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ABSTRACT 
The rapid adoption of smartphones along with a growing 
habit for using these devices as alarm clocks presents an 
opportunity to use this device as a sleep detector. This adds 
value to UbiComp and personal informatics in terms of user 
context and new performance data to collect and visualize, 
and it benefits healthcare as sleep is correlated with many 
health issues. To assess this opportunity, we collected one 
month of phone sensor and sleep diary entries from 27 
people who have a variety of sleep contexts. We used this 
data to construct models that detect sleep and wake states, 
daily sleep quality, and global sleep quality. Our system 
classifies sleep state with 93.06% accuracy, daily sleep 
quality with 83.97% accuracy, and overall sleep quality 
with 81.48% accuracy. Individual models performed better 
than generally trained models, where the individual models 
require 3 days of ground truth data and 3 weeks of ground 
truth data to perform well on detecting sleep and sleep 
quality, respectively. Finally, the features of noise and 
movement were useful to infer sleep quality. 

Author Keywords 
Smartphone; sleep; machine learning; sensors 
ACM Classification Keywords 
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Miscellaneous.  

INTRODUCTION 
The meteoric adoption of smartphones places a rich sensor 
platform in the pockets, purses, and backpacks of many 
people. Interestingly, many people choose to use their 
phone as an alarm clock, placing these sensors in proximity 
of the bed. A recent study by the Pew Internet and 
American Life project found that 44% of mobile phone 
owners (83% of teens) sleep with their phone on or near 
their bed, with many using their phone as an alarm clock 
[36]. This advance in technology and associated change in 
behavior offers the possibility of cheaply and effectively 

tracking people's daily sleep behaviors without the need for 
additional hardware or for a significant change in behavior. 
From a broader perspective, monitoring a person’s sleep 
patterns offers three opportunities for the HCI community. 
First, sleep can be considered important context information 
for UbiComp systems. Having these systems model if a 
person is asleep or awake could allow them to modify their 
behavior to act more appropriately. Second, there is a 
growing interest in HCI around personal informatics and 
quantified self, where people are increasingly engaged in 
tracking and visualizing their personal behaviors [15]. The 
ability to detect and log sleep and sleep quality can add to 
this growing area of interest. Third, sleep and sleep quality 
have a strong connection to healthcare. Chronic sleep 
problems have been associated with diabetes, heart disease, 
and depression. In addition, even a few nights of poor sleep 
can impact alertness, memory, mood, and cognitive 
function [2,30,34,45]. Better tools for monitoring sleep 
could help improve diagnoses as well as help people 
understand their own needs and trends. 
The goal of our work is to investigate how well a 
commodity smartphone can sense and model sleep and 
sleep quality without requiring significant changes in 
people’s behavior. More specifically, we built Toss ‘N’ 
Turn (TNT), an Android app that logs seven different 
sensor inputs (an accelerometer, microphone, ambient light 
sensor, screen proximity sensor, running process, battery 
state, and display screen state). We provided TNT to 27 
participants and collected data from them for one month. 
Each day, participants entered a sleep diary to provide 
ground truth. Using this dataset, we built models that 
classify if a person was asleep or not asleep (within a 10 
minute window) with 93.06% accuracy. We detect when a 
person went to bed (within ±35 minutes on average), when 
they woke up (within ±31 minutes on average), and their 
sleep duration (within ±49 minutes on average). We also 
classify their daily sleep quality into good or poor with 
83.97% accuracy and their global sleep quality (whether 
they are good or poor sleeper) with 81.48% accuracy. 
Our contributions include the Toss ‘N’ Turn app that 
collects phone sensor data and ground truth data needed for 
sleep inference, a month long data collection study, an 
analysis of the collected data to identify the features that 
best predict sleep and sleep quality, models that detect sleep 
and sleep quality, and insights on how a commodity 
smartphone based sleep detector might benefit UbiComp, 
personal informatics, and healthcare. 
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RELATED WORK 
Sleep is a natural periodic state of rest where the human 
senses and motor activity are relatively suspended. Sleep 
quality can be defined in several ways, for example, having 
enough sleep or not [33], daytime sleepiness [24], and the 
subjective feeling about sleep along with objective factors 
such as the number of sleep disturbances and use of sleep 
medications [10]. Poor quality sleep is linked to many 
negative health outcomes, including diabetes, obesity, 
cardiovascular health, and depression [5,13,17,21,29,44]. 
Sleep is not necessarily a regular, singular, static activity, 
and thus there exist many challenges in monitoring sleep. 
People sleep during the daytime (sometimes napping) as 
well as night. They sleep together, with romantic partners, 
pets, and/or children. Different factors impact sleep quality 
including sleep partners, environments (e.g., an 
uncomfortable mattress or pillow, noise, light, too high or 
low temperature level), stress and anxiety, and consuming 
food and drinks; many of which are difficult to detect [7]. 
Below, we summarize the state of the art in sleep data 
collection and detection, organizing related work into three 
sections: tools for capturing sleep data, sleep monitoring 
apps, and sleep research within HCI. 

