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ABSTRACT
Sparse learning has received tremendous amount of inter-
est in high-dimensional data analysis due to its model in-
terpretability and the low-computational cost. Among the
various techniques, adaptive `1-regularization is an effec-
tive framework to improve the convergence behaviour of the
LASSO, by using varying strength of regularization across
different features. In the meantime, the adaptive structure
makes it very powerful in modelling grouped sparsity pat-
terns as well, being particularly useful in high-dimensional
multi-task problems. However, choosing an appropriate,
global regularization weight is still an open problem. In
this paper, inspired by the annealing technique in mate-
rial science, we propose to achieve “annealed sparsity” by
designing a dynamic shrinking scheme that simultaneously
optimizes the regularization weights and model coefficients
in sparse (multi-task) learning. The dynamic structures of
our algorithm are twofold. Feature-wise (“spatially”), the
regularization weights are updated interactively with model
coefficients, allowing us to improve the global regularization
structure. Iteration-wise (“temporally”), such interaction is
coupled with gradually boosted `1-regularization by adjust-
ing an equality norm-constraint, achieving an “annealing”
effect to further improve model selection. This renders inter-
esting shrinking behaviour in the whole solution path. Our
method competes favorably with state-of-the-art methods in
sparse (multi-task) learning. We also apply it in expression
quantitative trait loci analysis (eQTL), which gives useful
biological insights in human cancer (melanoma) study.

Keywords
Sparse regression, adaptive LASSO, multi-task LASSO, reg-
ularization path, sparse multi-task learning

1. INTRODUCTION
With the rapid development of data acquisition technolo-
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gies in various science and engineering domains such as imag-
ing, physics, biology, and computer networks, we are having
access to digital data of unprecedented amount and quality.
In this modern paradigm, a significant challenge for data
discovery is the huge number of features in representing ob-
jects. For example, a high-resolution image is composed of
millions of pixels; the micro-array data in human genomic s-
tudy typically includes tens of thousands of gene expressions;
in movie recommendation systems the number of movies can
be tens of millions. How to identify truly relevant features in
the huge feature pools for accurate learning and prediction
has become one of the key challenges in data mining.

Sparse regression has recently emerged as a powerful tool
for high-dimensional data analysis, especially in removing
irrelevant variables and identifying a parsimonious subset
of covariates for predicting the target [29, 38, 39]. Given
a response vector y = [y1, y2, ..., yn]> and predictors X ∈
Rn×D, where without loss of generality the data is centered,
sparse regression and in particular the LASSO solves the
following regularized linear regression problem:

min
β
‖Xβ − y‖22 + λ|β|1, (1)

where β ∈ RD×1 is the regression coefficient vector. The `1-
norm |β|1 is used to enforce the sparsity of solution, mak-
ing the model easy to interpret. In the meantime, recent
advances in solving the non-smooth, convex LASSO prob-
lem has made it computationally extremely efficient [14, 12].
Therefore the LASSO and related methods have been ap-
plied with great success in a number of domains including
bioinformatics [17, 24, 35, 36], imaging and computer vision
[33, 21, 9], and signal processing [5, 6].

It is shown that LASSO can perform automatic variable
selection because the `1-penalty is singular at the origin [11].
It was also shown that variable selection with the LASSO
is consistent only under certain conditions [22, 37]. Namely,
there are scenarios in which the LASSO selection is not con-
sistent. To fix this problem, [38] proposes to use adaptive
weights to regularize the model coefficients along different
features, as

min
β
‖Xβ − y‖22 + λ · |ŵ � β|1, (2)

where ŵ ∈ RD×1 is the regularization weight, and |ŵ�β|1 =∑
i ŵi|βi|, namely each dimension of β is penalized different-

ly instead of sharing a single regularization parameter λ as in
LASSO (1). The regularization weights ŵ can be chosen as
ŵ = |βols|−γ , where βols is the ordinal least-square solution,



and γ is a positive number. Such choice renders the oracle
property of the adaptive LASSO estimator in simultaneous
variable selection and prediction.

Besides improving the asymptotic behaviour of sparse mod-
el estimation, the adaptive LASSO can also be quite useful in
imposing structured sparsity patterns, in particular in high-
dimensional multi-task learning by sharing the same adap-
tive weight across different tasks. Therefore it has gained
a lot of research interest from various domains [10, 17, 19].
However, choosing an optimal regularization weight vector
ŵ (2) can be much more challenging than selecting a single
regularization parameter λ (1). The former has a signifi-
cantly larger search space, and is the key to the superior
performance of adaptive LASSO.

In this paper, we propose a novel approach to simultane-
ously compute the model coefficients and adaptive regular-
ization weights in `1-regularized regression, in comparison to
most existing methods that address them separately. The
basic idea is to adopt an alternating optimization frame-
work to establish the closed-form relations between model
coefficients and regularization weights (under an equality
norm-constraint of the latter). By doing this, the two set-
s of parameters can then be optimized iteratively, until an
equilibrium state is obtained upon convergence.

