set

Cannot always expect to learn a close approximation to the target
concept

— Sometimes (only in rare learning situations, we hope) the training set will
not be representative (will contain uncommon examples)

The only realistic expectation of a good learner is that with high
probability it will learn a close approximation to the target concept
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Probably approximately correctness

 The only realistic expectation of a good learner is that
with high probability it will learn a close approximation
to the target concept
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Probably approximately correctness

 The only realistic expectation of a good learner is that

with high probability it will learn a close approximation
to the target concept

* In Probably Approximately Correct (PAC) learning, one
requires that

— given small parameters € and §,

— With probability at least 1 - 6, a learner produces a hypothesis
with error at most €
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Probably approximately correctness

 The only realistic expectation of a good learner is that

with high probability it will learn a close approximation
to the target concept

* In Probably Approximately Correct (PAC) learning, one
requires that

— given small parameters € and §,

— With probability at least 1 - 6, a learner produces a hypothesis
with error at most €

* The only reason we can hope for this is the consistent
distribution assumption
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PAC Learnability

Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H
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PAC Learnability

Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H

The concept class Cis PAC learnable by L using H if
for all f € C,
for all distribution D over X, and fixed O<g, 0 <1,

given m examples sampled independently according to D, the algorithm L
produces, with probability at least (1- 0), a hypothesis h € H that has
error at most g,

where m is polynomial in 1/ €, 1/ 8, n and size(H)
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PAC Learnability

Consider a concept class C defined over an instance space X (containing
instances of length n), and a learner L using a hypothesis space H

The concept class Cis PAC learnable by L using H if
for all f € C,
for all distribution D over X, and fixed O<g, 0 <1,

given m examples sampled independently according to D, the algorithm L
produces, with probability at least (1- 0), a hypothesis h € H that has
error at most g,

where m is polynomial in 1/ €, 1/ 8, n and size(H)

recall that Erry(h) = Prp[f(x) # h(x)]

The concept class Cis efficiently learnable if L can produce the hypothesis
in time that is polynomial in 1/ ¢, 1/ 3, n and size(H)
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PAC Learnability

e We impose two limitations
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Polynomial sample complexity (information theoretic constraint)
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22



PAC Learnability

e We impose two limitations

* Polynomial sample complexity (information theoretic constraint)

— Is there enough information in the sample to distinguish a hypothesis h that
approximate f ?

* Polynomial time complexity (computational complexity)

— Is there an efficient algorithm that can process the sample and produce a
good hypothesis h ?

23



PAC Learnability

e We impose two limitations

* Polynomial sample complexity (information theoretic constraint)

— Is there enough information in the sample to distinguish a hypothesis h that
approximate f ?

* Polynomial time complexity (computational complexity)

— Is there an efficient algorithm that can process the sample and produce a
good hypothesis h ?

To be PAC learnable, there must be a hypothesis h € H with arbitrary small
error for every f € C. We assume H o C. (Properly PAC learnable if H=C)

24



PAC Learnability

e We impose two limitations

* Polynomial sample complexity (information theoretic constraint)

— Is there enough information in the sample to distinguish a hypothesis h that
approximate f ?

* Polynomial time complexity (computational complexity)

— Is there an efficient algorithm that can process the sample and produce a
good hypothesis h ?

To be PAC learnable, there must be a hypothesis h € H with arbitrary small
error for every f € C. We assume H o C. (Properly PAC learnable if H=C)

Worst Case definition: the algorithm must meet its accuracy
— for every distribution (The distribution free assumption)
— for every target function f in the class C
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