Sleep Measurement 
The gold standard of assessing sleep is polysomnography, a 
system that combines an all-night electroencephalogram 
with measures of muscle tone and eye movements. 
Polysomnography requires lots of special equipment and 
trained technicians to setup the equipment, such as 
attaching the electroencephalogram sensors to a patient. It 
is impractical outside of a sleep lab.  
Actigraphy provides a simpler approach with just one 
metric, movement captured by an accelerometer. 
Actigraphy is surprisingly accurate. Today watch-sized 
actigraphs are used in clinical settings to sense basic sleep 
patterns, such as hours slept, sleep efficiency, and number 
of wakings [4]. Consumer-oriented, wearable sleep sensors 
include the wrist worn FitBit [19], Jawbone [23], and 
WakeMate [46]. These devices cost approximately $100 
USD, and people must remember to put them on before 
going to bed. 
Data describing a person’s sleep patterns are most 
commonly captured through self-reports via paper-based 
surveys and diaries. Examples include the Sleep Timing 
Questionnaire [33] and the Epworth Sleepiness Scale [24]. 
We used the Pittsburgh Sleep Quality Index (PSQI), which 
assesses sleep quality and disturbances over a one-month 
period [10]. PSQI integrates a wide variety of factors 
associated with sleep quality, including subjective quality 
ratings, sleep time, efficiency (time spent trying to fall 
asleep), frequency, and severity of sleep-related problems. 
One challenge with surveys is that they require people to 
accurately recall details of past sleep behavior, and this can 
prove difficult [32]. A complementary approach involves 
keeping a sleep diary. While tedious to collect, a diary-

based approach has proven to be reliable [8]. Espie et al. 
concluded in their seminal work that daily self-report may 
be a valid index of sleep disturbance where the correlations 
between the self-report and sleep assessment device (SAD) 
measures were consistently high [18]. Sleep diaries have 
been found to be reliable for bedtime and wake-time 
estimates via actigraphy [47] and ambulatory 
electroencephalographic monitoring [30]. Diaries have also 
been used to test sleep-detecting technologies including 
actigraphy [9]. With these respects, we used a sleep diary 
(designed based on the PSQI) for ground-truthing daily 
sleep data in addition to the PSQI that we used to measure 
the global quality from a month of sleeps. 

Sleep Monitoring Apps 
Recently, a number of smartphone apps have emerged to 
help people manually track sleep, e.g., Tylenol PM Sleep 
Tracker [43], YawnLog [48], Sleep Journal [40], and 
Wellness Diary [31]. The output includes descriptive 
longitudinal displays, statistical analyses, and visualizations 
of sleep time, duration and subjective quality. Some apps 
try to automate sleep logging by tracking movement in bed 
with smartphone accelerometers ([39,41,42]). These 
systems require people to keep their phones on the bed 
while sleeping [15]. Researchers have also investigated 
using smartphones to detect sleep. Krejcar et al. presented a 
system that tracks sleep phases based on sound features 
[26]; Chen et al. monitored phone usage patterns to detect 
sleep duration [14]; and Bai et al. used the previous day’s 
mobility, activity, and social interaction data to predict 
sleep quality with 78% of accuracy [6]. 