The interactive updating scheme can acquire greater flex-
ibility in tuning the sparse model. In the meantime, to fur-
ther improve its convergence and reduce the sensitivity on
initial conditions, we borrow the idea from material science
and propose an “annealed” shrinking procedure. Specifical-
ly, throughout the interactive updates between model coef-
ficients and regularization weights, we gradually strengthen
the global magnitude of `1-penalization by adjusting the e-
quality norm-constraint on the regularization weight vector.
Then, by starting from a dense solution, the system will go
through a series of micro-stages that continuously sparsify
and ameliorate itself. In this “annealing” process, features
are like particles: in the “high-temperature” beginning, all
features have the freedom to compete with each other and
position themselves in the model; however, when the sys-
tem gradually cools down, fewer and fewer features could
preserve their energy; finally, only those features that sur-
vive the dynamic competing process will be selected.

We find that such a dynamic shrinking scheme leads to
an interesting mechanism of feature selection and compe-
tition, which favors the choice of truly relevant features.
Through extensive experiments, we compare our approach
with a number of state-of-the-art techniques in sparse learn-
ing, and obtain promising results. The contribution of the
paper is summarized as follows:

1. We introduce the concept of“annealing”in sparse learn-
ing, and propose an annealed, dynamic shrinking frame-
work to improve the model selection in `1-regression;

2. We extend our approach to solve high-dimensional multi-
task learning problems to improve state-of-the-art;

3. We apply our approach in eQTL, which successfully
identifies significant and relevant pathways to help un-
derstand the P53 regulation mechanism for melanoma.

The rest of the paper is structured as follows. Section 2 dis-
cusses the proposed method. Section 3 extends it to multi-
task learning scenario. Section 4 describes related methods.

Empirical results are presented in Section 5, and the last
section concludes the paper.

2. METHOD
Consider the following linear regression problem with the

design matrix X ∈ Rn×D, where n is the sample size andD is
the dimensionality, and the target response vector y ∈ Rn×1.
We use an adaptive weight vector w = [w1, w2, ..., wD]> to
regularize over different covariates, as

min
w,B

‖Xβ − y‖22 + |w−γ � β| (3)

s.t.
∑
d

wd = ω, wd ≥ 0. (4)

Here, β ∈ RD×1 is the model, w ∈ RD×1 is the regulariza-
tion weight vector, and |w−γ � β| =

∑D
d=1 w

−γ
d · |βd|. Both

parameters will be optimized in our learning procedures.
The equality norm-constraint

∑
d wd = ω is quite useful in

controlling the global strength of regularization (in an aver-
age sense). To see this, note that the regularization imposed
on the dth feature is w−γd (3) . Therefore, if γ is positive:
then the larger the ω, the smaller the average strength of
the `1-penalty; on the other hand, if γ is negative: then the
larger the ω, the larger the average strength of `1-penalty.
Later we shall see that, it is exactly because of this equality
norm-constraint (4) that we acquire the flexibility of “an-
nealing” the whole system to improve the state of solution.
The power parameter γ can be chosen either as a positive or
negative real number, in comparison to the power parameter
that can only be positive in the adaptive LASSO [39].

2.1 Interactive Update
We first consider ω as a pre-defined constant. Then the

problem (1) can be solved by alternating optimization. Name-
ly we first fix w and solve β, and then fix β and solve w, and
keep iterating until convergence. Here we use βd to denote
the dth entry of β.

Fix w and solve β. Then this becomes an adaptive
LASSO problem,

min
β
‖Xβ − y‖22 + |w−γ � β|, (5)

which can be computationally converted to a standard LAS-
SO problem [38].

Fix β and solve w. This then become the following
constrained optimization problem

min
w

∑
d

βd · w−γd , (6)

θd = |βd|.

Problem (6) has a closed form solution,

wd =

 θ
1

1+γ

d∑D
j=1 θ

1
1+γ

j

ω. (7)

The derivations are in the appendix.
Choice of the γ Parameter. Based on equation (7), we

can examine the relation between the actual regularization
imposed in (3), w−γ , and the (absolute) value of the model
coefficient, θd (4). We discuss the following scenarios:

1. γ > 0: if θd is larger (compared with θd′ , d
′ 6= d), then

wd (7) will also be larger due to the positive power term



1
1+γ

, and as a result the regularization term w−γd in (3)
will be smaller, leading to a weaker regularization on
the d feature in the next iteration;

2. γ < −1: if θd is larger (compared with θd′ , d
′ 6= d),

then wd will be smaller due to the negative power 1
1+γ

;

as a result w−γd will also be smaller since −γ > 0,
leading to a weaker regularization in the next iteration;

3. −1 < γ < 0: if θd is larger (compared with θd′ , d
′ 6= d),

then wd will be larger due to the positive power 1
1+γ

; so

w−γd will be larger since −γ > 0, leading to a stronger
regularization in the next iteration.

