
Probabilistic Streaming Tensor Decomposition
Yishuai Du†, Yimin Zheng†, Kuang-chih Lee], Shandian Zhe†

University of Utah†, Alibaba Group]

{u0884588,u0887427}@utah.edu†, zhe@cs.utah.edu†, leekc307@gmail.com]

Abstract—Tensor decomposition is a fundamental tool for
multiway data analysis. While most decomposition algorithms
operate a collection of static data and perform batch processes,
many applications produce data in a streaming manner — every
time a subset of entries are generated, and previously seen entries
cannot be revisited. In such scenarios, traditional decomposition
approaches will be inappropriate, because they cannot provide
timely updates when new data come in, and they need to access
the whole dataset many times for batch optimization.

To address this issue, we propose POST, a PrObabilistic
Streaming Tensor decomposition algorithm, which enables real-
time updates and predictions upon receiving new tensor entries,
and supports dynamic growth of all the modes. Compared with
the state-of-the-art streaming decomposition approach MAST [1],
POST is more flexible in that it can handle arbitrary orders
of streaming entries, and hence is more widely applicable. In
addition, as a Bayesian inference algorithm, POST can quantify
the uncertainty of the latent embeddings via their posterior
distributions, and the confidence levels of the missing entry value
predictions. On several real-world datasets, POST exhibits better
or comparable predictive performance than MAST and other
static decomposition algorithms.

Index Terms—tensor data, streaming decomposition, posterior
inference

I. INTRODUCTION

Multiway data, represented by tensors, or multidimensional
arrays, are common in real-world applications, such as online
advertising and recommendations. For example, we can extract
a four-mode tensor (user, advertisement, page-section, site)
from online advertisement click logs. An important tool for
multiway data analysis is tensor decomposition, where we
estimate embedding vectors for the objects in each tensor
mode (e.g., specific users and advertisements), and use these
embeddings to recover the observed entry values and to predict
missing values (i.e., tensor completion).

Typical tensor decomposition approaches are based on CAN-
DECOMP/PARAFAC (CP) decomposition, and use alternating
least squares (ALS) [2] or gradient-based optimization [3]
to update the embeddings. Despite the wide success, these
approaches need to operate on static data and repeatedly access
the whole dataset to perform alternative updates or to calculate
the gradient. However, practical applications often produce data
dynamically and incrementally. That is, each time only several
or a set of tensor entries are generated, implying dynamic
growth of the tensor in each mode. Moreover, in transient
applications such as in Snapchat or Instagram, data are not
allowed to be stored after being accessed. Hence, we cannot
retrieve the previously seen entries, and need to immediately
update the embeddings upon receiving new data increments.

Obviously, in this scenario, traditional batch decomposition
approaches will become inappropriate.

Recently, several seminal works were proposed to adapt to
the dynamic growth of one tensor mode [4], [5], e.g., the time
mode. Furthermore, a more powerful streaming decomposition
approach, MAST [1], was developed to handle the streaming
data, and can adapt to the growth of all the modes. However,
these algorithms restrict the order of the streaming entries.
That is, the newly coming entries must stay in the incremental
portion of the tensor, and cannot belong to its previous, smaller
version. Specifically, denote the tensor at step t and t+1 by Tt
and Tt+1, respectively; any entry received at t+ 1 must belong
to Tt+1 − Tt, rather than Tt. However, in practice, both Tt
and Tt+1 are usually partially observed, and could have many
missing entry values. It is often the case that some missing entry
values in Tt are observed in later steps, say, t+ 1. Therefore,
the restriction might hinder many applications, where the tensor
entries stream in arbitrary orders.

To address this issue, we propose POST, a probabilistic
streaming tensor decomposition algorithm, which is flexible to
handle streaming entries in arbitrary orders. POST updates the
latent embeddings upon receiving new tensor entries (without
retrieving previous ones), and naturally supports dynamic
increases of the objects in each tensor mode. Besides, as
a probabilistic approach, POST simultaneously adjusts the
uncertainty quantification of the embeddings, and provides the
confidence level for missing value prediction.

Specifically, we first design a simple Bayesian CP decomposi-
tion model, based on which, we develop a streaming variational
inference algorithm that recursively updates the posterior
distributions of the latent embeddings. The algorithm starts
with the prior distribution of the embeddings, and calculates
the variational posterior distribution of the embeddings upon
receiving observed entries. The posterior is then severed as the
prior distribution, and integrated with the next set of entries
to obtain the updated variational posterior. The variational
updates are analytical and efficient. The procedure continues
until all the entries are received. At any time, the current
posterior summarizes the decomposition results over the data
that have been seen so far, but does not maintain a fixed
decomposition structure (as in MAST). Hence, afterwards our
algorithm can still accept and process entries that belong to
the previous tensor. Furthermore, the posterior distribution
contains valuable uncertainty information, and can benefit
data analysis, ranking, debugging, decision making, etc. With
the posterior, we can calculate the confidence levels of the
prediction for missing entry values, which correspond to many

important tasks, such as click-through-rate prediction and
commodity recommendation. The confidence estimations are
useful for subsequent tasks, such as ads displaying [6], and
recommendation results diversification [7].

For evaluation, we examined POST on several real-world
multiway datasets. We first followed the requirement of MAST
to ensure the entries received each time always incurred the
expansion of the whole tensor. Under different rank settings
for the latent embeddings, POST nearly always outperforms
MAST in missing value prediction, and is often comparable
to several static decomposition approaches. Then we evaluated
POST with two large sparse tensors, where the observed
entries streamed in completely random orders. POST achieves
comparable or better predictive performance than the scalable
static decomposition algorithm, CP-WOPT [8]. Finally, we
analyzed the uncertainty information provided by POST in
the online advertising application. We discussed the potential
usage of these information, such as diagnosis of CTR prediction
results and improving the ads display and user experience.

II. PRELIMINARIES

We first introduce the notations and background knowledge.
Throughout the paper, scalars are denoted by lowercase
letters (e.g., u) and occasionally uppercase letters, vectors by
boldface lowercase letters (e.g., u), and matrices by boldface
uppercase letters (e.g., U). We denote a K-mode tensor by
Y ∈ R

d1×...×dK , where dk is the length of k-th mode,
corresponding to dk objects (e.g., users or items). The entry
value at location i = (i1, . . . , iK) is denoted by yi. The tensor
Y can be flatten into a vector, denoted by vec(Y), where the
entry i = (i1, . . . , iK) in Y is mapped to the entry at position
j = iK +

∑K−1
k=1 (ik − 1)

∏K
t=k+1 dt in vec(Y).

To perform tensor decomposition, we first introduce a set
of latent embedding vectors to represent the tensor objects.
Specifically, each object j in mode k is represented by an R
dimensional vector ukj . A dk ×R embedding matrix can then
be constructed by stacking all the embedding vectors in mode
k, Uk = [uk1 , . . . ,u

k
dk

]>. Given the embedding matrices of all
the modes, U = {U1, . . . ,UK}, tensor decomposition aims to
use these embeddings to reconstruct the observed entries.