Sleep Research in HCI 
There has been increasing work in HCI and mobile 
computing focused on sleep [20,28]. Choe et al. identified 
challenges and design opportunities for using computing to 
support healthy sleep behaviors, as well as a design 
framework for mapping the design space of sleep 
technologies [15]. Aliakseyeu et al. examined how external 
factors of sleep like the location and family settings can 
affect sleep to highlight potential design opportunities [1]. 
Kay et al. utilized UbiComp sensors in the bedroom that 
allow people to reflect on the unconscious experience of 
sleep through sophisticated visualizations [25]. 
The most recent studies have focused on smartphones as a 
cheap and easy-to-use sleep technology. Researchers 
investigated people’s interaction with the smartphones 
before and during bedtime. Bauer et al. presented Shuteye, 
a mobile app that promotes good sleep behaviors [7]. 
Lawson et al. identified the need for objective, reliable, and 
scalable methods of measuring and recording sleep, and 
designed an interactive mobile app based on a stimulus-
response paradigm to record periods of sleep and 
wakefulness [27]. Shirazi et al. tested an idea for capturing 
sleep duration and sharing sleep information via social 
networks and found that monitoring can increase induce 
healthier sleep habits [38]. 



The closest past work to ours is by Chen et al. [14]. They 
measured sleep duration using smartphone sensors with 
data from eight solo-sleeping subjects collected over one-
week. Their system detected sleep duration within ±42 
minutes in average. We saw similar accuracy for sleep 
duration (within ±49 minutes in average) over more 
complex sleep contexts including people sleeping with 
partners, pets, and babies. In addition, we detect bedtime, 
waketime, daily sleep quality, and global sleep quality, all 
factors closely associated with health, as well as of interest 
to UbiComp and personal informatics. 

OVERVIEW OF TOSS ‘N’ TURN (TNT) 
We designed and implemented TNT as an Android app that 
captures sensor data for use in inferring sleep and sleep 
quality. The app collects sensor data, asks people to fill out 
a daily sleep diary, and uploads the data every day to a 
server (see Fig. 1).  
Sensing and Data Uploading 
We designed our system to collect various sensor data that 
might be relevant to sleep and sleep quality including sound 
amplitude (via the microphone), light (via the ambient light 
sensor), and movement (via the accelerometer) as listed in 
Table 1. While some recent smartphones come equipped 
with more than one microphone sensitive enough to capture 
even very small sounds; we used only the main microphone 
in the bottom of the phone and captured only maximum 
sound amplitude for simplicity and privacy reasons. Light 
intensity may be less reliable as people keep phones in 
pockets and bags. Therefore, we also collected screen 
proximity sensor values. Device states, such as screen 
on/off, processes (apps running on the phone), and the 
battery-charging state are also potentially informative in 
detecting sleep. For example, screen on (using the phone) is 
a good signal that a person is probably not asleep, but the 
screen is also sometimes automatically turned on for 
incoming calls or text messages, and by notification alarms 
from apps. Thus, other data, such as motion, should be used 
with the screen state to detect people’s actual use of device. 
People often charge their phone before going to bed, and 
they often use the phone as an alarm clock. Both provide 
clues about bedtime and waketime. Fig. 2 shows examples 
of smartphone sensor data along with visualization of a 
participant’s sleep. 

 
Figure 1. Overview of Toss ‘N’ Turn. The app shows a 
notification for a daily sleep diary, collects sensor data, and 
uploads the data every day to a server. 

Sensed value 
(frequency) 

Data collection cycle 
Night Day Btry<30% Btry<15% 

Sound amplitude (1hz) Cont. Every other minute 

Stop 

Acceleration (5hz) Cont. Every other minute 
Light intensity and 
screen proximity (1/5hz) Cont. Every other minute 

List of running apps 
(1/10hz) Collect when screen is turned on 

Battery states 
Collect when battery level is 
changed or the power cable is 

plugged in/out 

Screen states Collect when screen is turned 
on/off 

Sleep diary Notification to enter ground truth 
every morning 

Table 1. Types of sensor data and frequency captured by Toss 
n’ Turn (Cont. = collect continuously) 

 
Figure 2. Phone status values (the upper graph), sensor values 
(the lower graph), and sleep (the range in both upper and 
lower graph with the green shaded background) 

One challenge in continuous data collection with 
smartphones is battery life. We used two strategies to 
minimize power use. First, TNT changes the frequency of 
data collection based on the time of interest (in our case, we 
assume most people sleep from 10PM to 10AM). Second, it 
reduces duty cycles when the phone battery level is less 
than 30% and stops when below 15% (see Table 1). 
TNT stores sensed data in a database residing on the 
protected storage of the phone. It creates a new database 
each day and uploads the previous database to the server. 
This strategy reduces the risk of data loss and complications 
that can come when attempting to upload large files. 

