
Probabilistic Neural-Kernel Tensor Decomposition
Conor Tillinghast†, Shikai Fang†, Kai Zhang‡, Shandian Zhe†

University of Utah†, Temple University‡

ctilling@math.utah.edu†, shikai@cs.utah.edu†, zhang.kai@temple.edu‡, zhe@cs.utah.edu†

Abstract—Tensor decomposition is a fundamental framework
to model and analyze multiway data, which are ubiquitous in real-
world applications. A critical challenge of tensor decomposition
is to capture a variety of complex relationships/interactions
while avoiding overfitting the data that are usually very sparse.
Although numerous tensor decomposition methods have been
proposed, they are mostly based on a multilinear form and
hence are incapable of estimating more complex, nonlinear
relationships.

To address the challenge, we propose POND, PrObabilistic
Neural-kernel tensor Decomposition that unifies the self-
adaptation of Bayes nonparametric function learning and the ex-
pressive power of neural networks. POND uses Gaussian processes
(GPs) to model the hidden relationships and can automatically
detect their complexity in tensors, preventing both underfitting
and overfitting. POND then incorporates convolutional neural
networks to construct the GP kernel to greatly promote the
capability of estimating highly nonlinear relationships. To scale
POND to large data, we use the sparse variational GP framework
and reparameterization trick to develop an efficient stochastic
variational learning algorithm. On both synthetic and real-world
benchmark datasets, POND often exhibits better predictive perfor-
mance than the state-of-the-art nonlinear tensor decomposition
methods. In addition, as a Bayesian approach, POND provides
the posterior distribution of the latent factors, and hence can
conveniently quantify their uncertainty and the confidence levels
for predictions.

Index Terms—tensor decomposition, neural networks, kernel,
Bayesian nonparametrics

I. INTRODUCTION

Multiway data consist of interactions among multiple enti-
ties/nodes and are ubiquitous in real-world applications. These
data are naturally represented by tensors. For example, from
online shopping history logs, we can extract a four-mode tensor
(user, item, shopping site, time). As an important tool for
multiway data analysis, tensor decomposition estimates a set
of latent factors to represent the nodes in each mode and the
relationship between the nodes and entry values. With the
factor representations, we can uncover the hidden structures
within the nodes, e.g., communities and outliers, and make
predictions for missing entries or downstream tasks.

However, tensor decomposition can be quite challenging.
First, practical tensor data are usually extremely sparse — the
majority of the entry values are not observed. Second, due
to the diversity and complexity of real-world applications,
among tensor nodes can be a variety of complicated, even
highly nonlinear relationships and interactions. While numerous
tensor decomposition algorithms have been proposed [1]–
[5], they mainly rely on a multilinear decomposition form,
and are inadequate in capturing more complex, nonlinear

relationships. To overcome this limitation, recently a few
Bayesian nonparametric decomposition methods have been
proposed [6]–[9] and these methods can automatically detect
the nonlinearity of the hidden relationships in data. However,
they are limited by shallow and oversimplified kernels (e.g.,
RBF), and are still not powerful enough to estimate exceedingly
complicated relationships. One can consider further building
a very expressive, deep neural network (DNN) for tensor
decomposition. However, due to the extreme sparsity of the
tensor data, a DNN with a massive number of parameters
is likely to severely overfit the data and lead to suboptimal
results [10].

To address these challenges, we propose POND, a proba-
bilistic neural-kernel tensor decomposition model that inherits
both the self-adaption of nonparametric Bayesian function
learning to avoid overfitting and the expressive power of
neural networks to capture arbitrarily complex relationships
when needed. Specifically, we build POND with a Gaussian
process (GP) [11] that models the relationship between the
latent factors and entry values as a latent function. As a
nonparametric function prior, GP never imposes a parametric
form for the target function; instead GP only introduces a degree
of smoothness via the definition of the covariance (or kernel)
function and hence can automatically infer the complexity of the
function (e.g., linear and nonlinear) from data, preventing both
underfitting and overfitting. Next, we use convolutional neural
networks to construct a deep kernel for the GP modeling, which
greatly improves upon the commonly used shallow kernels (e.g.,
RBF) in the expressiveness and is powerful enough to estimate
arbitrarily complicated relationships in data. Finally, to deal
with large-scale tensor data, we combine the variational sparse
GP framework [12] and the reparameterization trick [13] to
develop an efficient, stochastic variational learning algorithm.
Rather than point estimations, the algorithm produces the
posterior distribution of the latent factors, based on which
we can conveniently quantify the uncertainty of the factors and
confidence levels for predictions, e.g., missing entry values.

For evaluation, we compared POND with state-of-the-art
multilinear and nonlinear tensor decomposition approaches. On
small real data with only a few observations and synthetic data
with simple multilinear relationships, POND effectively adapted
to the actual data complexity and avoided overfitting the data
(with over-complex estimations of the relationships). As a
result, POND greatly outperforms the state-of-the-art nonlinear
decomposition method, CoSTco [10] that is purely based
on convolutional neural networks plus dense layers. We then
examined all the methods on four real-world large, sparse,

and complex datasets. In almost all the cases, POND improves
upon the existing nonparametric decomposition methods with
shallow kernels by a large margin, and significantly outper-
forms the other competing approaches in prediction accuracy.
Finally, we applied POND in click-through-rate prediction for
online advertising. We investigated the uncertainty information
provided by POND. We showed the rational and discussed
the potential applications, such as improving the display of
advertisements and customer experience.

II. PRELIMINARIES
A. Tensor Decomposition

Let us first introduce the notation and background knowledge.
In this paper, we denote scalars by lowercase letters (e.g., u) and
occasionally uppercase letters, vectors by boldface lowercase
letters (e.g.,u), and matrices by boldface uppercase letters
(e.g.,U). We denote a K-mode tensor by Y ∈ Rd1×...×dK .
Each mode k consists of dk entities or nodes (e.g., customers).
We index each entry with a tuple i = (i1, . . . , iK) where
ik is the index of the node in mode k (1 ≤ k ≤ K). The
entry value is denoted by yi. We can flatten the tensor Y
into a vector, which we denote by vec(Y). Each entry i =
(i1, . . . , iK) in Y is then mapped to the element at position
j = iK +

∑K−1
t=1 (it − 1)

∏K
k=t+1 dk of vec(Y).

To conduct tensor decomposition, we first introduce a set
of latent factors to represent the nodes in each tensor mode.
Specifically, each node j in mode k is represented by ukj ,
an rk dimensional vector that consists of rk latent factors.
We can then stack all the factors in mode k to construct a
dk × rk factor matrix Uk = [uk1 , . . . ,u

k
dk

]>. We aim to use
the K factor matrices U = {U1, . . . ,UK} to reconstruct the
observed tensor Y .

