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Where are we?

 The Perceptron Algorithm
e Perceptron Mistake Bound

* Variants of Perceptron



Recall: Linear Classifiers

* Inputis a n dimensional vector x
 Qutputisalabely€e{-1, 1}

* Linear Threshold Units (LTUs) classify an example x using the
following classification rule

— Output = sgn(w'x + b) = sgn(b +2w; x)

— wW'Xx+b>0- Predicty=1
— W'X+b<0 — Predicty=-1

b is called the bias term



Recall: Linear Classifiers

* Inputis a n dimensional vector x
 Qutputisalabely€e{-1, 1}

* Linear Threshold Units (LTUs) classify an example x using the
following classification rule

sgn




The geometry of a linear classifier

sgn(b +w; x; + w,X,)

b +w; x; + w,x,=0

<+

[w; w,]

We only care about the
sign, not the magnitude

+
i+
++

X1

In n dimensions,

a linear classifier
represents a hyperplane
that separates the space
into two half-spaces



The Perceptron
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The hype
NEW NAYY DEYIGE HA\"II\'G told you about th&iam

digital computer known as[LB. M.

LEARNS BY DO]NG 704 Jand how it has been taught to play

~ a fairly creditable game of chess, we’d
Psychologist Shows Embryo like to tell you about an even more
of Computer Designed to X
Read and Grow Wiser

remarkable machine, the perceptron,
which, as its name implies, is capable
of what amounts to original thought.

WASHINGTON, July. 7 (UPI) The first perceptron has yet to be built,
—The Navy revealed the em- ’
bryo of an electronic computer

today that it expects will be The New Yorker, December 6, 1958 P. 44
abla to walk, talk, see, write,
reproduce itself and be .con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 “704” com-
puter—learned to differentiate
between right and left after
fifty attempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cact af £100.000.

The New York Times, July 8 1958 The IBM 704 computer




The Perceptron algorithm

e Rosenblatt 1958

* The goal is to find a separating hyperplane
— For separable data, guaranteed to find one

* An online algorithm
— Processes one example at a time

e Several variants exist (will discuss briefly at towards
the end)



The Perceptron algorithm

Input: A sequence of training examples (x,, y,), (X5, ¥5), -
where all x, € R", y; € {-1,1}

* Initialize wy=0 € R"
* For each training example (x;, y.):
— Predict y’ = sgn(w,"x))
— Ify, 2y
* Update w,,; «<w, +r (y; x;)

e Return final weight vector

10



The Perceptron algorithm

Input: A sequence of training examples (x,, y,), (X5, ¥5), -
where all x, € R", y; € {-1,1}

Remember:
Prediction = sgn(w'x)

* Initialize wy=0 € R"
. . There is typically a bias term
* For each training example (x;, y.): 2lso (wTx + b), but the bias
— Predict y’ = sgn(w,"x)) may be treated as a

— Ify, 2y Fonstant feature and folded
into w

* Update w,,; «<w, +r (y; x;)

e Return final weight vector
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The Perceptron algorithm

Input: A sequence of training examples (x;, y,), (X5, ¥5), -
where all x, € R", y; € {-1,1}

Remember:
Prediction = sgn(w'x)

* Initialize wy=0 € R"

- There is typically a bias t
* For each training example (x, v,): ere 15 fypleally @ bias term

also (w'x + b), but the bias

— Predict y’ = sgn(w,'x;) may be treated as a
— Ify 2y constant feature and folded
| into w

* Update w,, «<w,+r (y; x;)

e Return final weight vector

Footnote: For some algorithms it is mathematically easier to represent False as -1,
and at other times, as 0. For the Perceptron algorithm, treat -1 as false and +1 as true. 12



The Perceptron algorithm

Input: A sequence of training examples (x,, y,), (X5, ¥5), -
where all x, € R", y; € {-1,1}

Mistake on positive: w,,; < w, +r X
NS Mistake on negative: w,,. < W, - r x.
* Initialize w,=0 € R" © TR