Sleep Diary 
TNT collects information about people’s last night sleep by 
using a diary designed based on the PSQI (see Fig. 1). 
Items in the diary include sleep time (when they went to 
bed, fell asleep, and woke up), subjective sleep quality (five 
scale rating, 1 = poor to 5 = very good), sleep disturbances 
(e.g. could not fall asleep within 30 minutes, woke up in the 
middle of night, etc.), and daytime sleepiness. The diary 
also asked about basic sleep environment, such as phone’s 
location during sleep (on bed, near the bed, in the bedroom, 
not in bedroom) and co-sleeping (e.g., alone, with partner 



or pet, with kids), for data analysis purpose. TNT reminds 
people to enter the sleep diary every morning, by using the 
Android notification service. 
DATA COLLECTION 
To assess the performance of TNT to detect sleep and sleep 
quality, we conducted a data collection study. We recruited 
participants living in United States, over age 18, who use an 
Android phone (version 4.0+) as their primary phone. We 
recruited participants across a range of sleep contexts and 
who both had and did not have trouble sleeping. 

Procedure 
All participants input demographic information, sleep 
environment details (e.g. have a pet or baby age < 2 in the 
bedroom), and sleep habits using our survey website. Next, 
participants installed TNT from the Google Play Store and 
used it for a month. We encouraged them to keep their 
phone turned on and to keep it in their bedroom while 
sleeping. We never instructed them as to where to place 
their phone in the bedroom. Each morning, a popup 
notification asked them to enter a daily sleep diary, 
described above.  
On the last day of the study, we asked participants to fill out 
the PSQI survey online. This asked for a self-reported 
rating of sleep quality for the duration of our month long 
data collection. The PSQI consists of 19 self-rated 
questions and five questions rated by a bed partner or 
roommate [10]. We only used the self-rated questions in our 
online survey, which includes: 
1. Subjective sleep quality 
2. Sleep latency (amount of time it takes to fall asleep) 
3. Sleep duration 
4. Habitual efficiency (hours slept / hours spent in bed) 
5. Sleep disturbances 
6. Use of sleeping medications 
7. Daytime dysfunction 
Each item was rated on a 0-3 scale. These seven component 
scores are then summed to yield a global score, which has a 
range of 0-21; higher scores indicate worse sleep quality. 
We used the sleep diary and PSQI data as ground truth in 
building models about sleep based on smartphone sensor 
data. We selected PSQI because 1) it provides a reliable and 
standardized measure of sleep quality as well as habitual 
bedtimes and waketimes, 2) it also collects a variety of 
sleep disturbances that might affect sleep quality, and 3) it 
has been used to discriminate between “good” and “poor” 
sleepers [10,11], which we can use this as a ground-truth 
for detecting global sleep quality. 
Participants were paid $2 for each diary entry for a 
maximum of $72, which includes a completion incentive. 

Participants 
Thirty participants signed up for the study and 27 (19 
female) completed it. Two withdrew and one was 
eliminated because of sensor failure on the phone. 
Participants ranged in age from 20 to 59 with an average  

 
Figure 3. Demographic information and the PSQI scores of our 
participants (Green and orange denote good and poor sleepers, 
respectively, where good and poor are distinguished by PSQI 
global score > 5). Center texts present the frequency of self-
reported categories about disrupting noises. 

age of 34 (Std. = 9.8). Approximately 80% of participants 
reported working or going to school during daylight hours 
and sleeping at night. Participants reported several different 
numbers of other sleepers in their bedroom (14 alone; 3 
with a pet; 8 with a partner; 3 with a partner and a pet; 1 
with a partner and a baby, and we had 1 with a partner, 
baby, and a small child). 
Fig. 3 shows demographic information and PSQI scores of 
our participants. We used PSQI global score > 5 to 
distinguish good and poor sleepers as presented in the 
previous literature (> 5 indicates that a subject is having 
severe difficulties in at least two PSQI components, or 
moderate difficulties in more than three components [10]). 
In our dataset, 66% had poor sleep where 3 reported that 
they have sleep abnormality (two participants talk in their 
sleep and one has insomnia). 