A classical method is Tucker decomposition [1], which
assumes

Y ≈ W ×1 U1 ×2 . . .×K UK , (1)

where W ∈ Rr1×...×rK is a parametric (core) tensor and
×k is the mode-k tensor matrix product [14]. The result
of W ×k Uk is a tensor of size r1 × . . . × rk−1 × dk ×
rk+1 × . . . × rK . The element-wise calculation is done by
(W ×k Uk)i1...ik−1jik+1...iK =

∑rk
ik=1 wi1...iKu

k
jik

.
If we set all rk = R and restrict W to be diagonal,

Tucker decomposition becomes CANDECOMP/PARAFAC
(CP) decomposition [2]. Denote the diagonal elements of W
by λ = [λ1, . . . , λR]>, we can write the CP decomposition as

vec(Y) ≈
R∑
r=1

λr ·U1(:, r)⊗ . . .⊗UK(:, r), (2)

where ⊗ is the Kronecker product and Uk(:, r) is the r-th
column of Uk (1 ≤ k ≤ K). The element-wise decomposition
is then given by

yi ≈
R∑
r=1

λr

K∏
k=1

ukikr = λ>(u1
i1 ◦ . . . ◦ uKiK), (3)

where ◦ is the Hadamard product that performs element-wise
multiplication. To estimate the latent factors, Tucker and CP

decomposition usually minimize a mean squared reconstruction
error.

While there have been proposed many other tensor decom-
position approaches, e.g., [3]–[5], most of them are inherently
based on the Tucker or CP decomposition forms ((1) and
(2)). However, since both forms are mutilinear functions of
the latent factors U , they are incapable of estimating more
complex, nonlinear relationships.

B. Nonparametric Function Learning

Many applications demand that we learn a function (map-
ping) from the observed input and output data. Gaussian process
(GP) [11] is a powerful Bayesian nonparametric function
learning model, which is not restricted by any specific function
form and can self-adapt to the complexity (e.g., linear or
nonlinear) of the function hidden in the data, hence preventing
both underfitting and overfitting. Specifically, suppose we
are given a set of training inputs and outputs, D = (X,y)
where X = [x1, . . . ,xN]> and y = [y1, . . . , yN]>. To learn
the underlying function f(·), we first place a GP prior over
the function, f ∼ GP(m(·), k(·, ·)) where m(·) is the mean
function, usually set to 0, and k(·, ·) is the covariance (or
kernel) function. That is, each function value is considered
as a random variable and the collection of all the values of
f(·) (at all the possible inputs in the domain) are (jointly)
sampled from a Gaussian process. Note that a random process
can consist of infinitely many random variables. According
to the definition of GP, any finite set of random variables
in the process follow a multivariate Gaussian distribution.
Therefore, the function values at the training inputs X, namely,
f = [f(x1), . . . , f(xN)]> has a multivariate Gaussian prior
distribution,

p(f |X) = N (f |0,K) (4)

where K is an N × N kernel matrix on X — [K]ij =
k(xi,xj). A commonly used kernel function is the RBF
kernel, kRBF(xi,xj) = exp(− 1

η‖xi − xj‖2) where η is
the kernel parameter. Given the function values f , we then
sample the observed outputs y from a noise model. For
continuous observations, we can use a Gaussian noise model,
p(y|f) = N (y|f , τ−1I) where τ is the inverse variance of
the noise. We can marginalize out f to obtain the marginal
likelihood,

p(y|X, τ) = N (y|0,K + τ−1I). (5)

To learn the GP model, we can maximize the likelihood to
estimate the kernel parameters and the inverse variance τ .
Given a test input x∗, since the function value f(x∗) and the
training outputs y also jointly follow a multivariate Gaussian
distribution, the posterior of f(x∗) is a conditional Gaussian,

p
(
f(x∗)|x∗,X,y

)
= N

(
f(x∗)|µ∗, v∗

)
, (6)

where µ∗ = k>∗ (K + τ−1I)−1y, v∗ = k(x∗,x∗) − k>∗ (K +
τ−1I)−1k∗ and k∗ = [k(x∗,x1), · · · , k(x∗,xN)]>.

We can see that GP never assumes a parametric form of the
target function; instead, it uses the kernel function k(·, ·) to

induce a degree of smoothness, namely, how close the function
values are according to the similarity of their inputs. This is
reflected in the correlation (covariance) matrix in the joint
distribution (4) and (5). Therefore, GP can automatically adapt
to the complexity of the function in the data. In addition, the
posterior distribution of the function outputs are Gaussian,
which is nice and convenient for uncertainty quantification.

III. MODEL

Tensor data can contain a variety of relationships due to the
diversity of real-world applications. These relationships can
be relatively simple (say, multilinear) to exceedingly complex.
Despite the conciseness of the Tucker/CP based decomposition
methods, they are not flexible enough to identify nonlinear
relationships in data. On the other hand, tensor data are typically
extremely sparse. Most entries are unobserved and unknown.
If we use a complicated, parametric model, such as densely
connected neural networks, the model can easily overfit the data
and result in inferior performance. To address these challenges,
we hybridize Bayesian nonparametric tensor decomposition
and neural network kernels. In this way, our model can (1) self-
adapt to the complexity of the data, avoiding both overfitting
and underfitting, and (2) enjoy the expressive power of the
neural networks, being capable of capturing very complicated
relationships when present in data.

A. Nonparametric Tensor Decomposition

First, to automatically capture the complexity of the rela-
tionship in tensors, we will use the nonparametric function
learning model, i.e., Gaussian process. Specifically, we consider
the relationship between the latent factors and entry values as
an unknown function f : R

∑
k rk → R. For each entry i, we

have yi = f(xi), where the input xi = [(u1
i1

)>, . . . , (uKiK)>]>

consist of all the latent factors associated with entry i. We
then place a GP prior over f(·). Given the collection of the
observed tensor entries, S = {i1, . . . , iN}, the function values
fS = [f(xi1), . . . , f(xiN)]> follow a multivariate Gaussian
distribution,

p(fS |U) = N (fS |0,KSS) (7)

where KSS is the kernel matrix of the N inputs constructed
from the latent factors U , and each element [KSS]m,n =
k(xim ,xin) is a covariance (kernel) function of the corre-
sponding input vectors. Given the latent function values f ,
we then use a noise model to generate the observed entry
values yS = [yi1 , . . . yiN]>. In this paper, we mainly focus
on continuous values and hence we use the Gaussian noise
model, p(yS |fS) = N (yS |fS , τ−1I) where τ is the inverse
noise variance. It is straightforward to modify our model and
learning algorithm to support other types of data, e.g., binary
tensors. We assign a standard normal prior over the latent
factors. The joint probability of our model is given by

p(yS , fS ,U|τ) =

K∏
k=1

dk∏
j=1

N (ukj |0, I)

· N (fS |0,KSS)N (yS |fS , τ−1I). (8)

Note that a major difference from the standard GP (see Section
II-B) is that the inputs in our model are unknown latent factors
and need to be jointly estimated with the kernel parameters
and inverse noise variance. Therefore, our nonparametric
decomposition is essentially a latent-input GP model.

B. Convolutional Neural Network Kernels
The nonparametric decomposition enables a great flexibility

in capturing different types of relationships in data, e.g., linear,
multilinear and nonlinear; its self-adaption can effectively
avoid underfitting and overfitting the data. However, the
expressiveness of our nonparametric decomposition can be
severely limited by the commonly used shallow kernels,
such as RBF. These kernels make oversimplified assumptions
about the function smoothness (e.g., RBF kernel assumes the
function is infinitely differentiable) and can disable our model
from learning highly complicated functions/relationships (when
needed). To overcome this limitation, we use convolutional
neural networks to construct a much more expressive kernel
so as to accommodate arbitrarily complex functions.