* For each training example (x;, y.):
— Predict y’ = sgn(w,"x))
— Ify, 2y
* Update w,,; «<w, +r (y; X;)

e Return final weight vector
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The Perceptron algorithm

Input: A sequence of training examples (x,, y,), (X5, ¥5), -
where all x, € R", y; € {-1,1}

Mistake on positive: w,,; < w, +r X

e |nitialize W, = 0 € R" Mistake on negative: w,,, < W, - r X,
* For each training example (Xi, yi): ris the learning rate, a small positive
— Predict y’ = sgn(w,"x) number less than 1
— Ify, 2y

* Update w,,; «<w, +r (y; x;)

e Return final weight vector

14



The Perceptron algorithm

Input: A sequence of training examples (x,, y,), (X5, ¥5), -
where all x, € R", y; € {-1,1}

* Initialize wy=0 € R"

* For each training example (x;, y.):

— Predict y’ = sgn(w,"x))
— Ify, 2y
* Update w,,; «<w, +r (y; x;)

Return final weight vector

Mistake on positive: w,,; < w, +r X
Mistake on negative: w,,, < W, - r X,

ris the learning rate, a small positive
number less than 1

Update only on error. A mistake-
driven algorithm

15




The Perceptron algorithm

Input: A sequence of training examples (x,, y,), (X5, ¥5), -
where all x, € R", y; € {-1,1}

Mistake on positive: w,,; < w, +r X

5 (el o= @) @ GA Mistake on negative: w,,, < W, - r X,
0

* For each training example (Xi, yi): ris the learning rate, a small positive
number less than 1

— Predict y’ = sgn(w,"x))

— Ify, 2y

Update only on error. A mistake-

* Update w,,; «<w, +r (y; X;) driven algorithm

e Return final weight vector

This is the simplest version. We will
see more robust versions at the end
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The Perceptron algorithm

Input: A sequence of training examples (x,, y,), (X5, ¥5), -
where all x, € R", y; € {-1,1}

Mistake on positive: w,,; < w, +r X
Mistake on negative: w,,, < W, - r X,

* Initialize wy=0 € R"

* For each training example (Xi, yi): ris the learning rate, a small positive
number less than 1

— Predict y’ = sgn(w,"x))

— Ify 2y
| Update only on error. A mistake-

* Update w,,; «<w, +r (y; X;) driven algorithm

e Return final weight vector

This is the simplest version. We will
see more robust versions at the end

Mistake can be written as y;w,'x, < 0

17



Mistake on positive: w,,,; « w, +r X
Mistake on negative: w,,, < W, - r x,

Intuition behind the update

Suppose we have made a mistake on a positive example
Thatis, y =+1 and w,'x <0

Call the new weight vector w,,, = w, + x (say r = 1)
The new dot product will be w,,;"x = (w, + x)™x = w,'x + x'x > w,'x

For a positive example, the Perceptron update will increase the score
assigned to the same input

Similar reasoning for negative examples

18



Mistake on positive: w,,,; « w, +r X
Mistake on negative: w,,, < W, - r x,

Geometry of the perceptron update

Predict

W4
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Mistake on positive: w,,,; « w, +r X
Mistake on negative: w,,, < W, - r x,

Geometry of the perceptron update

Predict

W4

(x, +1)
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Mistake on positive: w,,,; « w, +r X
Mistake on negative: w,,, < W, - r x,

Geometry of the perceptron update

Predict

W4

(x, +1)

For a mistake on a positive
example

21



Mistake on positive: w,,,; « w, +r X
Mistake on negative: w,,, < W, - r x,

Geometry of the perceptron update

Predict Update

W4

(x, +1)

For a mistake on a positive
example
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Mistake on positive: w,,,; « w, +r X
Mistake on negative: w,,, < W, - r x,

Geometry of the perceptron update

Predict Update

W4

(x, +1)