METHOD 
In this section, we describe how we processed our data, 
extracted features, and built our models to detect sleep and 
infer the sleep quality. 

Data Processing 
During our one-month study, participants submitted 795 
diary entries. Some skipped days and some entered more 
than one diary for a single day. We hand-cleaned the data, 
fixing obvious bugs in the diaries. For example, participants 
were occasionally confused by the 24-hour time entry. 
As a time unit for data analysis and feature extraction, we 
divided the time-series sensor data into a series of non-
overlapped 10-minute windows. We used 10-minute 
windows as our basic unit of analysis for two reasons: 1) a 
median sleep latency (a transition time from wake to sleep) 
of participants was 10.9 minutes in average, and 2) 10-



minutes was the level of granularity used by most 
participants to report bedtime and waketime. We labeled 
the windows in-between reported bedtime and waketime 
from the diaries as sleep and the other windows as not-
sleep. We did not use the sensor data of a day when there 
was no label information (a participant skipped entry of the 
sleep diary for that day). We did not use a diary when there 
was no sensor data (a participant turned their phone off). 
The resulting dataset included 90,097 windows (60,197 not-
sleep and 29,900 sleep) and 1439 segments (711 not-sleep 
and 728 sleep). 
We used data preprocessing techniques including outlier 
elimination and smoothing to reduce noise in the raw sensor 
values. We found that each phone seems to be different in 
terms of sensor ranges; therefore, we normalized the sensor 
values for each participant. 

Feature Extraction 
To infer different sleep contexts, we developed a number of 
features (see Table 2). To detect sleep (bedtime, waketime, 
and sleep duration), we used sensor level information, such 
as if the room is dark and quiet. We extracted statistical 
features including minimum (Min.), the 1st quartile (Q1), 
median (Med.), the 3rd quartile (Q3), maximum (Max.), 
 

Category Modality Feature variables 

Sleep 
detection 

(32 features 
were 

extracted for 
each window) 

Noise level {Min., Q1, Med., Q3, Max., Avg., Std.} of 
sound amplitudes 

Movement {Min., Q1, Med., Q3, Max., Avg., Std.}  
of the changes of acceleration 

Light 
intensity 

{Min., Q1, Med., Q3, Max., Avg., Std.}  
of light intensities 

{Min., Q1, Med., Q3, Max., Avg., Std.}  
of screen proximities 

Device state 
& usage 
pattern 

Duration of screen-on time 
The battery state {charging, not-charging, 

plugging-in/out} and alarm app usage  
{use, not-use} 

Regular sleep 
time Timestamp of window 

Daily sleep 
quality 

(122 features 
were 

extracted for 
each sleep 
segment) 

Sleep duration 
Bedtime, waketime, and sleep duration 

(extracted by using a sleep detection 
model) 

Sleep latency, 
habitual 

efficiency, & 
disturbances 

{#peaks, Avg. width of peaks, Avg. height 
of peaks, interval of peaks, position of 

peaks} of sensor values, {Min., Q1, Med., 
Q3, Max., Avg., Std.} of sensor values, 

{Med., Std.} of each feature for the 
window detection, and yesterday’s sleep 

quality (use the previously inferred result) 

Global sleep 
quality 

(198 features 
were 

extracted for 
each 

participant) 

Sleep 
regularity 

{Med., Avg., Std.} of bedtimes, waketimes, 
sleep durations and qualities for a month of 

sleeps (use the previously detected and 
inferred results) 