As can be seen, in case γ > 0 or γ < −1, the regularization
term w−γd and the model coefficient θd are inversely related
to each other: larger θd will lead to smaller regularization
coefficient w−γd , and vice versa. In practice, we update wd
and θd iteratively. As a result, important features in the
current iteration will tend to be penalized less in the next
iteration; on the contrary, less important features will be
confronted with strong penalty in future iterations. The
system reaches a stationary point upon convergence.

In case −1 < γ < 0, however, w−γd and θd will be favorably
associated with each other. In other words, relevant features
in the current step will be strongly penalized in the next
iteration. This obviously leads to unstable iterations and
therefore we will exclude it from our parameter choice.

In the adaptive LASSO [38], the regularization weight
is also inversely related to some pre-computed model co-
efficient. The difference of our method is that, first, our
weights are carefully tuned based on previous model coef-
ficients through norm-regularization (7); second, we keep
alternating instead of using a single update; third, as will be
discussed, we have the freedom of annealing the strength of
global regularization via the equality norm-constraint (4).

2.2 Multi-Stage Shrinking
The interactive updates between models and the adaptive

weights mimic a self adapting process that is expected to
drive the whole system to a desired state. However, this
optimization problem is non-convex, therefore in case of bad
initialization, the iterations might quickly get stuck into a
local optimum. In this case, dimensions with large model
coefficients will keep being dominant and and dimensions
with small coefficients may never have a chance to regain
their magnitudes.

In order to prevent pre-mature convergence, we propose
a multi-stage shrinking procedure. The basic idea is to in-
troduce strong perturbations in the beginning, such that all
features have the chance to be selected and compete with
each other. Then we gradually “cool down” the system by
using stronger and stronger `1-penalties. Namely fewer and
fewer features can survive in the progressive shrinking. By
doing this, the system will go a series of self-adjusting micro-
stages sequentially before reaching the final solution.

Suppose we initialize w with |w| = ωτ , τ = 0. Then
we interactively update β (5) and w (6) under this equality
norm constraint until convergence. When this stage ends,
we will start next stage of iterations with an updated norm
constraint |w| = ωτ , τ = 1, which imposes a stronger `1-
penalty. Then we iterate between β and w until the second
stage ends. By repeating this, we keep strengthening the
global `1-norm regularization stage by stage, achieving an

“annealing” effect. Here each stage is indexed by τ and is
composed of iterations under |w| = ωτ .

Depending on the choice of γ, in order to guarantee that
the global regularization strength w−γ will gradually in-
crease, we need different strategies in tuning the ω param-
eter. (1) γ > 0: ω will start from a large value (corre-
sponding to a weak regularization) and gradually decrease;
(2) γ < −1: ω will start from a small value and gradually
increase throughout the iterations.

2.3 Relation with Annealing
In material science, annealing is a powerful heat treatment

technique [31] to improve physical and chemical properties
of a metal. It heats the metal to a high temperature, which
gives the energy for its atoms to break the bond and dif-
fuse actively within crystal lattices; a suitable temperature
is then maintained and gradually cooled down, allowing the
material to progress towards equilibrium state. Annealing
can reduce the Gibbs-Free-Energy of the metal.

The dynamic shrinking method in Algorithm 1 very much
resembles (and is indeed inspired by) an annealing process.
The strength of the `1-regularization can be deemed as con-
trolling the temperature of the system: in the beginning
stages when regularization is weak, all features have the
freedom to compete and position themselves in the model,
meaning that the solution is dense and the system has a high
energy. When the regularization gradually enhances, the
system begins to cool down, model coefficients start shrink-
ing progressively, and the system energy decreases as well.
The norm-constraint |w| = ω can be deemed exactly as the
as controlling the “temperature” of the system: a larger ω
imposes a weak regularization, meaning high temperature
and energy status; a smaller ω, on the contrary, enforces
low temperature and energy status.

The initial temperature of annealing should be higher than
metal recrystallization temperature. Similarly, we also start
from a high temperature, i.e., a weak regularization such
that initial model parameters are dense. This allows differ-
ent features to fully compete with each other; if the solution
is already sparse in the beginning, the iterations will quickly
get trapped into a poor local optima. In our context, the
densest initial solution is the ordinary least-square solution,
namely a sparse regression with vanishing `1-penalties.

It is worthwhile to point out the difference between our
method and simulated annealing [15]. Simulated annealing
is a probabilistic searching technique that can be applied to
any pre-defined objective function to find its global optimum
[25]; in comparison, we target on more effective sparse re-
gression and feature selection by reformulating the adaptive
LASSO with a progressive, multi-stage shrinking mechanis-
m, thus bearing an analogy to the “annealing” process.