Specifically, in our new kernel, we first feed every input
into a convolutional neural network to perform a nonlinear
feature transformation, and then use the output of the network
(i.e., transformed features) to compute the shallow kernel, e.g.,
RBF. For each entry i, the input xi has

∑K
k=1 rk dimensions,

obtained by concatenating the latent factors in each mode
associated with i. To perform convolution, we first organize
xi into an R × K matrix Xi, where R = max(r1, . . . , rK).
Each column k consists of the associated factors in mode k,
namely, ukik , appended with extra zeros if rk < R. In the
first layer, we use C channels of square filters, each of which
is 2 × 2 or 3 × 3. In this way, we extract and integrate the
neighbouring information in Xi. We add zero paddings to
maintain the original size of the input matrix. Therefor, the
output of the first layer is a C ×R×K tensor. In the second
layer, we use C channels of R × 1 filters. In this way, we
aggregate the information along different modes and the output
is C × 1×K. In the third layer, we apply one 1×K filter to
aggregate the information across the modes. Finally, we obtain
a C dimensional feature vector. We use this vector to compute
the RBF kernel function. After each convolution, we add a
bias term and apply a nonlinear activation function. In our
experiments, we chose tanh(·) due to its excellent performance.
The convolution process in our neural kernel is summarized
as follows:

X (conv1)
i = σ

(
Conv(φ1,Xi) + β1

)
∈ RC×R×K ,

X (conv2)
i = σ

(
Conv(φ2,X (conv1)

i) + β2
)
∈ RC×1×K ,

X (conv3)
i = σ

(
Conv(φ3,X (conv2)

i) + β3
)
∈ RC×1×1

where σ(·) is the nonlinear activation function, φ1, φ2 and
φ3 are convolutional filters, and β1, β2 and β3 are bias terms.
For any two entries i and j, we apply the above procedure to
obtain X conv3

i and X conv3
j , and then compute the kernel by

k(xi,xj) = exp
(
−
‖vec(X conv3

i)− vec(X conv3
j)‖2

η

)
. (9)

We use (9) as the kernel function to construct KSS in our
nonparametric tensor decomposition model (8). In this way,
we unify the self-adaption of nonparametric function learning
and the expressive power of neural networks.

IV. ALGORITHM

We now present our model estimation algorithm. Given
the observed tensor entries, we aim to estimate the posterior
distribution of the latent factors U , which can be very useful for
uncertainty quantification. Note that in practice the activities
or degrees of the nodes/entities in each mode can vary much.
Those popular or active nodes (e.g., hub nodes) appear in many
observed entries, and hence their factor estimations are much
more reliable/confident than inactive nodes only observed in
a few entries. These uncertainties in turn influence/determine
the confidence levels of missing value predictions and of
other downstream tasks, such as in online advertising and
recommendation.

However, the exact inference of our model is infeasible.
First, the latent factors are coupled in complex neural kernels
and the posterior distribution does not have any closed form.
Second, the joint probability in (8) requires us to calculate
the N × N covariance matrix KSS and its inverse; when
N (#entries) is large, the computation is prohibitively costly
(O(N3) time complexity). To address these issues, we develop
an efficient stochastic variational inference algorithm that
provides analytical, approximate posterior estimations and
scales up to a large number of observed entries.

A. Decomposed Variational Model Evidence Lower Bound

Specifically, we first use the sparse variational GP frame-
work [12] to develop a tractable variational model evidence
lower bound (ELBO) that dispenses with the huge covariance
matrix and is fully additive over the tensor entries. We then
develop an efficient stochastic optimize algorithm to maximize
the ELBO to estimate the approximate posteriors and the
other parameters. To this end, we first introduce a set of M
pseudo inputs, Z = [z1, . . . zM]> where M � N and each zm
(1 ≤ m ≤ M) has the same length as each xin(1 ≤ n ≤ N).
We denote the values of f(·) at Z by b = [f(z1), . . . , f(zM)]>,
which we refer to as the pseudo outputs. We then augment our
decomposition model by jointly sampling fS and b. Due to
the GP prior over f(·), fS and b jointly follow a multivariate
Gaussian distribution,

p(fS ,b) = N
([

fS
b

]∣∣∣∣[0
0

]
,

[
KSS KSZ

KZS KZZ

])
(10)

where KZZ is the kernel matrix on Z, each [KZZ]mt =
k(zm, zt), KSZ is the cross kernel matrix between XS and Z,
each [KSZ]nm = k(xin , zm), and KZS = K>SZ . We further
decompose

p(fS ,b) = p(b)p(fS |b)

where p(b) = N (b|0,KZZ) and p(fS |b) =
N (fS |KSZK−1ZZb,KSS − KSZK−1ZZKZS) is a conditional

Gaussian distribution. Now the joint probability of the
augmented model is given by

p(yS ,b, fS ,U|Z, τ) =

K∏
k=1

dk∏
j=1

N (ukj |0, I)

· p(b)p(fS |b)N (yS |fS , τ−1I). (11)

Note that the augmented model is equivalent to the original
model. When we marginalize out the pseudo outputs b, the
joint prior in (10) becomes (7) and accordingly we recover the
original probability (8).

Now based on the augmented model (11), we construct
a variational ELBO. We introduce an approximate posterior
distribution of the latent factors U , the latent function values
fS and pseudo outputs b in the following form,

q(U ,b, fS) =

K∏
k=1

dk∏
t=1

q(ukt)q(b)p(fS |b) (12)

where q(b) = N (b|µ,Σ) and each q(ukt) =
N
(
ukt |αkt ,diag(vkt)

)
is a diagonal Gaussian distribution. Note

that we intentionally introduce the full conditional Gaussian
distribution p(fS |b) to construct the approximate posterior
so as to obtain a decomposed lower bound, which we will
explain later. We further parameterize Σ by their Cholesky
decomposition, Σ = LL> to ensure the positive definiteness,
and each vkt = exp(γkt) to ensure the positiveness. Now, we
derive the variational ELBO [15] from

L = Eq(U,b,fS)

[
log

p(yS ,b, fS ,U|Z, τ)

q(U ,b, fS)

]
. (13)

It is known that (according to Jensen’s inequality)

L+ KL
(
q(U ,b, fS)‖p(U ,b, fS |yS)

)
= log p(yS),

where KL(·‖·) is the Kullback Leibler divergence between
two distributions and KL ≥ 0. Given log p(yS) — the fixed
log probability of the observed data, i.e., the model evidence,
maximizing the ELBO L w.r.t to the approximate posterior q
is equivalent to minimizing the KL divergence between q and
the true posterior p(U ,b, fS |yS). In other words, we can find
the best approximate posterior distribution (parameterized by
(12)) by maximizing the ELBO, rather than directly calculating
the KL divergence, which is infeasible.