The CANDECOMP/PARAFAC (CP) decomposition [9] is
the most popular tensor decomposition approach. Given the
tensor Y , CP assumes that Y ≈ [[U1, . . . ,UK]], where [[·]] is
the Kruskal operator [10]. This is equivalent to

vec(Y) ≈
R∑
r=1

U1(:, r)⊗ . . .⊗UK(:, r)

where ⊗ is the Kronecker product, and Uk(:, r) is the r-th
column of Uk (1 ≤ k ≤ K). From the vectorized form, we
can easily obtain that for each observed entry i,

yi ≈
R∑
r=1

K∏
k=1

ukik,r = 1>(u1
i1 ◦ . . . ◦ uKiK) (1)

where 1 is the vector full of ones, ◦ is the Hadamard product
that performs element-wise multiplication.

To identify the optimal embeddings, CP decomposition
minimizes a mean square loss,

L(U) =
1

2
‖vec(Y)−

R∑
r=1

U1(:, r)⊗ . . .⊗UK(:, r)‖2.

We can use alternating least squares [2], namely, alternatively
updating each embedding matrix given all the other fixed,
or gradient-based approaches [3], e.g., nonlinear conjugate
gradient descent or L-BFGS, to minimize the loss function.

III. PROBABILISTIC TENSOR DECOMPOSITION

The standard CP decomposition finds the point estimation of
the embeddings only and is unable to evaluate the uncertainty
of these estimations. However, the uncertainty may vary
significantly among the tensor objects. For example, if an
object frequently interacts with objects in other modes, our
estimation of its embeddings should be much more certain than
ones having scarce interactions. Furthermore, the prediction
w.r.t. these active objects should have high confidence levels,
and those inactive objects low levels. The confidence levels
can be used to analyze the data, debug/improve the predictive
model, and optimize subsequent decisions, such as determining
the web ads showing [6] and commodity ranking for recom-
mendation [7]. In addition, the least mean square objective of
the standard CP decomposition implicitly assumes the entry
values are continuous, and ignore the possible heterogeneity in
practical applications. For examples, many tensors are binary,
say, for online advertising and social links.

To overcome these problems, we instead introduce a
Bayesian generative model that is a probabilistic version
of the CP decomposition. The Bayesian model enables the
uncertainty quantification in a principled, posterior inference
framework. The data heterogeneity can be naturally accounted
for via different likelihoods. Specifically, we first sample the
embedding vectors from a Gaussian prior,

p(U) =

K∏
k=1

dk∏
s=1

N (uks |mk
s , vI) (2)

where mk
s is the mean, and v is a scalar, which controls

the flatness of the Gaussian prior. The bigger v, the more
uninformative the prior. Given the embeddings, the value of
each observed entry i is sampled from a noisy data distribution
p(yi|U). Here, we consider two value types, continuous and
binary. For continuous entry values, we use the Gaussian
likelihood,

p(yi|U) = N (yi|1>(u1
i1 ◦ . . . ◦ uKiK), τ−1) (3)

where τ is the inverse variance. We further assign a conjugate,
Gamma prior over τ ,

p(τ |a0, b0) = Gam(τ |a0, b0) =
ba00

Γ(a0)
τa0−1e−b0τ . (4)

For binary entries, we use the Probit likelihood,

p(yi|U) = φ
(
(2yi − 1)1>(u1

i1 ◦ . . . ◦ uKiK)
)

(5)

where φ(·) is the cumulative density function (CDF) of
the standard normal distribution, φ(x) =

∫ x
−∞N (x|0, 1)dx.

Denote the set of observed entries by S. The joint probability
of our Bayesian decomposition model for continuous data,
according to (2)(3)(4), is given by

p({yi}i∈S ,U , τ) = Gam(τ |a0, b0)

K∏
k=1

dk∏
s=1

N (uks |mk
s , vI)

·
∏
i∈S

N (yi|1>(u1
i1 ◦ . . . ◦ uKiK), τ−1), (6)

and for binary data, according to (2)(5), is given by

p({yi}i∈S ,U) =

K∏
k=1

dk∏
s=1

N (uks |mk
s , vI)

·
∏
i∈S

φ
(
(2yi − 1)1>(u1

i1 ◦ . . . ◦ uKiK)
)
. (7)

IV. STREAMING POSTERIOR INFERENCE

Now, we present POST, our posterior inference algorithm
for streaming data, based on the streaming variational inference
framework [11] . The observed tensor entries are provided in a
series of batches, {S1, S2, . . .}. Note that different batches do
not necessarily have the same number of entries. We aim to
update the posterior distribution of the latent embeddings upon
receiving each batch of entries St, without using the previously
seen batches {S1, . . . , St−1}.

A. Continuous Tensor

Let us first consider the continuous entry values. Denote by
Dt all the observed data before we see the batch St, namely,
Dt = {yi}i∈S1∪...∪St−1

. From the joint probability in (6), we
can easily observe that

p(Dt ∪ {yi}i∈St ,U , τ) = p(Dt,U , τ)p({yi}i∈St |U , τ). (8)

Dividing both sides of (8) by the marginal probability p(Dt ∪
{yi}i∈St

), we can obtain

p(U , τ |Dt ∪ {yi}i∈St) ∝ p(U , τ |Dt)p({yi}i∈St |U , τ). (9)

As we can see, the updated posterior is proportional to the
current posterior multiplying with the likelihood of the received
data batch. Hence, we can use a recursive process for the
streaming inference. At the beginning, the posterior of U and τ
is assigned to their prior (2) and (4). Each time when we receive
a new batch of entries St, we combine the current posterior,
which is now served as the prior, with the likelihood of the
observed entry values in St, to obtain the updated posterior.

However, the computation of the posterior update is in-
tractable, because the likelihood (3) intertwines the embeddings
vectors. Hence, we resort to variational approximations for
tractable inference [12]. Specifically, we introduce a factorized
variational posterior distribution,

q(U , τ) = q(τ)

K∏
k=1

dk∏
s=1

q(uks), (10)

to approximate p(U , τ |Dt) in (9). Each time, we use q(U , τ)
to replace p(U , τ |Dt), and combine with the data likeli-
hood p({yi}i∈St |U , τ) to calculate the best approximation
for p(U , τ |Di ∪ {yi}i∈St), namely, q∗(U , τ). Then q∗(U , τ) is
assigned back to q(U , τ), and combined with the likelihood of
the next batch St+1 to update the approximate posterior again.
We repeat this process until we finish processing all the tensor
entries. To obtain q∗(U , τ), we use the variational inference
framework [12] — we minimize the Kullback Leibler (KL)
divergence between q∗(U , τ) and 1

C p({yi}i∈St
|U , τ)q(U , τ)

where C is the normalization const. This is equivalent to
maximizing the following variational model evidence lower
bound [12],

L =

∫
q∗(U , τ) log

p({yi}i∈St
|U , τ)q(U , τ)

q∗(U , τ)
dUdτ. (11)