3. MULTI-TASK REGRESSION
Suppose we have a number of k tasks, each task is com-

posed of the design matrix Xk ∈ Rn
k×D and target yk ∈

Rn
k×1; we use shared adaptive weight w = [w1, w2, ..., wD]>

to regularize over all the K tasks, as

min
w,B

K∑
k=1

(∥∥∥Xkβk − yk
∥∥∥2
2

+ |w−γ � βk|
)

(8)

s.t.
∑
d

wd = ω, wd ≥ 0. (9)



Algorithm 1: Adaptive LASSO + dynamic shrinking

Input: multi-task data Z = {Xk,yk}Kk=1; initial norm
constraint ω0; shrinking factor δ; τ = 0; initial

regularization weight w0
0 = [ω

0

D
, ω

0

D
, ...ω

0

D
];

Output: solution path for all the k tasks

1 begin
2 while model is unempty do
3 t = 0;
4 while Convergence do
5 Bτ

t+1 =ModelUpdate(wτ
t ,Z);

6 wτ
t+1 =WeightUpdate(Bτ

t+1, ω
τ );

7 t = t+ 1;

8 ωτ+1 = ωτ · δ;
9 wτ+1

0 = wτ
t ;

10 τ = τ + 1

Here, βk ∈ RD×1 is the model coefficients for the kth task for
k = 1, 2, ...,K, and B = [β1, β2, ..., βk]. Through similar
derivations, we have the following procedures.

Fix w and solve βk’s. Then this becomes K indepen-
dent adaptive LASSO problems, for k = 1, 2, ...,K

min
βk

∥∥∥Xkβk − yk
∥∥∥2
2

+ |w−γ � βk| (10)

which can be easily converted to a standard LASSO.
Fix βk’s and solve w. This then becomes the following

constrained optimization problem

min
w

∑
d

θd · w−γd (11)

θd =
∑K
k=1 |β

k
d |. (12)

Problem (11) has a closed form solution,

wd =

 θ
1

1+γ

d∑D
j=1 θ

1
1+γ

j

ω. (13)

As can be seen, the proposed method can conveniently
handle multi-task learning scenarios, thanks to the flexibility
of using an adaptive regularization weight. In the following
we introduce two routines to simplify our presentation of the
algorithm.

• B =ModelUpdate(w,Z). This denotes training an
adaptive LASSO with weights w (10) for each of the k
tasks in Z = {Xk,yk}Kk=1, independently, and obtain-
ing the model coefficients B = [β1, β2, ..., β

K ];

• w =WeightUpdate(B, ω). This denotes the process of
using current models B and a specified value of ω to
update the regularization weights w, as in (11) to (13).

Using these notations, we summarize the algorithm in
Algorithm 1, which is applicable to both single and mul-
tiple tasks. Here the upper index τ denotes outer iterations,
where each iteration τ corresponds to a stage with distinct
value of ω; the lower index t indexes the inner iterations in-
side each stage. The δ is a shrinking factor that is smaller
than 1 when γ > 0, and a growing factor that is larger than
1 when γ < −1. The iteration will keep going until all fea-
tures are removed from the model. Then a cross-validation
can be used to select the best model along the solution path.

In case of classification tasks with high-dimensional fea-
tures, one can consider the sparse logistic regression [27],
min−

∑n
i=1 ln

(
1 + exp[−β>xi · yi]

)
+|w�β|1which can ben-

efit from our dynamic shrinking approach as well. Similar-
ly, the iterative procedures will decompose into two sub-
problems: when fixing w, it becomes a standard logistic re-
gression with adaptive `1-regression; and when fixing β, the
problem is identical to (6) and can be solved accordingly.

4. RELATED METHODS

4.1 Re-weighted LASSO
In [4], an interesting, re-weighted LASSO algorithm was

proposed to improve the sparsity of LASSO. After solving
a standard LASSO at time t (starting from t = 0), it will

compute a set of adaptive regularization weights w
(t+1)
i =

1/(|β(t)
i |+ ε), and then use w

(t+1)
i ’s to adaptively penalize

the `1 regularization. Here ε is a small number to ensure that
a zero component in β does not strictly prohibit a nonzero
estimate at the next step. As can be seen, the algorith-
m repeatedly performs the adaptive LASSO by using the
absolute value of the inverse of previous model coefficients
as the regularization weights for the next iteration. Such
iterations may easily get trapped in local optimal solution
due to the sensitivity of the convergence on initial values. In
comparison, our approach avoids pre-mature convergence by
continuously adjusting the global regularization strength.

4.2 Mixed-norm Regularization

4.2.1 Univariate Regression Cases
In case there exists grouping structures among input vari-

ables, the LASSO algorithm has been extended to recover
such grouping. For example, the elastic net algorithm pe-
nalizes both the `1 and `2 norm of the model [39], which
encourages a grouping effect such that strongly correlated
predictors tend to be in or out of the model together. When
the groupings of the inputs are available as prior knowledge,
the group LASSO [34] penalizes the `2-norm of each group
as a unit for variable selection, using the following optimiza-
tion framework,

min
∥∥∥∑L

l=1
Xlβl − y

∥∥∥2
F

+ λ
∑L

i=1
·√pl‖βl‖2.