Now, we substitute (11) and (12) into (13) and obtain

L =−
K∏
k=1

dk∏
j=1

KL
(
q(ukj)‖p(ukj)

)
−KL

(
q(b)‖p(b)

)
+

N∑
n=1

Eq(U,b,fn)[logN (yin |fn, τ−1)] (14)

where p(ukj) = N (ukj |0, I) is the prior distribution of ukj , and
fn = [fS]n = f(xin). Note that the full conditional Gaussian
distribution p(fS |b) in both (11) and (12) have been cancelled
inside the log ratio of (13). Consequently, we do not need to
explicitly compute the full covariance matrix KSS and the

computational cost is greatly reduced. In addition, according
to (12), we have

q(U ,b, fn) =

K∏
k=1

dk∏
t=1

q(ukt)q(b)p(fn|b), (15)

where

p(fn|b) = N (fn|µn, σ2
n) (16)

is a scalar conditional Gaussian distribution and quite easy
to calculate, µn = k>nK−1ZZb, σ2

n = k(xin ,xin)− k>nK−1ZZkn,
and kn = [k(xin , z1), . . . , k(xin , zM)]>. Now we can see
that the computation of the ELBO (14) is decomposed over
individual tensor entries. Rather than calculate the huge N×N
covariance matrix KSS , we only need to compute a kernel
matrix KZZ and its inverse on a small set of M pseudo
inputs. The additive form further enables us to conduct efficient
stochastic optimization, presented as follows.
B. Stochastic Optimization

We aim to maximize the ELBO in (14) to estimate the
approximate posterior of the latent factors U and pseudo outputs
b, the pseudo inputs Z, the inverse noise variance τ , and
the parameters of our neural kernel, including those in the
convolutional filters and the internal RBF kernel. Despite its
decomposed form, L is not analytical, because each expectation
is under the (approximate) posterior distribution of the latent
factors U ; the latent factors are coupled in the complex kernel
computation in p(fn|b) (see (16)) and so in logN (yin |fn, τ−1)
(see (14)); hence the expectation does not have any closed form.
Moreover, when N is large, the full summation across all the
entries is still quite expensive. To address these challenges,
we develop an efficient stochastic optimization algorithm. We
first partition the entries into mini-batches of size B, Q =
{Q1, . . . , QN/B}, and rearrange the ELBO as

L =−
K∏
k=1

dk∏
j=1

KL
(
q(ukj)‖p(ukj)

)
−KL

(
q(b)‖p(b)

)
+
B

N

N/B∑
j=1

N

B

∑
in∈Qj

Eq(U,b,fn)[logN (yin |fn, τ−1)].

(17)

Then the ELBO can be viewed as an expectation of a stochastic
objective,

L = Ep(t)[L̃t] (18)

where p(t) = B
N , t ∈ {1, . . . , NB }, and

L̃t =−
K∏
k=1

dk∏
j=1

KL
(
q(ukj)‖p(ukj)

)
−KL

(
q(b)‖p(b)

)
+
N

B

∑
in∈Qt

Eq(U,b,fn)[logN (yin |fn, τ−1)]. (19)

Now we can develop a stochastic optimization algorithm
based on (18). Each iteration, we first sample a mini-batch

Algorithm 1 POND (S, B, M , T , γ0)

1: Initialize variational posterior q(b) = N (b|0, I) and each
q(ukt) = N (ukt |0, I) in (12).

2: Initialize M pseudo inputs Z by sampling from the
standard normal distribution.

3: for epoch = 1..T do
4: Randomly shuffle the training tensor entries {yin}(in ∈
S) and partition the entries into mini-batches of size B.

5: for each mini-batch Qt do
6: Calculate the unbiased stochastic gradient ∇L̂t for

(18).
7: Update all the parameters: θ ← θ + γt∇L̂t.
8: Adjust the learning rate γt.
9: end for

10: end for
11: return The posteriors of the latent factors {q(ukt) =
N
(
ukt |αkt ,diag(vkt)

)
} and the pseudo outputsN (b|µ,Σ),

Z, the inverse noise variance τ and the kernel parameters.

Qt and then compute the gradient of the stochastic objective
L̃t as an unbiased stochastic gradient of L. However, in L̃t
each expectation term is intractable. To address this problem,
we use the reparameterization trick [13]. For each in ∈ Qt,
we first generate parameterized samples for the latent factors
{ukink

} associated with in from their approximate posteriors,

ũkink
= αkink

+ diag(
√

vkink
) · η where η ∼ N (0, I); then

we concatenate them to obtain the parameterized sample for
xin : x̃in = [(ũ1

in1
)>, . . . , (ũKinK

)>]>. Next, we generate a
parameterized sample for the pseudo outputs b, b̃ = µ+ Σ · ε
where ε ∼ N (0, I). Finally, we generate the parameterized
sample for fn, f̃n = µn + σn · ε where ε ∼ N (0, 1). Note that
x̃in and b̃ are used to compute µn and σn (see (16)). Now we
substitute f̃n for fn in each expectation term of L̃t and obtain
an unbiased stochastic estimate of L̃t. Then we calculate the
gradient of the estimate, which will be an unbiased stochastic
gradient of L̃t, and in turn an unbiased stochastic gradient
of L. Next, we can use any stochastic optimization algorithm
to maximize L. The computation of the stochastic gradient
is restricted in the mini-batch only, and hence is very cheap
and efficient. Finally, the overall model estimation procedure
is summarized in Algorithm 1.
C. Algorithm Complexity

The time complexity of our model estimation algorithm is
O(NM3/B+MN), which is for computing the kernel matrix
on the pseudo inputs Z and the cross kernel between the latent
factors in each entry in the mini-batches and the pseudo inputs.
Since the number of pseudo inputs M is fixed (typically 100 or
200) and close to B, both M,B � N , the computational cost
is proportional to the data size N . The space complexity is
O(
∑K
k=1 dkR+M2), including the storage of the approximate

posterior of the latent factors and the pseudo outputs, and the
kernel matrix on the pseudo inputs.

V. RELATED WORK

Classical tensor decomposition methods include Tucker [1]
and CP [2] decompositions, based on which many works

have been done, such as [3]–[5], [16]–[19]. Despite the
widespread success of these methods, their underlying mul-
tilinear factorization structure can limit their capability to
capture more complex, nonlinear interactions in real-world
applications. To overcome this problem, a few nonparametric
tensor decomposition methods were developed recently [6]–[9],
which used GPs to capture possible nonlinear relationships
in data. Along this line of research, the state-of-the-art is
DFNT [9], which also constructs an input vector for each entry
by concatenating the associated latent factors, and learns the
unknown relationship with a GP. However, DFNT uses a shallow
kernel and has a limited capability of estimating highly complex
relationships. For training, DFNT integrates out the optimal
variational posterior to obtain a tight variational ELBO, for
which a distributed batch optimization algorithm is developed.
Despite its tightness, the ELBO might be more difficult to
optimize. In our experiments, the proposed stochastic learning
achieves much better predication accuracy, even with a shallow
kernel. Finally, DFNT only gives a point estimation of the latent
factors and cannot quantify the uncertainty. The recent works
have also developed a streaming version [20], [21] of the these
multilinear and nonlinear decomposition models.

There have been a few attempts to apply (deep) neural
networks for tensor decomposition [10], [22], [23]. However,
as shown in the most recent work [10], using densely connected
networks, e.g., multi-layer perceptron (MLP), tends to overfit
sparse tensor data that is often the case in practice. To alleviate
this problem, a new neural decomposition method, CoSTco, is
proposed in [10]. CoSTco first applies two convolutional layers
to integrate the local information from the latent factors in each
entry, and then adds dense layers to produce the entry values.
Compared with MLP-based and other nonlinear decomposition
methods, CoSTco often shows better performance in missing
value prediction. However, as a non-probabilistic approach,
CoSTco cannot quantify the uncertainty of the latent factor
estimations and predictions for missing entries. When the
observed data are a few or the interactions are relatively simple,
CoSTco is still at risk of overfitting (see Section VI-A).