For a mistake on a positive
example
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Mistake on positive: w,,,; « w, +r X
Mistake on negative: w,,, < W, - r x,

Geometry of the perceptron update

Predict Update

W4

(x, +1)

For a mistake on a positive
example
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Mistake on positive: w,,,; « w, +r X
Mistake on negative: w,,, < W, - r x,

Geometry of the perceptron update

Predict Update After

W4

(x, +1)

(x, +1)

For a mistake on a positive
example

25



Geometry of the perceptron update

Predict

26



Geometry of the perceptron update

Predict

(X, '1)

Woid

For a mistake on a negative
example



Geometry of the perceptron update

Predict Update

(X, '1)

Woid

For a mistake on a negative
example



Geometry of the perceptron update

Predict Update

(X, '1)

Woid

For a mistake on a negative
example



Geometry of the perceptron update

Predict Update

(X, '1)

Woid

For a mistake on a negative
example



Geometry of the perceptron update

Predict Update After

(X, '1)

Woid (x, -1)

For a mistake on a negative
example



Perceptron Learnability

* Obviously Perceptron cannot learn what it cannot represent
— Only linearly separable functions

* Minsky and Papert (1969) wrote an influential book
demonstrating Perceptron’s representational limitations

— Parity functions can’t be learned (XOR)
e But we already know that XOR is not linearly separable

— Feature transformation trick

32



What you need to know

* The Perceptron algorithm
 The geometry of the update

 What can it represent

33



Where are we?

 The Perceptron Algorithm
e Perceptron Mistake Bound

* Variants of Perceptron

34



Convergence

Convergence theorem

— If there exist a set of weights that are consistent with the
data (i.e. the data is linearly separable), the perceptron
algorithm will converge.

35



Convergence

Convergence theorem

— If there exist a set of weights that are consistent with the
data (i.e. the data is linearly separable), the perceptron
algorithm will converge.

Cycling theorem

— If the training data is not linearly separable, then the
learning algorithm will eventually repeat the same set of
weights and enter an infinite loop

36



Margin

The margin of a hyperplane for a dataset is the distance between
the hyperplane and the data point nearest to it.

- +

. + + +

--- v\

- >~ Margin with respect to this hyperplane

37



Margin

 The margin of a hyperplane for a dataset is the distance
between the hyperplane and the data point nearest to it.

 The margin of a data set (y) is the maximum margin possible
for that dataset using any weight vector.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let {(xy, ¥4), (X5, ¥,),-+, (X, Y.n)} be @ sequence of training
examples such that for all i, the feature vector x, € ‘R", ||x|| < R

and the label y. € {-1, +1}.

39



Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let {(xy, ¥4), (X5, ¥,),-+, (X, Y.n)} be @ sequence of training
examples such that for all i, the feature vector x, € ‘R", ||x|| < R

and the label y. € {-1, +1}.

Suppose there exists a unit vector u € R" (i.e ||u|| = 1) such that
for some y € Rand y >0 we havey. (u"x.) > y.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let {(xy, ¥4), (X5, ¥,),-+, (X, Y.n)} be @ sequence of training
examples such that for all i, the feature vector x, € ‘R", ||x|| < R

and the label y. € {-1, +1}.

Suppose there exists a unit vector u € R" (i.e ||u|| = 1) such that
for some y € Rand y >0 we havey. (u"x.) > y.

Then, the perceptron algorithm will make at most (R/ y)?
mistakes on the training sequence.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let {(xy, ¥4), (X5, ¥,),-+, (X, Y.n)} be @ sequence of training
examples such that for all i, the feature vector x, € R", |x|| = R

and the label Yi € {_1’ +1}' We can always find such an R. Just look for
the farthest data point from the origin.

Suppose there exists a unit vector u € R" (i.e ||u|| = 1) such that
for some y € Rand y >0 we havey. (u"x.) > y.