Due to the factorized form (10), we can optimize q∗(U , τ)
with efficient close-form updates. Specifically, before we see
any data, we initialize q(U , τ) with the prior distribution
(see (2) (4)). As we will see, after each update, q(U , τ) will
keep the factorized form identical to the prior, namely, a
Gamma distribution multiplying with (multivariate) Gaussian
distributions for the latent embedding vectors of all the tensor
objects. Assume currently, q(U , τ) is parameterized by

q(U , τ) = Gamma(τ |a, b)
K∏
k=1

dk∏
s=1

N (uks |µks ,Σk
s). (12)

In maximizing the variational bound (11) w.r.t q∗(U , τ) =
q∗(τ)

∏K
k=1

∏dk
s=1 q

∗(uks), we only need to update the posterior
terms that associate with the batch St, namely, q∗(τ) and
{{q∗(ukik)}Kk=1}i∈St

. For any other term q∗(ukjk)(j 6∈ St, 1 ≤
k ≤ K), because it does not connect to the data likelihood,
the optimal result will simply be the corresponding term in
q(U , τ), i.e., N (ukjk |µ

k
jk
,Σk

jk
). Therefore, we only need to

focus on a small subset of embeddings related to the current
data batch, and hence can save much computation.

We can alternatively update q∗(τ) and each q∗(ukik)(i ∈ St)
— each time, we optimize one while fixing the others. By setting
the functional derivative of L in (11) w.r.t to each posterior to
0, we can derive the following close-form updates,

q∗(ukik) = N (ukik |µ
k
ik

∗
,Σk

ik

∗
), (13)

q∗(τ) = Gam(τ |a∗, b∗). (14)

As we can see, the updated posteriors maintain the same form
as the priors. The sufficient statistics are given by

Σk
ik

∗
=
(
Σk
ik

−1
+ 〈τ〉

∑
j∈St,jk=ik

〈tj,¬kt>j,¬k〉
)−1

, (15)

µkik
∗

= Σk
ik

∗
(Σk

ik

−1
µkik + 〈τ〉

∑
j∈St,jk=ik

yj〈tj,¬k〉),(16)

a∗ = a+
1

2
|St|, (17)

b∗ = b+
1

2

∑
i∈St

[
y2i − 2yi〈1>ti〉+ 〈(1>ti)

2〉
]
, (18)

where 〈·〉 is the expectation w.r.t the other posteriors, | · | is
the size of the batch, 〈τ〉 = a∗

b∗ ,

ti = u1
i1 ◦ . . . ◦ uKiK ,

tj,¬k = u1
j1 ◦ . . . ◦ uk−1jk−1

◦ uk+1
jk+1
◦ . . . ◦ uKjK ,

and

〈tj,¬k〉 = µ1
j1

∗ ◦ . . . ◦ µk−1jk−1

∗ ◦ µk+1
jk+1

∗ ◦ . . . ◦ µKjK
∗
,

〈tj,¬kt>j,¬k〉 = 〈u1
j1u

1
j1

>〉 ◦ . . . ◦ 〈uk−1jk−1
uk−1jk−1

>〉

◦ 〈uk+1
jk+1

uk+1
jk+1

>〉 ◦ . . . ◦ 〈uKjKuKjK
>〉

〈1>ti〉 = 1>(µ1
i1 ◦ . . . ◦ µ

K
iK),

〈(1>ti)
2〉 = tr

(
1 · 1>(〈u1

i1u
1
i1

>〉 ◦ . . . ◦ 〈uKiKuKjK
>〉)
)

where for any object s in mode l, 〈ulsuls
>〉 = Σl

s
∗

+

µls
∗
µls
∗>

(1 ≤ l ≤ K). The convergence is guaranteed by
the following lemma.

Lemma IV.1. The alternative updates among q∗(τ) and each
q∗(ukik)(i ∈ St) according to (13) (14) will always converge
to a stationary point of the variational bound L in (11).

Proof. It is easy to show that

L = −KL
(
q∗(U , τ)‖ 1

C
p({yi}i∈St |U , τ)q(U , τ)

)
+ log(C).

Since the KL divergence is always nonnegative, we have L ≤
log(C). Each update in (13) or (14) will increase L, hence L
will converge to a local maximum. Since L is differentiable,
the local maximum must be a stationary point.

After convergence, we obtain the current posterior q(U , τ) =
q∗(U , τ), based on which we can process the next batch. The
tensor can be expanded at any time — when some new objects
join in (say, new users or items), we simply initialize their
embedding posteriors with the prior distribution and update
them according to the subsequent observed entries.

B. Binary Tensor

We use the same framework to perform streaming posterior
inference for binary data, based on the model (7). However,
due to the Probit likelihood (5), we cannot derive close-form
updates for q(U), even in the variational inference framework.
To overcome this problem, we augment the Probit likelihood
with a latent continuous random variable zi for each observed
entry i, and we have

p(yi, zi|U , τ) = N
(
zi|1>(u1

i1 ◦ . . . ◦ uKiK), 1
)
p(yi|zi) (19)

where p(yi|zi) = 1(yi = 1)1(zi ≥ 0) + 1(yi = 0)1(zi < 0)
and 1(·) is the indicator function. It is easy to show that by
marginalizing out zi in (19), we can recover the original Probit
likelihood (5).

Now, we follow the same framework as in Section
IV-A. We use a factorized posterior distribution q(U) =∏K
k=1

∏dk
s=1 q(u

k
s). Given the current batch St, we introduce

the latent variables z = {zi}i∈St
for each entry, and derive a

variational lower bound,

L =

∫
q∗(U)q(z) log

p({zi, yi}i∈St
|U , τ)q(U)

q∗(U)q(z)
dUdz. (20)

We further use a factorized form for the posterior of z, q(z) =∏
i∈St

q(zi). To maximize L in (20), we then alternatively
update all the associated q(uki) and each q(zi) in the batch.
Now, we are able to derive analytical results. The update of
each q(zi) is a truncated Gaussian distribution,

q(zi) ∝ N
(
zi|〈1>ti〉, 1

)
1
(
(2yi − 1)zi ≥ 0

)
. (21)

The update of each q(ui)(i ∈ St) is a Gaussian distribution,
which is the same as in the continuous case (see (13)), except
that we need to remove 〈τ〉 in (15)(16), and replace yj by 〈zj〉
in (16). We can calculate each 〈zi〉 through

〈zi〉 = 〈1>ti〉+
(2yi − 1)N (〈1>ti〉|0, 1)

φ
(
(2yi − 1)〈1>ti〉

) . (22)

Apparently, the alternative updates guarantee to converge,
following the same proof in Lemma IV.1.

The overall inference procedure, POST, is summarized in
Algorithm 1. At any time, the variational posteriors of the
embeddings, {q(uks)}1≤k≤K , encode the decomposition results
based on all the observed entries received so far. These Gaussian
distributions include not only the embeddings estimations, but
also the uncertainty information (reflected in the covariance
matrices). Moreover, our algorithm is free to process streaming
entries in arbitrary orders, because a new entry value can be
modeled by the data likelihood at any time, and integrated into
the posteriors through the variational updates presented above.
In contrast, at each step, MAST uses a fixed decomposition
to replace the entire tensor up to now (including the missing
entries), and hence can only accept new entries which are
outside the current tensor, i.e., the new entries must expand
the whole tensor, and cannot belong to the current one. This
actually restricts the order of the streaming data, and might
deviate from the practical applications.