VI. EXPERIMENT

For evaluation, we conducted experiments to answer the
following questions. Q1: How does POND perform when the
observed tensor entries are a few or the hidden relationships
are actually simple, and will it tend to be overfitting? Q2:
Howe does POND perform in completing real-world large and
complex tensors, with a variety of sparse levels? Q3: What
does the uncertainty information provided by POND reflect,
and how does it potentially benefit real applications, such as
online advertising?

To answer the first question, we used two datasets, one is
real and the other synthetic. To answer the second question,
we tested POND in four real-world sparse tensors. To answer
the third question, we ran POND on a real-world mobile ads
click-through-rate dataset, and investigated the posterior mean
and variance of the latent factors and predictions of the click
probabilities.

3 5 7 9

Rank (the number of factors)

0.88

0.95

1

R
M

S
E

(a) Alog

3 5 7 9

Rank (the number of factors)

0.15

0.4

0.8

1.2

R
M

S
E POND

GPTF

CoSTco

(b) Simu

3 5 7 9

Rank (the number of factors)

0.45

0.48

0.51

M
A

E

(c) Alog

3 5 7 9

Rank (the number of factors)

0.2

0.5

0.8

M
A

E

(d) Simu

Fig. 1: Prediction error on two small datasets. The results were
averaged from 5 runs.

A. Evaluation on Small or Simple Data
First, we tested POND on the following two datasets: (1)

Alog [9], a three-mode tensor of size 200 × 100 × 200,
representing three-way file-access operations (user, action,
resource). It includes 0.66% observed entries. (2) Simu, a
100 × 100 × 100 synthetic tensor. For each node, we drew
three latent factors from the standard normal distribution, and
then simulated the entry values through the CP form (see (3)),
where we set λ = [0.8, 0.7, 0.5].

We compared with (1) GPTF, our Gaussian process tensor
decomposition model (see Section III-A) only using the RBF
kernel, and (2) CoSTco [10], the state-of-the-art nonlinear
tensor decomposition model, which is purely based on neural
networks, including 2 convolutional layers and 2 dense layers.
We implemented GPTF and POND with TensorFlow [24] and
used ADAM [25] for optimization. We set the number of pseudo
inputs M to 100. For CoSTco, we used the original imple-
mentation (https://github.com/USC-Melady/KDD19-CoSTCo).
For all the methods, we set the maximum number of epochs
to 300. We chose the learning rate from {10−4, 2× 10−4, 5×
10−4, 10−3, 2× 10−3, 5× 10−3, 10−2}.

To examine if these approaches tend to overfit when the
number of observed entries is very small, we randomly sampled
21K observed entries from Alog for training. Furthermore, to
examine if these approaches can fail to estimate the simple
multilinear relationships in data due to (complex) nonlinear
modeling, we randomly sampled 200K entries from Simu
for training. We then computed the root-mean-square-error
(RMSE) and mean-absolute-error (MAE) of each method in
tensor completion. We varied the number of latent factors,
i.e., rank, from {3, 5, 7, 9}. We repeated each test for
five times, and reported the average RMSE, average MAE
and their standard deviations in Figure 1. As we can see,
on both dataset, POND is significantly better than CoSTco
(p-value <0.05, shown by non-overlapping standard error

https://github.com/USC-Melady/KDD19-CoSTCo

TABLE I: Statistics of real-world sparse tensors.
Dataset Size #Observed entries

MovingMNIST 20× 100× 64× 64 819200
ExtremeClimate 360× 16× 768× 1152 41198

SG 2321× 5596× 1600 105764
Gowalla 18737× 1000× 32510 821931

bars [26]). Although both methods use neural networks to
enhance the expressive power, POND is much less likely to
overfit the data, which might be due to the self-adaption of
its nonparametric modeling to the data complexity. CoSTco
performed particularly worse in Simu, implying that it always
attempted to use a very complicated function to fit the data.
Note that the CoSTco implementation has already used early-
stopping to alleviate overfitting. Furthermore, in most cases
GPTF shows the smallest RMSE/MAE. This is reasonable,
because in addition to nonparametric modeling, GPTF uses
the simple shallow RBF kernel, including only one kernel
parameter, and hence is more robust in small/simple data.
The results of GPTF further confirms the advantage of our
nonparametric decomposition.

B. Evaluation on Real-World Sparse Tensors
Next, we tested POND on four real-world sparse tensors,

whose statistics are summarized Table I. (1) MovieMNSIT [27],
a four-mode (video, time, row, column) tensor that represents
20 grey-scale videos. The observed entries take 10% of
total elements. (2) ExtremeClimate [28], a four-mode tensor
extracted from the history records of extreme weather cases,
(time, lattitute, longitude, variable). The entire tensor has only
%0.0008 observed entries. (3) SG [29], a three-mode tensor
describing (user, location, point of interest) checkins, collected
by Foursquare in Singapore. There are %0.0005 observed
entries. (4) Gowalla [30], another checkin tensor collected
by Foursquare all over the world, having %0.0001 observed
entries. Note that the CoSTco paper [10] has used all these
data sources to verify the performance of CoSTco. We exactly
followed the CoSTco paper to extract and preprocess the data.
Hence the details are referred to the paper.
Competing methods. We compared POND with the following
baselines: (1) CoSTco; (2) GPTF; (3) DFNT [9], a distributed
nonlinear tensor factorization based on GPs; (4) CP-WOPT [17],
a scalable CP decomposition algorithm based on conjugate
gradient descent; (5) CP-ALS [31], an efficient CP decom-
position algorithm using alternative least square update; (6)
P-Tucker [32], a scalable Tucker decomposition algorithm
that performs parallel row-wise updates.

We first tested all the methods on MovieMNIST. To
investigate their performance under different sparsity levels, we
randomly chose {3%, 5%, 10%} observed entries for training
and tested the performance in predicting the remaining entries.
We varied the rank from {3, 5, 7, 9}. For each training ratio,
we repeated the experiment for five times, and then reported
the average RMSE and their standard deviations in Figure 2a-c.
Note that we did not show CP-WOPT’s result in Figure 2a,
because it is far worse than all the other methods. As we can
see, POND nearly always performs the best. In particular, POND
outperforms GPTF by a large margin, showing the advantage

of our neural kernel in capturing very complex relationships. In
all the cases, POND either significantly outperforms CoSTco
(when the rank is small) or obtains close accuracy to CoSTco
(when the rank is large). The performance of POND does not
change as much along with the rank as CoSTco. This might
be because our nonparametric decomposition is more flexible
to adapt to the data, and less dependent on the chose of hyper-
parameters. It is worth noting that DFNT is far worse than
GPTF, although they both use GPs and shallow kernels. The
difference might arise from the training procedure. DFNT uses
a tight yet hard ELBO as the training objective, and its batch
optimization might early converge to inferior local maximums.
By contrast, GPTF and POND, use stochastic optimization
to maximize a relatively easy ELBO, and can prevent being
quickly trapped in bad local maximums. We also examined
the scalability of POND with regard to the size of training data.
As shown in Fig. 2d, under all the rank settings, the average
per-epoch running time grows linearly with the training ratio.
Therefore, POND enjoys a linear scalability, consistent with
our algorithm complexity (see Section IV-C).