Here, the predictors are assumed to have l groups with group
size pl; Xl represents predictors of the lth group, with corre-
sponding coefficient βl. The group LASSO achieves sparse
feature selection at the group level: depending on λ, an en-
tire group of predictors is either selected simultaneously in
the model, or will be removed together.

4.2.2 Multi-variate/Multi-task Cases
Multi-task learning has drawn considerable interest in da-

ta mining [2, 3]. It assumes that different tasks share some
common structures, and enforcing the task relatedness can
help improve the learning performance. We focus on sparse
multi-task learning [16, 23, 34, 17], namely joint feature se-
lection in multiple tasks needs to be performed.

The `1/`2 penalty of group lasso has been used to recover
inputs that are jointly relevant to all of the outputs, or tasks,
by applying the `2-norm to outputs instead of groups of in-
puts.For example, [23] proposed to penalize the sum of the
`q-norms of the blocks of coefficients associated with each



feature across tasks, which is called mixed-norm or `1/`q
regularization. One appealing property is that it encour-
ages multiple predictors from different tasks to share similar
parameter sparsity patterns. Let B = [β1, β2, ..., βk], and
define Bi ∈ R1×K as the ith row in the model coefficient
matrix B. Then the objective function of the `1/`q regular-
ization is as follows:

min
B

∑K

k=1

∥∥∥Xkβk − yk
∥∥∥+ λ

∑D

i=1
‖B‖`1/`q .

Here ‖B‖`1/`q = is the block `1/`q norm

‖B‖`1/`q =
∑D

i=1

(∑K

j=1
Bij

q
) 1
q
.

When q = 2, we have a block `1/`2 norm, which is identi-
cal to the group LASSO [34]. Other choices have also been
studied such as `1/`∞ [30]. The mixed-norm regulariza-
tion encourages simultaneous feature selection across tasks.
Namely, a given feature is either selected as relevant for all
the tasks’ output simultaneously, or is excluded all-together
for all the tasks. Such regularization is very effective if the
underlying task relation satisfies such assumption. However
it can be too restrictive in some other applications.

In [17], an adaptive multi-task LASSO framework was
proposed which combines adaptive regularization with the
mixed-norm regularization, as

min
β,θ,ρ
L(β) + λ1

D∑
j=1

θj

K∑
i=1

|βkj |+ λ2

D∑
j=1

ρj‖βj‖2 + logZ(θ, ρ).

Here L is the loss function; the second term is an adaptive
LASSO that imposes `1-norm penalty with strength λ1·θj on
|βj |1 from all tasks; the third term is a mixed-norm regular-
ization together with an adaptive weights, which imposes the
penalty λ2 · ρj ‖βj‖2; the last term is a normalization factor
on the conditional probability p(β|θ, ρ). The whole frame-
work has an elegant Bayesian interpretation. It achieves
sparsity both across tasks and within each task. However,
the regularization weights are assumed to be spanned by
features from extra domains with prior knowledge, which
might not be available in general multi-task learning; on the
other hand, it separates the learning of the model and the
regularization profile.

4.3 Regularization Path
The dynamic shrinking process of the proposed algorith-

m is illustrated in Figure 1, where the strength of the `1-
regularization gradually increases, leading to a solution path.
Due to the interplay between adaptive weights w and mod-
els coefficients B, the whole solution path of B is connected:
each solution B is affected by its predecessor. This means,
the effect of system evolution is inherited from one stage τ
to the next stage τ + 1, or from one iteration t to the nex-
t iteration t + 1 inside a single stage. In other words, the
solutions have to be obtained in a sequential manner. For
the standard LASSO, in comparison, the solution path can
actually be obtained by training a number of independent
LASSO’s with different λ’s.

Note that the solution path of LASSO can also be ob-
tained in a sequential manner by using the least angle re-
gression [8], which fully exploits the piecewise linear struc-
tures of the solutions. However, an important difference is
that, our approach will re-define the LASSO regression in

each iteration. To see this, note that any adaptive LASSO
problem min ‖Xβ − y‖22 + |w � β|1 can be converted to a
LASSO min ‖XW−1β − y‖22 + |β|1 where β = w � β and
W = diag(w). In our approach, since the regularization
weight vector w keeps updating, therefore each iteration is
equivalent to a LASSO problem with continuously rectified
data XW−1, making it different from traditional solution
path. It will be a very interesting topic to explore the solu-
tion path structures of our dynamic shrinking approach, so
as to make it more computationally efficient.

5. EMPIRICAL RESULTS
In this section, we perform extensive experiments to ex-

amine the performance of our approach, in both simulation
data sets and real-world bioinformatics application.