C. Computational Cost

The time complexity to update each q(uks) is O(R3), q(τ)
for continuous data O(R2), and each q(zi) for binary data
O(R). Hence, the overall time complexity of POST at batch
St is O(|St|KR3). The space complexity is O(

∑K
k=1 dk(R+

R2) + |St|K), which is to store the embedding posteriors, the
data batch, the posterior q(τ) for continuous data and q(z) for
binary data.

D. Prediction

Since POST estimates the posterior distributions of the latent
embeddings, we can hence integrate these posteriors to improve
prediction, and to quantify the uncertainty. Specifically, suppose
we want to predict yi, the value of a missing entry i. The
posterior predictive distribution of yi, for continuous tensor
data, is given by

p(yi|Dt) =

∫
N (yi|1>ti, τ

−1)q(τ)
∏

k
q(ukik)dτ

∏
k

dukik

where Dt are all the entries observed so far, and, for binary
data,

p(yi|Dt) =

∫
φ
(
(2yi − 1)1>ti

)∏
k
q(ukik)

∏
k

dukik .

Note that the predictive distribution integrates all the possible
values of the embeddings (via their variational posteriors
{q(ukik)}), and hence can provide more robust and smooth
predictions [13]. We can calculate the mean, for prediction,
and variance for confidence level estimation. For continuous
data, we can easily derive that

E(yi) = 〈1>ti〉, Var(yi) = 〈(1>ti)
2〉+

b

a− 1
− E2(yi).

The binary case is nontrivial, because the integration is
not analytical. To overcome this problem, we consider the
marginal distribution of 1>ti. For brevity, we define gi =
1>ti. Then equivalently, we have p(yi|Dt) =

∫
φ
(
(2yi −

1)gi
)
p(gi)dgi. We approximate p(gi) with a Gaussian distri-

bution N
(
gi|E(gi),Var(gi)

)
. This is called moment matching,

because E(gi) and Var(gi) correspond to the first and second
moment of gi. Moment matching has been widely used and
very successful in approximate Bayesian inference, such as
expectation propagation [14]. Now the integration in p(yi|Dt)
is analytical, and we can obtain

E(yi) = p(yi = 1|Dt) ≈ φ(
E(gi)√

1 + Var(gi)
), (23)

Var(yi) = E(yi)− E2(yi). (24)

In applications such as CTR prediction, besides the click
action (i.e., yi), the uncertainty of the (click) probability,
γi = φ(gi), is also highly interesting. Obviously, E(γi) =
E(yi). To calculate the variance, we need to compute 〈γ2i 〉 =∫
φ(gi)

2N
(
gi|E(gi),Var(gi)

)
dgi, which is unfortunately in-

tractable. However, we can use Gauss-Hermite quadrature to
compute this integration very accurately. Then the variance of
the probability is given by Var(γi) = 〈γ2i 〉 − E2(γi).

V. RELATED WORKS

Many excellent works have been proposed for tensor decom-
position, such as [8], [15]–[27]. Among these methods are
quite a few Bayesian models, based on either CP [9] or Tucker
decompositions [28]. For example, Xiong et. al. [15] developed
a Bayesian temporal decomposition model for collaborative
filtering. Zhao et. al. [25] placed an ARD prior over latent
embeddings to determine the rank. Rai et. al. [20] used a
multiplicative Gamma process (MGP) prior to automatically
learn the rank of the embeddings. Hu et. al. [23] used
Dirichlet prior to sample the latent embeddings and zero-
truncated Poisson likelihoods for non-negative binary tensor
decomposition. Schein et. al. [26] placed the Gamma prior
over the embeddings and used the Tucker decomposition
structure for international relation data analysis [27]. These
methods perform batch or stochastic inference algorithms for
pre-collected data, rather than for dynamic, streaming data.

Several incremental or dynamic tensor decomposition ap-
proaches have been developed to adapt to the dynamic growth

Algorithm 1 The proposed streaming algorithm POST (R, v)
1: For continuous data, initialize q(τ) with an uninformative

Gamma distribution, q(τ) = Gam(τ |10−3, 10−3).
2: while A new set of tensor entries St are received do
3: For each brand-new object s at each mode k, initialize

q(uks) = N (uks |mk
s , vI) where mk

s is an R dimensional
random vector.

4: For binary data, introduce latent variables z for the entry
values y, and initialize 〈z〉 with 2y − 1.

5: repeat
6: Update each q∗(ukik) associated with St, i.e., i ∈ St

and 1 ≤ k ≤ K, using (13)(15)(16). Note that for
binary data, we need to remove 〈τ〉 and replace yj
by 〈zj〉 in (15)(16).

7: if Continuous data then
8: Update q∗(τ) using (14)(17)(18).
9: else

10: Update q∗(z) using (21).
11: end if
12: until Convergence or the maximum number of iterations

have finished.
13: Set each q(ukik) = q∗(ukik)(i ∈ St, 1 ≤ k ≤ K). For

continuous data, set q(τ) = q∗(τ).
14: end while
15: return The posteriors of the embedding vectors {q(uks) =
N (uks |µks ,Σk

s)}(1 ≤ k ≤ K) for each object s that have
been seen.

of the tensor [1], [4], [5], [29], [30]. For example, Nion and
Sidiropoulos [4] developed for three-mode tensors adaptive
PARAFAC algorithms to update the decomposition with a
new slice appended in the ‘time’ mode each step. Zhou et
al. [5] proposed an accelerated online CP algorithm to track
the decomposition for N -mode tensors. While the two methods
focus on single-mode increasing data, Song et al. [1] proposed
a streaming decomposition approach, MAST, which allows
for the simultaneous expansion of all the modes. Each time,
MAST uses a CP decomposition structure to replace the entire
tensor so far. When there comes new tensor increments, along
different modes or their combinations, MAST estimates a new
CP decomposition, which jointly fits the observed entry values
in the new tensor increments, and the existing (smaller) CP
structure. Despite the elegance and the success, MAST still
makes strong assumptions on the order of streaming data.
Since the decomposition structure is fixed for the past tensor,
MAST only receives new entries in the incremental portion.
However, in practical applications, it is often possible that
previous unseen entries are observed later. Hence, we proposed
POST to handle streaming entries in arbitrary orders. Besides
CP, several dynamic approaches were proposed based on Tucker
decomposition and/or Higher-order SVD (HoSVD), such as
[31]–[36]. Some of them, e.g., [34], supports the incremental
updates along all the modes, like MAST, rather than a single
mode [35], [36], but do not consider the missing entries.