Then, the perceptron algorithm will make at most (R/ y)?
mistakes on the training sequence.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let {(xy, ¥1), (X5, ¥,),-++, (X, ¥.n)} be @ sequence of training
examples such that for all i, the feature vector x, € R", ||x|| < R

and the label y, € {-1, +1}.

Suppose there exists a unit vector u € R" (i.e ||u|| = 1) such that
for somey € Rand y >0 we havey, (u"x.) = y.

Then, the perceptron algorithm will maké at most (R/ y)?
mistakes on the training sequence.

v
The data and u have a margin y.
Importantly, the data is separable.
y is the complexity parameter that defines
the separability of data.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let {(xy, Y1), (X5, ¥,),-++, (X, ¥.n)} be @ sequence of training
examples such that for all i, the feature vector x, € R", ||x|| < R
and the label y, € {-1, +1}.

Suppose there exists a unit vector u € ‘R" (i.e ||u|| = 1) such that
for some y € Rand y > Qe havey, (u"x.) > y.

Then, the perceptron algorithm will make at most (R/ y)?
mistakes on ffie training sequence.

If u hadn’t been a unit vector, then
we could scale y in the mistake
bound. This will change the final
mistake bound to (||u||R/ y)?

44



Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let {(xy, V1), (X5, ¥5),--+, (X, ¥,,)} be a sequence of training
examples such that for all i, the feature vector x. € R", ||x|| < R
and the label y. € {-1, +1}.

Suppose we have a binary classification dataset with n dimensional inputs.

Suppose there exists a unit vector u € R" (i.e ||u|| = 1) such that
for somey € Rand y >0 we havey, (u'x;) = y.

If the data is separable,...
Then, the perceptron algorithm will make at most (R/ y)?

mistakes on the training sequence.

...then the Perceptron algorithm will find a separating
hyperplane after making a finite number of mistakes

45



* Receive an input (x, y,)
« if sgn(w,'x) #y;:

Proof (preliminaries) Update w,,; < W, +Y; X

The setting
* Initial weight vector w is all zeros

* Learningrate=1
— Effectively scales inputs, but does not change the behavior

e All training examples are contained in a ball of size R
— [Ixll =R

* The training data is separable by margin y using a unit
vector u

=Y, (u’ Xi) =Y

46



* Receive an input (x, y,)
« if sgn(w,'x) #y;:

Proof (1/3) Update Wy, « W, +y,x

1. Claim: After t mistakes, u'w, >ty

7k 15 1k
u Wiy = U Wy +yu X

47



* Receive an input (x, y,)
« if sgn(w,'x) #y;:

Proof (1/3) Update Wy, « W, +y,x

1. Claim: After t mistakes, u'w, >ty

7k 15 1k
u” Wiy u” Wi + yun X

Because the data
is separable by a
margin y

Vv

uTWt + 7y

48



* Receive an input (x, y,)
« if sgn(w,'x) #y;:

Proof (1/3) Update Wy, « W, +y,x

1. Claim: After t mistakes, u'w, >ty

7k 15 1k
u” Wiy u” Wi + yun X

Because the data
is separable by a
margin y

Vv

uTWt + 7y

Because w,=0 (i.e u'w, = 0), straightforward
induction gives usu'w, >ty

49



* Receive an input (x, y,)
« if sgn(w,'x) #y;:

Proof (2/3) Update Wy, « W, +y,x

2. Claim: After t mistakes, ||w,||*> < tR?

[werall® = [lwe + yixs |

2
|||

50



* Receive an input (x, y,)
« if sgn(w,'x) #y;:

Proof (2/3) Update Wy, « W, +y,x

2. Claim: After t mistakes, ||w,|]> < tR?

[werall® = [lwe + yixs |

2 2
= [lwel|” + 2yalwg xa) + (||

i

The weight is updated only Ix;|| < R, by definition of R

when there is a mistake. That is
wheny, w," x; < 0.