We then evaluated all the methods on the remaining datasets.
For Climate, we varied the rank from {3, 5, 10, 20}, while for
the checkin datasets Gowalla and SG, we varied the rank form
{5, 10, 20, 60, 80}. Note that in the latter case, we tested all the
methods with quite large ranks. On each dataset, we randomly
split the observed entries into 5 folds, and used 4 folds for
training and the remaining fold for testing. We repeated the
test for 5 times, and reported the average RMSE, MAE and
their standard deviations in Table II and III. As we can see,
in almost all the cases, POND significantly outperforms all the
competing approaches in both RMSE and MAE (p-value<0.05).
The results further confirm the advantages of our method in
prediction accuracy. We also compared the speeds of all the
methods. We ran all the algorithms on a desktop machine
with Intel i9-9900K CPU and 32GB memory. The speed of
POND is comparable to CoSTco, DFNT and faster than GPTF.
For example, on Gowalla dataset and rank = 20, their running
time (seconds) are {POND: 2884, DFNT: 2521, CoSTco: 2719,
GPTF: 4998}. By contrast, the multilinear methods are much
faster, {CP-WOPT: 6, CP-ALS: 18, P-Tucker: 514}. This
is reasonable, because the nonlinear methods are much more
complex and need to estimate many more parameters.
C. Uncertainty Quantification

Finally, we looked into the uncertainty information provided
by POND, and discussed their usage in practical applications.
To this end, we used a real-world mobile ads click-through-
rate dataset (www.kaggle.com/c/avazu-ctr-prediction/data) in
a Kaggle competition task. The dataset record 10 days of
ads impressions and their clicks from an online advertising
system. From this dataset, we extracted a four-mode binary
tensor, (banner pos, site, app, device), from the first one million
records. The value of each entry indicates if the corresponding
mobile advertisement was clicked or not. The tensor is of size
7×2854×4114×6061. Among the observed entries are 174K
nonzero values, i.e., clicks, which is 17.4%. Therefore, most of
the ads displayed did not receive any click. We then used POND

www.kaggle.com/c/avazu-ctr-prediction/data

3 5 7 9

Rank (the number of factors)

0.175

0.19

0.205

R
M

S
E

(a) 3%

3 5 7 9

Rank (the number of factors)

0.175

0.19

0.205

R
M

S
E

(b) 5%

3 5 7 9

Rank (the number of factors)

0.175

0.19

0.205

R
M

S
E

(c) 10%

3% 5% 8% 10%

Training Ratio

50

100

200

P
e

r-
e

p
o

c
h

 T
im

e
 (

s
e

c
o

n
d

s
)

R=3

R=5

R=7

R=9

(d) POND Scalability
Fig. 2: Predictive performance on MovingMNIST with different ratios of the observed entries for training (a-c) and the scalability of POND
(d). The prediction accuracy was averaged from 5 runs.

0 0.5 1 1.5

Posterior Variance

2

4

6

L
o

g
1

0
[

#
 O

b
s
e

rv
a

ti
o

n
s
]

(a) banner position

0 0.5 1

Posterior Variance

2

4

6
L
o
g

1
0
[
#
 O

b
s
e
rv

a
ti
o
n
s
]

(b) site

0 0.5 1

Posterior Variance

2

4

6

L
o
g

1
0
[
#
 O

b
s
e
rv

a
ti
o
n
s
]

(c) app

0 0.5 1

Posterior Variance

2

4

L
o
g

1
0
[
#
 O

b
s
e
rv

a
ti
o
n
s
]

(d) device
Fig. 3: The posterior variance of the learned latent factors v.s. the frequency of the corresponding objects in the observed entries.

TABLE II: Tensor completion accuracy on Climate

metric method/rank 3 5 10 20

CP-ALS 0.7904± 0.0022 0.7904± 0.0022 0.7904± 0.0022 0.7904± 0.0022
CP-WOPT 2.3604± 0.1462 3.3917± 0.1670 6.0489± 0.2027 1.8680± 0.0179
P-Tucker 0.1038± 0.0046 0.1496± 0.0147 0.1731± 0.0029 0.2632± 0.0049

RMSE DFNT 0.1412± 0.0014 0.4534± 0.0042 0.7900± 0.0021 0.7900± 0.0021
CoSTco 0.0842± 0.0009 0.0849± 0.0009 0.0839± 0.0009 0.0833 ± 0.0011
GPTF 0.0916± 0.0016 0.0969± 0.0015 0.969± 0.0014 0.0938± 0.0016
POND 0.0829 ± 0.0012 0.0827 ± 0.0012 0.0837 ± 0.0013 0.0847± 0.0012

CP-ALS 0.7369± 0.0026 0.7369± 0.0026 0.7369± 0.0025 0.7369± 0.0025
CP-WOPT 1.0552± 0.0136 1.3527± 0.0117 2.4118± 0.0225 1.3271± 0.0091
P-Tucker 0.0601± 0.0014 0.0831± 0.0066 0.1116± 0.0023 0.1961± 0.0035

MAE DFNT 0.0974± 0.0019 0.3865± 0.0048 0.7369± 0.0023 0.7369± 0.0023
CoSTco 0.0508± 0.0006 0.0514± 0.0006 0.0505± 0.0006 0.0498± 0.0006
GPTF 0.0581± 0.0012 0.0621± 0.0010 0.0621± 0.0014 0.0597± 0.0011
POND 0.0491 ± 0.0007 0.0492 ± 0.0006 0.0495 ± 0.0007 0.0497 ± 0.0007

0 0.5 1

Posterior Mean

0

0.05

0.1

0.15

P
o

s
te

ri
o

r
S

T
D

Fig. 4: The posterior mean v.s. the posterior standard deviation (STD)
of the click probability prediction.

to estimate the latent factors and their posterior distribution. To
this end, we modified the likelihood for each observed entry in
to the Binomial likelihood used in Probit regression [33](see (7)
and (8)), p

(
yin |f(xin)

)
= Φ

(
(2yin−1)f(xin)

)
where Φ(·) is

the cumulative density function (CDF) of the standard normal

distribution. We followed the same approach as presented
in Section IV to fulfill stochastic variational learning. For
convenient analysis of the posterior variance, we set the number
of latent factors to 1. In Figure 3, we show how the posterior
variances of the latent factors are distributed according to
the count of the corresponding objects in the observed tensor
entries. As we can see, in each mode, the more frequently an
object (e.g., a particular banner position or site) appears in
the ads impressions, the smaller the variance and so the more
certain its factor estimation. This is reasonable because active
nodes appear in many training samples, and their learning
results should be confident. Note that the posterior variance of
these latent factors mostly reside in [0, 1], because the prior
variance of the latent factors is set to 1 (see (8)). When data
are observed, the variance (i.e., uncertainty) tends to decrease.