Recently, a few nonlinear decomposition models were

proposed to capture more complex relationships in tensor
data [37]–[41], based on Bayesian nonparametrics and/or kernel
methods. While powerful, these models usually have much
higher computational costs. The streaming algorithms for these
models remain an open and promising research direction.

VI. EXPERIMENT

To evaluate the proposed algorithm, POST, we conducted
experiments to answer the following questions.
• Q1. How does POST compare with MAST, in the case

that new entries always occur in tensor increments and
increase the full tensor size?

• Q2. How does POST perform, when tensor entries stream
in arbitrary orders, as compared with the traditional batch
decomposition approaches?

• Q3. What does the uncertainty information produced by
POST reveal and how does it potentially benefit practical
applications, such as online advertising?

To answer the first question, we examined POST on
two datasets, and followed [1] to generate dynamic tensor
increments (Section VI-A). To answer the second question,
we examined POST on two large datasets, under completely
random orders of streaming entries (Section VI-B). To answer
the third question, we looked into the means and variances of
the embeddings and the predictions estimated by POST, on a
real-world online advertisement clicks dataset (Section VI-C).

A. Evaluation on Dynamic Tensor Increments

We first examined POST on the following two datasets: (1)
Twitter Topic1, a three-mode (user, expert, topic) tensor, of
size 500×500×20. The experts are referred to the producers of
the high-quality content of 20 topics. Each entry value indicates
whether to recommend some expert of a specific topic to a
particular user. (2) MovieLens2, a three-mode tensor of size
400× 400× 31, describing the three-way (user,movie, week)
interactions. Each entry value represents whether some user
rates a movie in a particular week. Hence, both Twitter Topic
and MovieLens are binary tensors.

We compared with MAST and two static decomposition
approaches, CP-ALS [8] that uses the traditional EM plus
alternating least squares, and TNCP [42] that uses trace
norm regularizations and an Alternating Direction Method
of Multipliers (ADMM) algorithm for optimization. All the
methods were implemented with MATLAB 2016, and we ran
all the algorithms on a single Linux (Ubuntu) server with
Intel(R) i7 CPUs and 24GB memory.

We followed a similar procedure to [1] to conduct the
experiments. For each dataset, we started with a small subtensor,
and produced new entries to increase its size at each step. In
this way, MAST processes the dynamic tensor increments to
performs streaming decomposition. Specifically, for Twitter
Topic, we began with a 50× 50× 20 subtensor, and increased
10 users and 10 experts at each step. For MovieLens, we started

1https://github.com/hanchengge/Helios-PyTen/tree/ma
ster/pyten/data

2https://movielens.org/

with a 40 × 40 × 31 subtensor, and each time increased 10
users and 10 movies. To consider missing entries (which is
common in practice), we randomly chose {50%, 80%, 90%}
entries of the entire tensor as missing for each dataset, and
used the remaining ones to generate the series of the tensor
increments.

We started to run each decomposition method on the initial
subtensor. The warm-start embeddings were given by the
estimation of TNCP, as in [1]. At each step t, POST and
MAST performed dynamic decomposition, upon receiving the
observed entries in the tensor increment. CP-ALS and TNCP
performed static decompositions on this new set of entries
from scratch, where the embeddings for existing tensor objects
were initialized with the previous estimation, and for new
objects random values. Then the missing entries in the current
tensor increment were used for testing, and the area under the
ROC Curve (AUC) was calculated, denoted by AUCt. We then
calculated the running-average AUC as the overall performance
measurement up to step t, RA-AUC = 1

T

∑T
t=1 AUCt.

We varied the rank R, namely, the dimension of embedding
vectors, from {3, 5, 8, 10}. The maximum number of iterations
and the tolerance level were set to 500 and 10−5, respectively,
for all the methods. We followed [1] to set the optimal
parameters for MAST. For our method, POST, we tuned
v, the initial variance of the embeddings (see Algorithm 1),
from {1, 3, 5, 10} through extra validation procedures. For each
particular missing rate and rank setting, we ran all the methods
5 times, where in each run the missing data entries were
resampled to produce different observed entries in each tensor
increment. The average of the RA-AUC was then calculated
for all the methods.

The results at each step, for different choices of ranks
and missing rates, are reported in Figure 1 for Twitter Topic
and Figure 2 for MovieLens. As we can see, POST almost
always outperforms MAST, except on MovieLens when 50%
entries were missing and R was to set to 10 (Figure 2
l), their performance became close at the final stage. In
addition, POST often exhibits better predictive performance
than ALS and TNCP. On Twitter Topic, POST outperforms all
the competing methods in most time. On MovieLens, POST
tends to dominate the prediction accuracy when the missing
rate is high (e.g., Figure 2a-c) or the rank is small (e.g.,
Figure 2a,e and i). The results demonstrate the advantage
of POST using probabilistic/Bayesian frameworks for dynamic
tensor decomposition and predictive posterior distributions for
prediction (Section IV-D).

B. Evaluation on Streaming Tensor Entries in Arbitrary Orders

Next, we examined POST when tensor entries stream in
arbitrary orders. In this scenario, MAST is no longer available,
because the new tensor entries may still belong to the previous
tensor, rather than appear in the tensor increment and increase
the tensor size. We used two large sparse datasets from [38]:
(1) ACC, a continuous tensor which record the three-way
interactions (user, action, resource). ACC was extracted from
the log of a code repository management system. Each entry

0 10 20 30 40 50

Number of slice increments

0.5

0.6

0.7

0.8
R

A
-A

U
C

Twitter Topic (90% Missing, R = 3)

MAST

TNCP

CP-ALS

POST

(a)

0 10 20 30 40 50

Number of slice increments

0.5

0.6

0.7

0.8

R
A

-A
U

C

Twitter Topic (90% Missing, R = 5)

(b)

0 10 20 30 40 50

Number of slice increments

0.55

0.6

0.65

0.7

0.75

0.8

R
A

-A
U

C

Twitter Topic (90% Missing, R = 8)

(c)

0 10 20 30 40 50

Number of slice increments

0.55

0.6

0.65

0.7

0.75

0.8

R
A

-A
U

C

Twitter Topic (90% Missing, R = 10)

(d)

0 10 20 30 40 50

Number of slice increments

0.65

0.7

0.75

0.8

0.85

R
A

-A
U

C

Twitter Topic (80% Missing, R = 3)

MAST

TNCP

CP-ALS

POST

(e)

0 10 20 30 40 50

Number of slice increments

0.65

0.7

0.75

0.8

0.85

R
A

-A
U

C

Twitter Topic (80% Missing, R = 5)

(f)

0 10 20 30 40 50

Number of slice increments

0.65

0.7

0.75

0.8

0.85

R
A

-A
U

C

Twitter Topic (80% Missing, R = 8)

(g)

0 10 20 30 40 50

Number of slice increments

0.6

0.65

0.7

0.75

0.8

0.85

R
A

-A
U

C

Twitter Topic (80% Missing, R = 10)

(h)

0 10 20 30 40 50

Number of slice increments

0.84

0.86

0.88

R
A

-A
U

C

Twitter Topic (50% Missing, R = 3)

MAST

TNCP

CP-ALS

OUR

(i)

0 10 20 30 40 50

Number of slice increments

0.86

0.87

0.88

0.89

0.9

0.91

R
A

-A
U

C

Twitter Topic (50% Missing, R = 5)

(j)

0 10 20 30 40 50

Number of slice increments

0.84

0.86

0.88

0.9

0.92

R
A

-A
U

C

Twitter Topic (50% Missing, R = 8)

(k)

0 10 20 30 40 50

Number of slice increments

0.82

0.84

0.86

0.88

0.9

R
A

-A
U

C

Twitter Topic (50% Missing, R = 10)

(l)
Fig. 1. The running average AUC on Twitter Topic dataset. Each time, 10 user × expert slices were appended. The results were averaged over 5 runs.