51



Proof (2/3)

* Receive an input (x, y,)
« if sgn(w,'x) #y;:

Update w,,; < w, +V,; X

2. Claim: After t mistakes, ||w,|]> < tR?

2
Wit |

<

Wi + yixi||2

Wi

Wy

2

2

2y; (W
R2

T
t Xi

)

2
|||

Because w,=0 (i.e u'w, = 0), straightforward induction

gives us [|w[> < tR?

52




Proof (3/3)

What we know:

1. After t mistakes, u'w, > ty
2. After t mistakes, [|w|* < tR?
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Proof (3/3)

What we know:

1. After t mistakes, u'w, > ty
2. After t mistakes, [|w|* < tR?

RVt > ||wy

From (2)
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Proof (3/3)

What we know:

1. After t mistakes, u'w, > ty
2. After t mistakes, [|w|* < tR?

RVt > [|w|| > u”'w,

From (2)

y

u’ w, =||ul| ||w,|| cos(<angle between them>)
But ||u|| = 1 and cosine is less than 1

Sou"w, - [jw|
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Proof (3/3)

What we know:

1. After t mistakes, u'w, > ty
2. After t mistakes, [|w|* < tR?

RVt > [|w|| > u”'w,

From (2)

y

u’ w, =||ul| ||w,|| cos(<angle between them>)
But ||u|| = 1 and cosine is less than 1

Sou"w, - ||w]| (Cauchy-Schwarz inequality)
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Proof (3/3)

What we know:

1. After t mistakes, u'w, > ty
2. After t mistakes, |[|w||* < tR?

RVt > ||wy|| > u''wy > ty

From (2) From (1)

y

u’ w, =||ul| ||w,|| cos(<angle between them>)
But ||u|| = 1 and cosine is less than 1

So u” w, < [l

57



Proof (3/3)

What we know:

1. After t mistakes, u'w, > ty
2. After t mistakes, |[|jw|*> < tR?

RVt > ||[we|| > ul'we =ty

R2
Number of mistakes { < —

,),2
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Proof (3/3)

What we know:

1. After t mistakes, u'w, > ty
2. After t mistakes, [|[w||?> < tR?

> ||wy|| > ul'w,

R2
Number of mistakes { < —

,),2

Bounds the total number of mistakes!
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

Let {(xy, ¥4), (X5, ¥,),-+, (X, Y.n)} be @ sequence of training
examples such that for all i, the feature vector x, € ‘R", ||x|| < R

and the label y. € {-1, +1}.

Suppose there exists a unit vector u € R" (i.e ||u|| = 1) such that
for some y € Rand y >0 we havey. (u"x.) > y.

Then, the perceptron algorithm will make at most (R/ y)?
mistakes on the training sequence.
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Mistake Bound Theorem [Novikoff 1962, Block 1962]
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Mistake Bound Theorem [Novikoff 1962, Block 1962]
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Mistake Bound Theorem [Novikoff 1962, Block 1962]
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Mistake Bound Theorem [Novikoff 1962, Block 1962]

R2
Number of mistakes < —

72

64



The Perceptron Mistake bound .

Number of mistakes < —=

72

e Exercises:

— How many mistakes will the Perceptron algorithm make for
disjunctions with n attributes?

e WhatareRand y?

— How many mistakes will the Perceptron algorithm make for k-
disjunctions with n attributes?

65



What you need to know

 What is the perceptron mistake bound?

* How to prove it
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Where are we?

 The Perceptron Algorithm
e Perceptron Mistake Bound

* Variants of Perceptron

67



Practical use of the Perceptron algorithm

1. Using the Perceptron algorithm with a finite dataset
2. Margin Perceptron

3. Voting and Averaging

68



1. The “standard” algorithm

Given a training set D = {(x, y,)}, x, € R", y, € {-1,1}
1. Initialize w =0 € ‘R"

2. Forepoch=1..T:
1. Shuffle the data
2. For each training example (x;, y;) € D:

 Ify.wix, <0, updatew «<w+ry. x

3. Returnw

Prediction: sgn(w'x)

69



1. The “standard” algorithm

Given a training set D = {(x, y,)}, x, € R", y, € {-1,1}
1. Initialize w =0 € ‘R"

T is a hyper-parameter to the algorithm

2. Forepoch=1.. T
1. Shuffle the data
2. For each training example (x;, y;) € D:

If y. wix. <0, updatew < w +ry. x

3. Returnw
Another way of writing that

there is an error

Prediction: sgn(w'x)

70



2. Margin Perceptron

Which hyperplane is better?