5.1 Competing Methods
Altogether, we implement and compare the following al-

gorithms:

1. Standard LASSO algorithm [29]: We use the LARS
algorithm to generate the solution path;

2. Adaptive LASSO [38]: We use inverse of ridge regres-
sion coefficient to compute w for each task and average
them as the shared regularization. Then we rescale w
to generate the solution path;

3. Adaptive LASSO-II [13]: We use inverse of the marginal
regression coefficient to compute w for each task and
average them as the shared regularization, then we re-
scale the regularization to generate the solution path;

4. Multi-task LASSO [23]: We choose different values of
the initial λ to compute the solution path;

5. Re-weighted LASSO [4]: We choose different values of
the initial λ (each initiates a series of iterations till
convergence) to generate the solution path;

6. Our approach: We simply choose γ = 1, an initial
norm ω0 = 1e8, and shrinking factor δ = 0.8; we can
generate a solution path throughout the iterations un-
til all features are removed. Results on using negative
power γ < −1 is similar and therefore removed due to
space limit.

We use the following measurements to evaluate the per-
formance of different methods:

1. Specificity (SPC) versus true-positive-rate (TPR) (SPC
VS TPR) curve based on solution paths from different
algorithms;

2. Cross-validated mean-squared-error (CV-MSE): we re-
port 5-fold cross-validated error of different methods;

3. Cross-validated F-score (CV-Fscore): we comput the
5-fold cross-validated F-score for different methods;

We use the SLEP sparse learning package [18] to imple-
ment our approach. All codes are written in Matlab and run
on a cluster server with 2.2 ∼ 2.8 GHz CPU.



Figure 1: Illustration of the regularization path of our approach. Here, {ω0, ω1, ω2, ...} is a sequence such that
the global strength of `1-regularization grows stronger.

5.2 Single Task Regression
First we use single task sparse regression problem to test

the performance of different methods. Following the details
in [4], we simulate the data set of n = 100 samples with
dimensionality D = 256, and the design matrix is an n-by-d
i.i.d. Gaussian entries. Among the 256 features, only p = 20
are relevant features with randomly chosen non-zero β en-
tries from a zero-mean unit-variance Gaussian distribution.
We then use the linear relation yi = xiβ +N (0, σ2) to gen-
erate the response y.

Results are shown in Figure 2, where each algorithm is
marked by their indexes specified in Section 5.1. In this
data set, multi-task LASSO (method (4)) is identical to s-
tandard LASSO (method (1)) and therefore is removed. As
can be seen, our approach is superior in terms of picking
out relevant covariates throughout the whole solution path,
demonstrating the effectiveness of annealed sparsity in im-
proving the sparse model selection. In the meantime, the
cross-validated mean-squared-error and F-score of our ap-
proach are also the best among competing methods.

5.3 Multi-task Regression
In this experiment we simulate data with K = 5 tasks,

each task has n = 40 samples with dimension D = 100. For
each task design matrix is an i.i.d Gaussian distribution, and
we assume the linear relation yki = xki β

k+N (0, σ2), and for
the relevant features, the corresponding entries in βk’s are
randomly chosen from the distribution 3 +N (0, 1). Here we
generate two types of multi-task data.

1. Multitask-I: strict group-wise sparsity. We choose p =
20 relevant features for all tasks, and each row of the
model coefficient matrix B is either all zeros or all non-
zeros, meaning that one feature is either relevant to all
tasks, or excluded from all tasks;

2. Multitask-II: mixed sparsity patterns. We then intro-
duce a perturbation on the model coefficients B: for
each non-zero row of B, we randomly pick one entry
and set it to zero; in this case, each row of B can have
both zero and non-zero entries. Namely it has a mixed
sparsity pattern (across-group and within-group).

We report the results in Figure 3 and Figure 4. We can
observe that our approach has the best performance in terms
of both feature selection (F-score) and regression (predict-
ing error), on both types of multi-task data sets. The adap-
tive LASSO-II [13] using the inverse of the marginal regres-
sion coefficients as adaptive weights seems to perform better
than the adaptive LASSO using ordinary-least-squares co-
efficients. The LASSO considers each task separately and

can be less accurate. Another observation is that, in case
of mixed sparsity patterns, all algorithms perform worse
than in the case of strict group-wise sparsity, in particularly
judged by feature selection accuracy (F-score). Neverthe-
less, our approach still performs the best among competing
methods.

We also experiment with different noise levels to test the
noise tolerance shown in Figure 5. As can be observed, our
approach is competitive under different noise levels.

5.4 Algorithm Behaviors
In this section, we study properties of the proposed method

from different perspectives.

5.4.1 Solution Path
First, to have a direct picture on the shrinking behaviour

of our method, we plot the solution path of our approach in
Figure 6. Here we use the multi-task simulation data with
group wise sparsity under the highest noise level (δ = 3).
To prevent visual cluttering, we only plot the solution path
for one task, and we only demonstrate 10 of the 20 relevant
features and all the rest 80 irrelevant features.