0 10 20 30 40

Number of slice increments

0.5

0.55

0.6

0.65

0.7

0.75

R
A

-A
U

C

MovieLens (90% Missing, R = 3)

MAST

TNCP

CP-ALS

POST

(a)

0 10 20 30 40

Number of slice increments

0.5

0.55

0.6

0.65

0.7

0.75

R
A

-A
U

C

MovieLens (90% Missing, R = 5)

(b)

0 10 20 30 40

Number of slice increments

0.5

0.55

0.6

0.65

0.7

0.75

R
A

-A
U

C

MovieLens (90% Missing, R = 8)

(c)

0 10 20 30 40

Number of slice increments

0.5

0.55

0.6

0.65

0.7

0.75

R
A

-A
U

C

MovieLens (90% Missing, R = 10)

(d)

0 10 20 30 40

Number of slice increments

0.55

0.6

0.65

0.7

0.75

0.8

R
A

-A
U

C

MovieLens (80% Missing, R = 3)

MAST

TNCP

CP-ALS

POST

(e)

0 10 20 30 40

Number of slice increments

0.55

0.6

0.65

0.7

0.75

0.8

R
A

-A
U

C

MovieLens (80% Missing, R = 5)

(f)

0 10 20 30 40

Number of slice increments

0.55

0.6

0.65

0.7

0.75

0.8

R
A

-A
U

C

MovieLens (80% Missing, R = 8)

(g)

0 10 20 30 40

Number of slice increments

0.55

0.6

0.65

0.7

0.75

0.8

R
A

-A
U

C

MovieLens (80% Missing, R = 10)

(h)

0 10 20 30 40

Number of slice increments

0.7

0.75

0.8

R
A

-A
U

C

MovieLens (50% Missing, R = 3)

MAST

TNCP

CP-ALS

POST

(i)

0 10 20 30 40

Number of slice increments

0.65

0.7

0.75

0.8

0.85

R
A

-A
U

C

MovieLens (50% Missing, R = 5)

(j)

0 10 20 30 40

Number of slice increments

0.7

0.75

0.8

0.85

0.9

R
A

-A
U

C

MovieLens (50% Missing, R = 8)

(k)

0 10 20 30 40

Number of slice increments

0.65

0.7

0.75

0.8

0.85

0.9

R
A

-A
U

C

MovieLens (50% Missing, R = 10)

(l)
Fig. 2. The running average AUC on MovieLen data. Each time, 10 user ×movie slices were appended. The results were averaged over 5 runs.

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

0.15

0.2

0.25

0.3

0.35

0.4
A

V
G

-M
S

E
Prediction on ACC (R=3)

POST

CP-WOPT

(a)

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

350

550

750

900

S
e
c
o
n
d
s

Runing time on ACC (R=3)

POST

(b)

1 5 10 50 100 1K 5k 10k

Streaming Batch Size

0.75

0.8

0.85

A
V

G
-A

U
C

Prediction on DBLP (R=3)

POST

CP-WOPT

(c)

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

100

200

300

350

S
e
c
o
n
d
s

Running time on DBLP (R=3)

POST

(d)

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

0.15

0.2

0.25

0.3

A
V

G
-M

S
E

Prediction on ACC (R=5)

POST

CP-WOPT

(e)

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

500

1000

1500

2000

2500

S
e
c
o
n
d
s

Runing time on ACC (R=5)

POST

(f)

1 5 10 50 100 1K 5k 10k

Streaming Batch Size

0.75

0.8

0.85

0.88

A
V

G
-A

U
C

Prediction on DBLP (R=5)

POST

CP-WOPT

(g)

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

100

300

500

700

S
e
c
o
n
d
s

Running time on DBLP (R=5)

POST

(h)

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

0.15

0.2

0.25

0.3

0.35

A
V

G
-M

S
E

Prediction on ACC (R=8)

POST

CP-WOPT

(i)

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

900

3000

5000

7000

S
e
c
o
n
d
s

Runing time on ACC (R=8)

POST

(j)

1 5 10 50 100 1K 5k 10k

Streaming Batch Size

0.75

0.8

0.85

0.88

A
V

G
-A

U
C

Prediction on DBLP (R=8)

POST

CP-WOPT

(k)

1 5 10 50 100 1k 5k 10k

Streaming Batch Size

100

500

1000

1500

S
e
c
o
n
d
s

Running time on DBLP (R=8)

POST

(l)

Fig. 3. The predictive performance and running time on ACC and DBLP. The results are averaged over 5 runs.

value is the logarithm of the frequency of a user accessing (e.g.,
downloading or uploading) some particular file (i.e., resources).
The full size is 3K × 150 × 30K, and %0.009 entries are
nonzero. (2) DBLP, a binary tensor describing the three-way
(author, conference, keyword) bibliography relationships, of
size 3K × 150× 30K, contains %0.001 nonzero entries.

We followed [38] to sample the training and test sets from
ACC and DBLP. For each dataset, we sampled 80% nonzero
entries and randomly sampled the same number of zero entries
to obtain a balanced training set. Then 50 test sets were sampled
from the remaining entries, each of which consisted of 200
nonzero and 1800 zero elements. In so doing, the test will not
be dominated by the extremely large portion of zero entries.

To examine POST, we randomly shuffled the training entries,
and partition the entries into many small batches. These
batches were then fed to POST, one by one. After POST
finished processing all the batches, we evaluated the predictive
performance of the learned embeddings on the 50 test sets. We
calculated the mean square error (MSE) and AUC for each
test set of ACC and DBLP, respectively. We then averaged the
results over the 50 test sets. We varied the size of the batches
from {1, 5, 10, 50, 100, 1K, 5K, 10K}. We compared with CP-
WOPT [3], a scalable static CP decomposition algorithm
based on gradient-based optimization algorithms. We used the
implementation from the MATLAB Tensor Toolbox developed
by Bader et. al. [43], [44]. We used the default settings of

CP-WOPT, and set v = 1 for POST (see Algorithm 1). We
varied the rank R from {3, 5, 8}. For each setting of R, we
conducted 5 runs, and in each run, we re-shuffled the training
entries randomly, and hence produced the tensor entry stream
in a totally different order. For a fair comparison, in each
run, we also used the same initializations for the embeddings
of CP-WOPT and the means of the embedding posteriors of
POST (i.e., {mk

s}, see Algorithm 1), which were sampled
element-wisely from a uniform distribution in [0, 1].