71



2. Margin Perceptron

Which hyperplane is better?

72



2. Margin Perceptron

Which hyperplane is better?

The farther from the data points, the less chance to make wrong prediction

73



2. Margin Perceptron

Perceptron makes updates only when the prediction is
incorrect

y; W'x; <0

What if the prediction is close to being incorrect? That is,
Pick a positive n and update when

Can generalize better, but need to choose
— Why is this a good idea?

74



2. Margin Perceptron

Perceptron makes updates only when the prediction is
incorrect

y; W'x; <0

What if the prediction is close to being incorrect? That is,
Pick a positive n and update when

Can generalize better, but need to choose
— Why is this a good idea? Intentionally set a large margin
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3. Voting and Averaging

What if data is not linearly separable?

Finding a hyperplane with minimum mistakes is NP hard

76



Voted Perceptron

Given a training set D = {(x;, y,)}, x, € R", y. € {-1,1}
1. Initializew =0 € R"anda =0 € R"

2. Forepoch=1..T:

—  For each training example (x;, y;) € D:

Ify, wix, <0
— updatew, ., <« W, +ry; X
— m=m+l
- C, =1
Else
- C,=C +1

3. Return (wy, ¢,), (w,, c,), ..., (w,, C,)

k
Prediction: sgn( Z c; - sgn(wjx))
i=1
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Averaged Perceptron

Given a training set D = {(x;, y)}, x, € R", y;, € {-1,1}
1. Initializew=0€ R"anda=0€ R"

2. Forepoch=1..T:

—  For each training example (x;, y.) € D:
Ify, wix, <0
— updatew «w +ry; X
a<a+w

3. Return a

k

Prediction: sgn(a™) =sgn(> cw,/x)
1=1
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Averaged Perceptron

Given a training set D = {(x;, y.)}, x, € R", y, € {-1,1}
1. Initializew =0 € R"anda =0 € R"

This is the simplest version of
the averaged perceptron

2. Forepoch=1..T:

—  For each training example (x,, y;) € D: | There are some easy
programming tricks to make

sure that a is also updated
only when there is an error

 Ifyywx,. <0
— updatew < w+ry. X
e a<a+w

3. Return a

k

Prediction: sgn(a™) =sgn() ciw, x)
1=1

79



Averaged Perceptron

Given a training set D = {(x;, y.)}, x, € R", y;, € {-1,1}
1. Initializew=0€ R"anda=0€ R"

This is the simplest version of
the averaged perceptron

2. Forepoch=1..T:
—  For each training example (x, y;) € D: | T"ere are some easy
. Ty < 0 programming tricks to make
YiWX = sure that a is also updated
— updatew < w+ry;X only when there is an error
° a<a+w

3. Returna Extremely popular

k If you want to use the
Prediction: Sgn(aTx) = Sgn( Z ciwiTx) Perceptron algorithm, use

G—1l averaging
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Question: What is the difference?

k
Voted: sgn ( Z c; - sgn(w, x))

1=1
k

Averaged: sgn( Z Cz'WiTX)
i=1

WX =5,WyX =259, Wa X=253 €] =Cy=c3=1

Averaged: S1+s2+s32>0

Voted: Any two are positive
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Summary: Perceptron

* Online learning algorithm, very widely used, easy to
implement

e Additive updates to weights
* Geometric interpretation
* Mistake bound

* Practical variants abound

* You should be able to implement the Perceptron algorithm
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