We have several interesting observations. First, note that
when the regularization is relatively weak, the solution paths
are all smooth; when the regularization becomes stronger,
solution paths begin to show clear stage-wise behaviour: the
coefficient value is relatively stable within each stage, but
may change significantly across stages (due to the change of
ω), indicating that the system state goes through significant
changes. Second, the solution path is quite non-monotonic.
With the growing strength of regularization ( 1

ω
), we can ob-

serve that the model coefficients first expand and then grad-
ually shrink. This is in sharp contrast to the solution path
of the LASSO, whose solution path almost monotonically
shrinks with growing regularization.

The non-monotonic shrinking can be quite beneficial in
practice. Note that in the beginning stage, both relevant
and irrelevant features have large model coefficients, mean-
ing that they are difficult to differentiate. When the regu-
larization grows stronger, interestingly, we can see that most
relevant features begin to expand, while most irrelevant fea-
tures begin to shrink. This becomes particularly obvious
around 1

ω
≈ 10−4.5, where the majority of irrelevant fea-

tures suddenly shrink to zero, while relevant features have
a jump increase in their coefficients. This is quite beneficial
in practical feature selection problems.

Competing mechanism of annealing. In the begin-
ning, under weak global `1-penalty, model coefficients are
dense, indicating that the“energy”of the system is distribut-
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Figure 2: Performance for different methods on single task data, with noise σ = 1.
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Figure 3: Results on multitask-I data (strict group sparsity), with noise σ = 1.
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Figure 4: Results on multitask-II data (mixed sparsity pattern), with noise σ = 1.

(a) Multitask-I, σ = 2 (b) Multitask-I σ = 3 (c) Multitask-I, σ = 4

(d) Multitask-II, σ = 2 (e) Multitask-II σ = 3 (f) Multitask-II, σ = 4

Figure 5: Results on different noise levels for multitask-I (1st row) and multitask-II (2nd row).
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Figure 6: Solution path for dynamic shrinking.
Thick colored lines represent relevant features, and
dashed lines for irrelevant features. Vertical line in
the middle marks change of display scales (for visual
clarity). Regularization increases from left to right.

ed somewhat uniformly among competing features. As the
regularization grows, the system begins cooling toward a
lower-energy state; in the meantime, energy distribution be-
comes more concentrated. That is, competitive features (in
terms of better prediction in the least-square) will attrac-
t more energy from irrelevant features, making the latter
shrink. This is why we observe significant growth of some
feature magnitude even though the global sparsity enhances.
Such energy re-allocation through annealing solves the fea-
ture selection problem in an effective manner.

5.4.2 Parameter Selection
In this section, we study how the performance of our ap-

proach is affected by the following two parameters: the ω0

that controls the initial “temperature” of the system; the
shrinking factor δ that controls the “cooling rate” of the sys-
tem. The performance is measured by the F-score using the
multitask-I data set with σ = 1.

(a) Initial temperature (ω0) (b) Shrinking factor (δ)

Figure 7: Performance of our method versus differ-
ent parameters.

First, we examine the performance w.r.t. ω0 chosen from
some grid points {1010, 109, ..., 10−3}. As can be seen from
Figure 7(a), in a wide range of high initial temperatures, the
performance of our approach is quite satisfactory; when the
initial temperature is below a certain value, the performance
quickly drops. This coincides with our expectation, since a

low initial temperature fails to start the whole system with
sufficient energy and as a result the iterations could quickly
stop at a local optima. In practice, we simply choose ω0 as
a large value such as 1e8.

In Figure 7(b), we examine the performance of our ap-
proach w.r.t. the shrinking factor. As can be observed, more
aggressive shrinking scheme (δ → 0) makes the performance
worse; in comparison, milder shrinking scheme (δ → 1) al-
lows the system to evolve slowly such that the “annealing”
is sufficient, but it is computationally more expensive. In
practice, we find that 0.2 < δ < 0.8 can strike a balance
between efficiency and the quality of annealing.

5.5 Bioinformatics Application
In this section, our task of expression quantitative trait

loci (eQTL) is to identify genes whose DNA copy (DNA
copy-number data as input) are associated with the mR-
NA expression level of six P53 target genes (normalized ex-
pression data as response). Note that P53 is a well-known
tumor suppressor gene. The data set is obtained from Can-
cer Cell Line Encyclopedia (CCLE) project1, with DNA
copy-number of 23316 genes across 1011 samples. The six
target genes include CDKN1A, PMAIP1, BBC3, MSH2, PML

and PRKAA2, which are of particular relevance to melanoma
as suggested by biological experts [32]. The regulatory genes
identified through our regression analysis will then help un-
derstand the whole P53 regulation mechanism for cancer,
and in particular melanoma.

In the application, we treat the eQTL of six P53 tar-
get genes as six tasks, since we believe that the regulating
processes on all these melanoma-related genes should share
some underlying mechanism. We have used the 5-fold cross-
validated error to select the best model. Table 1 reports the
5-fold CV-MSE for all competing methods, from which we
can see that our method achieves the lowest fitting error.
This fully illustrates the superior performance of the pro-
posed dynamic shrinking scheme in high-dimensional, real-
world multi-task learning problems.