The prediction accuracy and the running time of POST are
reported in Figure 3. As we can see, POST always shows
superior or comparable predictive performance to CP-WOPT,
except when the batch size was set to 10K, and R = 3 on
ACC (Figure 3 a). Note that even when POST processes one
tensor entry each time, it still obtains smaller MSE on ACC
and comparable AUC on DBLP, under different rank settings.
In most cases, the prediction accuracy of POST was improved
when we used bigger streaming batches (except that on ACC,
when the size increased from 1K to 5K and from 5K to
10K, the performance dropped, and we conjecture that POST
arrived at inferior local maximas in processing these batches).
In terms of the running time, we can consistently observe a
trade-off between the size and number of the streaming batches.
When the batch size is smaller, it takes less time for POST to
converge for each batch; however, POST will need to process
more batches, and the total running time could be longer.

0 2 4 6

Posterior Variance 10
-3

10
0

10
2

10
3

10
5

10
7

N
u
m

b
e
r

o
f
O

b
s
e
rv

a
ti
o
n
s

Embeddings for Banner Pos

(a)

0 0.2 0.4 0.6 0.8 1

Posterior Variance

10
0

10
2

10
3

10
5

10
7

N
u
m

b
e
r

o
f
O

b
s
e
rv

a
ti
o
n
s

Embeddings for Site

(b)

0 0.2 0.4 0.6 0.8 1

Posterior Variance

10
0

10
2

10
3

10
5

10
7

N
u
m

b
e
r

o
f
O

b
s
e
rv

a
ti
o
n
s

Embeddings for App

(c)

0 0.2 0.4 0.6 0.8 1

Posterior Variance

10
0

10
2

10
3

10
5

N
u
m

b
e
r

o
f
O

b
s
e
rv

a
ti
o
n
s

Embeddings for Device Model

(d)
Fig. 4. The posterior variances of the embeddings (R = 1) vs. the number of observations for the corresponding objects in each mode.

(a)

0 0.25 0.5 0.8 1

Posterior Mean

0

0.05

0.1

0.15

0.2
P

o
s
te

ri
o
r

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n Click Probability

(b)
Fig. 5. The uncertainty of the click probabilities for 100K test entries.

C. Uncertainty Investigation

Finally, we looked into the uncertainty information provided
by POST, and connected them to practical applications. To
this end, we used the data from a Kaggle contest for click-
through-rate (CTR) prediction in online advertising3, sponsored
by Avazu Inc. The data record the stream of ads impressions
from the log of an online advertising system. We used four
categorical features from the impressions, to build a four-mode
binary tensor (banner_pos, site_id, app_id, device_model).
From each impression, we extracted an observed tensor
entry and its value (i.e., click or non-click). These entries
were sent to POST one by one, so that POST can perform
streaming decomposition. After the first 400M impressions
were processed, we then extracted 100K test entries from
the subsequent impressions. We skipped the impressions that
associate with fresh objects which were never seen before. The
tensor size finally increased to 7×2854×4114×6061. Out of
the 400M impressions are 695K clicks (17%). We set v = 1.
For better visualization, we set R = 1, so that the covariance
of the embeddings will become a scalar. The AUC on the test
entries is 0.74. We also ran CP-WOPT, which turned out to be
dreadful, 0.49. We conjectured that it is because CP-WOPT
converged too early and was trapped in poor local minimums.

We first investigated the (posterior) variances of the embed-
dings for the objects in each mode. As shown in Figure 4, the
variances for the objects are strongly correlated to the number
of observed entries that contain these objects (i.e., specific
banners, sites, apps and device models). The more frequent
an object was observed in past training entries, the smaller
the posterior variance of its embedding. This is reasonable,
because more observed data will reduce the uncertainty, and
lead to an estimation with high confidence levels. When very
few observations are found, the variance will approach to 1, the

3www.kaggle.com/c/avazu-ctr-prediction/data

initial variance we set for all the embeddings. This is because
very few updates were made for the corresponding embeddings
during the streaming decomposition.

Second, we looked into the uncertainty of the click probabil-
ity estimation, i.e., CTR. Figure 5 a shows the distribution of the
posterior standard deviations (STDs) for the click probabilities
of the 100K test entries. Most of the click probabilities have
small STDs (86% of them are smaller than 0.01), implying high
confidence levels. We might directly use these probabilities
for online ads bidding and display. However, the STDs of the
click probabilities for 1291 test entries are over 0.05, which
are relatively big and not ignorable. For those entries, we might
incorporate some randomly selected ads and combine with the
deterministic ranking results to increase the diversity of ads
displaying. This is actually a trade-off between the exploration
and exploitation — we want to show more diverse types of
ads to attract (new) users, but we do not want to miss those
ads which are known to be good [45], [46]. Moreover, we can
utilize these uncertainty information to improve the click-per-
cost (CPC) performance of advertising platforms: if a campaign
can spend all the budget, we can decrease the bid price for
CTR predictions with high STDs to lower the risk of wasting
the budget on non-clicks. On the other hand, we can increase
the bid price for higher CTR predictions with smaller STDs so
as to spend more budget but carefully control the CPC. More
principled approaches can be further developed to integrate the
uncertainty to manage the risk of bidding, such as [47].

We also contrasted the posterior means of the click prob-
abilities with their STDs, as shown in Figure 5 b. First, we
can see that most of the means of the click probabilities are
less than 0.5. This is reasonable, because the ads impressions
are known to be very biased — most of the ads impressions
will not incur any click. In our data, only 17% impressions
have clicks. Then we found that very high or very low click
probabilities (e.g., the posterior means are greater than 0.8 or
close to 0) have very small STDs (i.e., close to 0). That means
if we predict a click will occur/not occur in a very large chance,
our prediction is confident simultaneously. However, for the
medium probabilities, say, between 0.25 and 0.7, their STDs
vary much. This might be explained in two aspects. When the
objects have little history of impressions, the click probabilities
will tend to be closer to 0.5, and have big STDs (see (23), the
denominator is large due to the large variance of gi = 1>ti).
However, when the objects have been observed many times,
the prediction will be much more confident, i.e., with STDs

close to 0. The smaller click probabilities mainly arise from
more balanced click/non-click impressions associated with the
objects.

VII. CONCLUSION

We have developed POST, a streaming probabilistic tensor
decomposition algorithm. POST can process tensor entries that
stream in arbitrary orders, and provide real-time estimation
and uncertainty quantification. The predictive performance
on real-world datasets are encouraging and the uncertainty
information is useful and could potentially benefit practical
tasks. In the future work, we will further investigate POST in-
depth for various applications, including (but not being limited
to) knowledge discovery, prediction, decision making, etc.

REFERENCES

[1] Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu, “Multi-aspect
streaming tensor completion,” in KDD, 2017.

[2] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[3] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Morup, “Scalable
tensor factorizations for incomplete data,” Chemometrics and Intelligent
Laboratory Systems, vol. 106, no. 1, pp. 41–56, March 2011.