Next, we examined the uncertainty of the click probability
(i.e., ci = p(yi = 1) = Φ

(
f(xi)

)
for a test entry i). To this end,

(a) MAE

data method/rank 5 10 20 60 80
CP-ALS 0.1454± 0.0001 0.1449± 0.0002 0.1434± 0.0002 0.1417± 0.0001 0.1413± 0.0001
CP-WOPT 0.2658± 0.0052 0.2319± 0.0038 0.1762± 0.0011 0.1485± 0.0004 0.1484± 0.0003
P-Tucker 0.1331± 0.0003 0.1642± 0.0006 0.1711± 0.0003 0.1452± 0.0003 0.1373± 0.0003

Gowalla DFNT 0.0931± 0.0003 0.1462± 0.0008 0.1478± 0.0001 0.1479± 0.0001 0.1479± 0.0001
CoSTco 0.0837± 0.0009 0.0822± 0.0007 0.0841± 0.0002 0.0822± 0.0004 0.0811± 0.0003
GPTF 0.0999± 0.0005 0.1131± 0.0001 0.1040± 0.0004 0.0718± 0.0002 0.0722± 0.0002
POND 0.0757 ± 0.0001 0.0753 ± 0.0001 0.06893 ± 0.0002 0.0674 ± 0.0006 0.0671 ± 0.0007
CP-ALS 0.1586± 0.0003 0.1575± 0.0004 0.1567± 0.0005 0.1581± 0.0005 0.1588± 0.0005
CP-WOPT 0.5057± 0.0253 0.7328± 0.0303 0.6109± 0.0073 0.1299± 0.0005 0.1270± 0.0007
P-Tucker 0.1503± 0.0014 0.1866± 0.0015 0.2116± 0.0002 0.1795± 0.0022 0.1922± 0.0004

SG DFNT 0.1054± 0.0004 0.1606± 0.0003 0.1607± 0.0003 0.1607± 0.0003 0.1607± 0.0003
CoSTco 0.0898 ± 0.0014 0.0963± 0.0012 0.0990± 0.0007 0.0948± 0.0012 0.0974± 0.0015
GPTF 0.1207± 0.0004 0.1261± 0.0008 0.1236± 0.0006 0.1017± 0.0004 0.1607± 0.0003
POND 0.0916± 0.0005 0.0899 ± 0.0014 0.0848 ± 0.0011 0.0917 ± 0.0002 0.0908 ± 0.0007

(b) RMSE

data method/rank 5 10 20 60 80

CP-ALS 0.1975± 0.0003 0.1973± 0.0004 0.1956± 0.0003 0.1938± 0.0003 0.1935± 0.0002
CP-WOPT 1.7328± 0.1778 0.7209± 0.0785 0.3085± 0.0074 0.2019± 0.0003 0.2015± 0.0004
P-Tucker 0.3575± 0.0011 0.3264± 0.0021 0.2904± 0.0012 0.2416± 0.0004 0.2294± 0.0013

Gowalla DFNT 0.1614± 0.0004 0.1988± 0.0007 0.2000± 0.0003 0.2001± 0.0002 0.2001± 0.0002
CoSTco 0.1808± 0.0013 0.17590± 0.0017 0.1792± 0.0002 0.1691± 0.0004 0.1625± 0.0005
GPTF 0.1958± 0.0007 0.1958± 0.0002 0.1736± 0.0004 0.1303 ± 0.0002 0.1305 ± 0.0003
POND 0.1346 ± 0.0003 0.1347 ± 0.0003 0.1320 ± 0.0006 0.1314± 0.0003 0.1317± 0.0003

CP-ALS 0.2228± 0.0004 0.2209± 0.0006 0.2201± 0.0008 0.2244± 0.0008 0.2261± 0.0008
CP-WOPT 4.5058± 0.6257 3.5519± 0.3335 1.4935± 0.0361 0.2081± 0.0007 0.2024± 0.0008
P-Tucker 0.3558± 0.0132 0.4952± 0.1247 0.3514± 0.0006 0.3311± 0.0137 0.3296± 0.0014

SG DFNT 0.1858± 0.0004 0.2256± 0.0004 0.2256± 0.0004 0.2256± 0.0004 0.2256± 0.0004
CoSTco 0.1835± 0.0027 0.1977± 0.0012 0.2017± 0.0009 0.1947± 0.0016 0.2005± 0.0012
GPTF 0.2129± 0.0008 0.2106± 0.0009 0.2100± 0.0012 0.1864± 0.0015 0.2257± 0.0004
POND 0.1585 ± 0.0003 0.1565 ± 0.0009 0.1537 ± 0.0003 0.1584 ± 0.0003 0.1574 ± 0.0007

TABLE III: Tensor completion performance on Gowalla and SG

after using one million impressions to build the training tensor,
we chose 100K impressions for a test set. We made sure the
indices in each test entry are included in the training tensor.
For each impression i, we computed the predictive (posterior)
mean and standard deviation (STD) of the click probability
with Monte-Carlo approximation. The details are given in the
appendix. We show the distribution of those posterior mean and
STD pairs in Figure 4. It is interesting to see that when the mean
estimation of the click probability is closer and closer to 0, the
posterior STD becomes smaller and smaller, implying increased
confidence. By contrast, when the click probability is predicted
to be large, i.e., close to 1, the STD becomes much larger,
indicating much less confidence. This is reasonable, because
most of the ads impressions do not have clicks. The clicked
examples are quite scarce. Therefore, it is much more confident
to predict that an ad will not be clicked than that the ad will
be clicked. We also tested the prediction accuracy of POND,
CoSTco and CP-ALS in terms of area under ROC curves
(AUC), and obtained {POND: 0.740, CoSTco:0.738, CP-ALS:
0.596}. Hence, POND is a slightly better than CoSTco; both
POND and CoSTco greatly outperform CP-ALS. The result
confirms the advantage of nonlinear decomposition.

The uncertainty information about the prediction of the click
probability can be very useful for ads ranking and display. For
extreme predictions (close to 0 or 1) with high confidence
levels, we can directly use them to determine showing or not
showing the ads. However, when considerable uncertainty is

present, we might combine the deterministic ranking results
with randomly selected ads to increase the diversity in ads
display and maintain freshness in the user experience. This
is a trade-off between the exploration and exploitation [34],
[35]. We want to utilize the prediction known to be good, but
meanwhile we want to attract users with more diversity.

VII. CONCLUSION

We have presented POND, a probabilistic nonparametric
tensor decomposition model equipped with neural kernels.
Plenty of experiments have shown the advantage of POND
in self-adapting to the data complexity and capturing highly
nonlinear relationships. In the future, we will continue to apply
POND in important problems, such as recommendation and
online advertising, and in-depth investigate the usage of the
latent factors and uncertainty information.

ACKNOWLEDGEMENT

This work has been supported by the NSF IIS-1910983.

REFERENCES

[1] L. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, pp. 279–311, 1966.

[2] R. A. Harshman, “Foundations of the PARAFAC procedure: Model
and conditions for an”explanatory”multi-mode factor analysis,” UCLA
Working Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[3] W. Chu and Z. Ghahramani, “Probabilistic models for incomplete multi-
dimensional arrays,” AISTATS, 2009.

[4] U. Kang et al., “Gigatensor: scaling tensor analysis up by 100 times-
algorithms and discoveries,” in KDD, 2012, pp. 316–324.

[5] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed factorization of
tensors,” in Advances in Neural Information Processing Systems, 2014,
pp. 1296–1304.

[6] Z. Xu, F. Yan, and Y. Qi, “Infinite Tucker decomposition: Nonparametric
Bayesian models for multiway data analysis,” in Proceedings of the 29th
International Conference on Machine Learning (ICML), 2012.

[7] S. Zhe, Y. Qi, Y. Park, I. Molloy, and S. Chari, “Dintucker: Scaling up
gaussian process models on multidimensional arrays with billions of
elements,” arXiv preprint arXiv:1311.2663, 2013.