We further explore whether the selected genes by our
method makes biological sense, by following the common
practice of gene set enrichment analysis (GSEA) [28]. Specif-
ically, we rank the selected genes in each task based on the
regression coefficients and feed the ranking to GSEA2-2.2.2
software. We consider the canonical pathways/gene sets pro-
vided by the Molecular Signatures Database2. For each task,
GSEA returns a number of significant pathways/gene-sets
under false discovery rate (FDR) 5%, and we pick one ex-
ample pathway to illustrate in Figure 8. Here, the pathway
name is marked on top of each figure; the red bar denotes
the ranking of the β-coefficient for each task, and the black
lines mark the genes belonging to selected pathway. Our
approach identifies more than 100 significant pathways for
each task, which is much larger than other methods.

These significant pathways based on our computed gene
ranking are very relevant to cancers and/or melanoma, as
discussed below:

• The gene CDKN1A, cyclin-dependent kinase inhibitor
1A, itself is relevant to cell cycle. The significant path-
way“REACTOME_P53_INDEPENDENT_G1_S...” includes genes
in p53-Independent G1/S DNA damage checkpoint,
which has been shown to be quite relevant to dysfunc-
tional cell cycle causing cancer [20].

1
http://www.broadinstitute.org/ccle/home

2
http://software.broadinstitute.org/gsea/msigdb/collections.jsp.
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Figure 8: Our ranking of the genes, as well as one example of the identified pathways for each task based on
this ranking, via gene enrichment analysis on the CCLE data.

Table 1: CV-MSE on CCLE data set
Method 5 fold Cross-validated MSE

LASSO 3.2530
Adaptive LASSO 1.3078

Adaptive LASSO-II 1.3701
Multitask LASSO 3.2451

Re-weighted LASSO 1.5507
Ours 1.1165

• The gene BBC3 is a protein that cooperates with di-
rect activator proteins to induce mitochondrial outer
membrane permeabilization and apoptosis. The path-
way “REACTOME_AUTODEGRADATION_OF_THE...” include
genes involved in autodegradation of the E3 ubiquitin
ligase COP1. Destruction of COP1 results in abrogation
of the ubiquitination and degradation of p53 [7].

• The gene MSH2 is involved in cyclin A/B1 associated
events during G2/M transition and is a protein coding
gene. In literatures, its related pathways are all about
cancer and cell cycle, or checkpoint control. The path-
way we find, “REACTOME_CYCLIN_A_B1_ASSOCIATED...”,
is also a cell cycle gene set. It is responsible for phos-
phorylation of nuclear lamins and histones [26], which
in turn regulates G2/M transition, thus controlling cell
cycle progression by cyclin-dependent protein kinases
in G1/S and G2/M transitions.

• The gene PAMIP promotes activation of caspases and
apoptosis. It contributes to p53/TP53-dependent apop-
tosis after radiation exposure. In the proteasome path-
way “BIOCARTA_PROTEASOME_PATHWAY”, the regulated
proteolysis of proteins by proteasomes removes dam-
aged or improperly translated proteins from cells, and
aids caspases and apoptosis [1].

The above results show that our approach not only predicts
target gene expressions more accurately, but also identifies
biologically meaningful molecular predictors.

6. CONCLUSIONS
In this paper, we propose a dynamic shrinking framework

to compute adaptive regularization in sparse (multi-task) re-
gression. Our key contribution is to introduce the concept
of annealing in sparse model estimation and feature selec-
tion, through an iterative, self-adapting and self-competing
mechanism. Empirically, the annealing process can improve
the accuracy of models in particular in multi-task problem-
s. In the future, we will study how to explore underlying
structures of the dynamic solution path to make it computa-
tionally more efficient; we also want to incorporate explicit,
task-level constraints to make the learned model coefficients
more useful for subsequent learning tasks. Finally, we are
trying to build a more rigorous, mathematical connection
between our approach and annealing so as to fully charac-
terize the behaviour of system evolutions.

Appendix
To derive (7), we use the Lagrangian of (6). We first drop
the non-negativity constraint. Then the Lagrangian can be
written as

J =
∑
d

θdw
−γ
d + α

(∑
d

wd − ω

)
.

By setting ∂J
∂wd

= 0, we have

α =
θdγ

w1+γ
d

. (14)

Plugging the above relation in the constraint
∑
d wd = ω,

then we have

α =

(∑
d(θdγ)

1
1+γ

ω

)1+γ

,



so we have

w1+γ
d =

θdγ

α
=

θdγ · ω1+γ(∑
d(θdγ)

1
1+γ

)1+γ .
Plugging the above equation in (14), we finally have

wd =
θ

1
1+γ

d∑
d θ

1
1+γ

d

ω.

Since θd =
∑
k |β

d
k | ≥ 0, and ω ≥ 0, the solution will satisfy

the non-negative constraints automatically. This completes
the proof of solution (13).
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