[4] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the
parafac decomposition of a third-order tensor,” IEEE Transactions on
Signal Processing, vol. 57, no. 6, pp. 2299–2310, 2009.

[5] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating
online CP decompositions for higher order tensors,” in KDD, 2016.

[6] H. B. McMahan, G. Holt et al., “Ad click prediction: a view from the
trenches,” in KDD, 2013.

[7] Y. Shi, X. Zhao, J. Wang, M. Larson, and A. Hanjalic, “Adaptive
diversification of recommendation results via latent factor portfolio,”
in SIGIR, 2012.

[8] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Morup, “Scalable
tensor factorizations for incomplete data,” Chemometrics and Intelligent
Laboratory Systems, vol. 106, no. 1, pp. 41–56, 2011.

[9] R. A. Harshman, “Foundations of the PARAFAC procedure: Model
and conditions for an”explanatory”multi-mode factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[10] T. G. Kolda, “Multilinear operators for higher-order decompositions.”
Sandia National Laboratories, Tech. Rep., 2006.

[11] T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan,
“Streaming variational Bayes,” in NIPS, 2013.

[12] M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponen-
tial families, and variational inference,” Foundations and Trends® in
Machine Learning, vol. 1, no. 1–2, pp. 1–305, 2008.

[13] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian
model averaging: a tutorial,” Statistical science, pp. 382–401, 1999.

[14] T. P. Minka, “Expectation propagation for approximate Bayesian infer-
ence,” in UAI, 2001.

[15] L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell,
“Temporal collaborative filtering with bayesian probabilistic tensor
factorization,” in SDM, 2010.

[16] I. Sutskever, J. B. Tenenbaum, and R. R. Salakhutdinov, “Modelling
relational data using bayesian clustered tensor factorization,” in NIPS,
2009.

[17] P. Hoff, “Hierarchical multilinear models for multiway data,”
Computational Statistics & Data Analysis, 2011.

[18] U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, “Gigatensor:
Scaling tensor analysis up by 100 times—algorithms and discoveries,”
in KDD, 2012.

[19] Y. Yang and D. Dunson, “Bayesian conditional tensor factorizations for
high-dimensional classification,” Journal of the Royal Statistical Society
B, revision submitted, 2013.

[20] P. Rai, Y. Wang, S. Guo, G. Chen, D. Dunson, and L. Carin, “Scalable
Bayesian low-rank decomposition of incomplete multiway tensors,” in
ICML, 2014.

[21] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization of
tensors,” in NIPS, 2014.

[22] C. Hu, P. Rai, C. Chen, M. Harding, and L. Carin, “Scalable bayesian
non-negative tensor factorization for massive count data,” in ECML
PKDD, 2015.

[23] C. Hu, P. Rai, and L. Carin, “Zero-truncated poisson tensor factorization
for massive binary tensors,” in UAI, 2015.

[24] P. Rai, C. Hu, M. Harding, and L. Carin, “Scalable probabilistic tensor
factorization for binary and count data,” in IJCAI, 2015.

[25] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of in-
complete tensors with automatic rank determination,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1751–
1763, 2015.

[26] A. Schein, M. Zhou, D. M. Blei, and H. Wallach, “Bayesian Poisson
Tucker decomposition for learning the structure of international relations,”
in ICML, 2016.

[27] A. Schein, J. Paisley, D. M. Blei, and H. Wallach, “Bayesian Poisson
tensor factorization for inferring multilateral relations from sparse dyadic
event counts,” in KDD, 2015.

[28] L. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, pp. 279–311, 1966.

[29] H. Kasai, “Online low-rank tensor subspace tracking from incomplete
data by cp decomposition using recursive least squares,” in ICASSP,
2016.

[30] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning
and imputation for streaming big data matrices and tensors,” IEEE
Transactions on Signal Processing, vol. 63, no. 10, pp. 2663–2677, 2015.

[31] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: dynamic
tensor analysis,” in KDD, 2006.

[32] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incre-
mental tensor analysis: Theory and applications,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 2, no. 3, p. 11, 2008.

[33] R. Yu, D. Cheng, and Y. Liu, “Accelerated online low rank tensor learning
for multivariate spatiotemporal streams,” in ICML, 2015.

[34] X. Ma, D. Schonfeld, and A. Khokhar, “Dynamic updating and
downdating matrix svd and tensor hosvd for adaptive indexing and
retrieval of motion trajectories,” in ICASSP, 2009.

[35] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, and Z. Zhang, “Incremental
tensor subspace learning and its applications to foreground segmentation
and tracking,” International Journal of Computer Vision, vol. 91, no. 3,
pp. 303–327, 2011.

[36] A. Sobral, C. G. Baker, T. Bouwmans, and E.-h. Zahzah, “Incremental
and multi-feature tensor subspace learning applied for background
modeling and subtraction,” in International Conference Image Analysis
and Recognition. Springer, 2014, pp. 94–103.

[37] Z. Xu, F. Yan, and Y. Qi, “Infinite Tucker decomposition: Nonparametric
Bayesian models for multiway data analysis,” in ICML, 2012.

[38] S. Zhe, K. Zhang, P. Wang, K.-c. Lee, Z. Xu, Y. Qi, and Z. Ghahramani,
“Distributed flexible nonlinear tensor factorization,” in NIPS, 2016.

[39] S. Zhe, Y. Qi, Y. Park, Z. Xu, I. Molloy, and S. Chari, “Dintucker:
Scaling up Gaussian process models on large multidimensional arrays,”
in AAAI, 2016.

[40] S. Zhe, Z. Xu, X. Chu, Y. Qi, and Y. Park, “Scalable nonparametric
multiway data analysis,” in AISTATS, 2015.

[41] L. He, C.-T. Lu, G. Ma, S. Wang, L. Shen, S. Y. Philip, and A. B. Ragin,
“Kernelized support tensor machines,” in ICML, 2017.

[42] Y. Liu, F. Shang, L. Jiao, J. Cheng, and H. Cheng, “Trace norm regularized
candecomp/parafac decomposition with missing data,” IEEE Transactions
on Cybernetics, vol. 45, no. 11, pp. 2437–2448, 2015.

[43] B. W. Bader, T. G. Kolda et al., “Matlab tensor toolbox version 2.6,”
Available online, February 2015.

[44] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with
sparse and factored tensors,” SIAM Journal on Scientific Computing,
vol. 30, no. 1, pp. 205–231, December 2007.

[45] W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin, “Exploitation
and exploration in a performance based contextual advertising system,”
in KDD, 2010.

[46] S.-M. Li, M. Mahdian, and R. P. McAfee, “Value of learning in sponsored
search auctions,” in International Workshop on Internet and Network
Economics. Springer, 2010, pp. 294–305.

[47] H. Zhang, W. Zhang, Y. Rong, K. Ren, W. Li, and J. Wang, “Managing
risk of bidding in display advertising,” in WSDM, 2017, pp. 581–590.