[8] S. Zhe, Z. Xu, X. Chu, Y. Qi, and Y. Park, “Scalable nonparametric
multiway data analysis,” in AISTATS, 2015, pp. 1125–1134.

[9] S. Zhe, et al., “Distributed flexible nonlinear tensor factorization,” in
Advances in Neural Information Processing Systems, 2016, pp. 928–936.

[10] H. Liu, Y. Li, M. Tsang, and Y. Liu, “Costco: A neural tensor completion
model for sparse tensors,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 324–334.

[11] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[12] J. Hensman, N. Fusi, and N. D. Lawrence, “Gaussian processes for big
data,” in Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence. AUAI Press, 2013, pp. 282–290.

[13] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[14] T. G. Kolda, Multilinear operators for higher-order decompositions.
United States. Department of Energy, 2006, vol. 2.

[15] M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponential
families, and variational inference,” Foundations and Trends® in Machine
Learning, vol. 1, no. 1–2, pp. 1–305, 2008.

[16] A. Shashua and T. Hazan, “Non-negative tensor factorization with
applications to statistics and computer vision,” in Proceedings of the
22th International Conference on Machine Learning (ICML), 2005, pp.
792–799.

[17] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Morup, “Scalable
tensor factorizations for incomplete data,” Chemometrics and Intelligent
Laboratory Systems, vol. 106, no. 1, pp. 41–56, 2011.

[18] Y. Yang and D. Dunson, “Bayesian conditional tensor factorizations for
high-dimensional classification,” Journal of the Royal Statistical Society
B, revision submitted, 2013.

[19] W. Sun, J. Lu, H. Liu, and G. Cheng, “Provable sparse tensor decompo-
sition,” arXiv preprint arXiv:1502.01425, 2015.

[20] Y. Du, Y. Zheng, K. Lee, and S. Zhe, “Probabilistic streaming tensor
decomposition,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, 2018, pp. 99–108.

[21] Z. Pan, Z. Wang, and S. Zhe, “Streaming nonlinear Bayesian tensor
decomposition,” in Conference on Uncertainty in Artificial Intelligence.
PMLR, 2020, pp. 490–499.

[22] B. Liu, L. He, Y. Li, S. Zhe, and Z. Xu, “Neuralcp: Bayesian multiway
data analysis with neural tensor decomposition,” Cognitive Computation,
vol. 10, no. 6, pp. 1051–1061, 2018.

[23] X. Wu, B. Shi, Y. Dong, C. Huang, and N. Chawla, “Neural tensor
factorization,” arXiv preprint arXiv:1802.04416, 2018.

[24] M. Abadi, P. Barham et al., “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 265–283.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[26] T. P. Minka, “Judging significance from error bars,” MIT, Tech. Rep.,
2002.

[27] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning
of video representations using lstms,” in International conference on
machine learning, 2015, pp. 843–852.

[28] E. Racah, C. Beckham, T. Maharaj, S. E. Kahou, M. Prabhat, and C. Pal,
“Extremeweather: A large-scale climate dataset for semi-supervised
detection, localization, and understanding of extreme weather events,” in
Advances in Neural Information Processing Systems, 2017, pp. 3402–
3413.

[29] X. Li et al., “Rank-geofm: A ranking based geographical factorization
method for point of interest recommendation,” in SIGIR, 2015, pp. 433–
442.

[30] Y. Liu, T.-A. N. Pham, G. Cong, and Q. Yuan, “An experimental
evaluation of point-of-interest recommendation in location-based social
networks,” 2017.

[31] B. W. Bader, T. G. Kolda et al., “Matlab tensor toolbox
version 2.6,” Available online, February 2015. [Online]. Available:
http://www.sandia.gov/~tgkolda/TensorToolbox/

[32] S. Oh, N. Park, S. Lee, and U. Kang, “Scalable tucker factorization
for sparse tensors-algorithms and discoveries,” in 2018 IEEE 34th
International Conference on Data Engineering (ICDE). IEEE, 2018,
pp. 1120–1131.

[33] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale
bayesian click-through rate prediction for sponsored search advertising
in microsoft’s bing search engine.” Omnipress, 2010.

[34] S.-M. Li, M. Mahdian, and R. P. McAfee, “Value of learning in sponsored
search auctions,” in International Workshop on Internet and Network
Economics. Springer, 2010, pp. 294–305.

[35] W. Li et al., “Exploitation and exploration in a performance based
contextual advertising system,” in KDD, 2010, pp. 27–36.

APPENDIX

A. Posterior Mean and Variance of the Click Probability

In online advertising, we are interested in the uncertainty
of the prediction of the click probabilities. Given the test
impression i (corresponding to a test entry), we denote its click
probability by ci. According to our model, ci = p(yi) =
Φ
(
f(xi)

)
, where xi = [(u1

i1
)>, . . . , (uKiK)>]>. We aim to

compute the posterior mean and standard deviation (STD) of
ci. To this end, we first compute q

(
f(xi)

)
, the (approximate)

posterior distribution of the function value f(xi). According
to (12) and (16), we have

q
(
f(xi)

)
= N

(
f(xi)|ai, gi

)
(20)

where ai = k>nK−1ZZµ and gi = k>nK−1ZZΣK−1ZZkn +
k(xi,xi)−k>nK−1ZZkn. Then, conditioned on the latent factors
in xi, we have

E[ci|xi] =

∫
Φ(fi)N

(
fi|ai, gi

)
dfi,

E[c2i |xi] =

∫
Φ(fi)

2N
(
fi|ai, gi

)
dfi.

It is easy to derive that E[ci|xi] = Φ(ai√
1+gi

). However, E[c2i |xi]
does not have a closed form. To address this problem, we
can use Gaussian-Hermite quadrature to compute an accurate
approximation. Now, to integrate out xi with the posterior
distribution of the latent factors, we use a Monte-Carlo
approximation. We use the learned approximate posteriors
{q(u1

i1
), . . . , q(uKiK)} to generate T i.i.d. samples of xi:

{x̃ti}Tt=1. This is straightforward, because each posterior is
a diagonal Gaussian distribution. Then we have

E[ci] ≈
1

T
E[ci|x̃ti], (21)

E[c2i] ≈ 1

T
E[c2i |x̃ti]. (22)

The posterior mean of the click probability is given in (21).
The posterior variance is calculated by

Var(ci) ≈
1

T
E[c2i |x̃ti]−

(1

T
E[ci|x̃ti]

)2
. (23)

We can compute the posterior STD accordingly. Note that
Gauss-Hermite quadrature is very accurate, we can view its
result as the true value of E[c2i |x̃ti]. Then the variance in (23),
although computed from a Monte-Carlo approximation, is
always non-negative.

http://www.sandia.gov/~tgkolda/TensorToolbox/

	Introduction
	Preliminaries
	Tensor Decomposition
	Nonparametric Function Learning

	Model
	Nonparametric Tensor Decomposition
	Convolutional Neural Network Kernels

	Algorithm
	Decomposed Variational Model Evidence Lower Bound
	Stochastic Optimization
	Algorithm Complexity

	Related Work
	Experiment
	Evaluation on Small or Simple Data
	Evaluation on Real-World Sparse Tensors
	Uncertainty Quantification

	Conclusion
	References
	Posterior Mean and Variance of the Click Probability