Regular sleep 
latency, 

efficiency, & 
disturbances 

{Med., Avg., Std.} of each feature for the 
daily sleep quality inference 

Table 2. Feature sets for sleep detection, daily sleep quality 
inference, and global sleep quality inference 

average (Avg.), and standard deviation (Std.) of the sensor 
values for each 10-minute window. We also used screen 
on/off, battery states, and the timestamp of the window as 
additional sleep detection features. 
We defined sleep quality features based on four factors of 
PSQI. These include sleep duration, latency, efficiency, and 
disturbances (we excluded three factors, subjective sleep 
quality rating, sleep medication, and daytime dysfunction, 
as these cannot easily be sense with a smartphone). We 
used the sleep detection results (bedtime, waketime, and 
sleep duration) as the inputs for the sleep quality inference 
models. We also added Med., Std., and peak of sensor 
values during sleep as features. Peaks at the inferred 
bedtime might indicate that the participant did not fall 
asleep completely (related to high sleep latency and low 
efficiency). On the other hand, peaks in the middle of 
inferred sleep could indicate sleep disruptions, e.g. waking 
up in the middle of night.  
Finally, to infer global sleep quality (i.e. distinguishing if 
people are generally good or poor sleepers), we extracted 
participant’s sleep regularity by calculating {Med., Avg., 
Std.} of sleep time. We also used {Med., Avg., Std.} of the 
sensor values for the sleep segments regarding sleep 
latency, efficiency, and disturbances. 
In total, we extracted 32 features for sleep detection, 122 
features for daily sleep quality inference, and 198 features 
for global sleep quality inference. 

Classification Models 
To detect sleep, we designed an algorithm based on a series 
of sleep/not-sleep classification as follows. First, the 
algorithm observes the sensor logs for 10 minute windows 
and classifies the window as a sleep or not-sleep state. It 
then uses a low-pass filter on the series of classified 
windows, eliminating possible sleep state detection errors 
such as temporal noises and/or disrupted states between 
very quiet and stationary situations. We used 30 minutes for 
the filter width to distinguish between a sleep disturbance 
and just noise. In other words, the algorithm has to look up 
the previous and next 30 minutes to make an accurate 
decision about if a participant is in a sleep or not-sleep state 
at that time. The filter width was chosen based on the 
rationale that more than 30 minutes could be regarded as 
not-sleep or a sleep disturbance, since one of the sleep 
disturbances described in the PSQI is “Cannot get to sleep 
within 30 minutes.” Finally, it detects bedtime as the start 
point of the series of sleep-state windows, waketime as the 
end point of the windows, and sleep duration as the time 
difference between the bedtime and waketime. 
To infer daily sleep quality, we formulated it as a two-class 
(good sleep and poor sleep) classification problem based on 
the PSQI’s global score calculation function. PSQI 
considers all different factors regarding sleep quality to 
estimate global quality of sleep that can be used to 
distinguish good and poor sleepers. As we mentioned 
earlier, we designed our sleep diary based on the PSQI, 



therefore we used the same measurement to get the ground 
truth of daily sleep quality from the sleep diary. 
As our final task, we classified each participant as good or 
poor sleeper (global sleep quality from PSQI) based on the 
aggregated sleep data for a month, in which the results can 
be used to detect the changes of regularity of sleep quality. 
We used two machine-learning algorithms, decision tree 
(C4.5) and Bayesian network (BN), along with a 
correlation-based feature selection method (FS) in which 
the features correlated to the target classes are used to build 
the models [22]. We also tested some features separately by 
using a 1R classifier that builds a set of rules based on only 
one feature. As baseline accuracies for our problems, we 
presented the result of a Random classifier that predicts a 
test sample as the most common class label in the training 
set. To handle the unbalanced class sizes in our problem, 
we used random resampling in the training set when we 
built models. 

RESULTS 
Sleep Detection 
We tested general models (trained with data from other 
participants) based on leave-one-user-out cross validation 
and evaluated the individual models (trained on each 
participant’s previous data) based on leave-one-day-out 
cross validation (a day = 6PM to next day’s 6PM). Table 3 
shows the comparison result between two approaches with 
averaged accuracies (%) in classifying 10-minute windows 
as sleep or not-sleep and sleep detection results (precision, 
recall, and F-score). Note that 1R_Time uses only 
timestamp of window, 1R_Scrn uses screen on/off, 
1R_Btry uses battery state, 1R_Light uses a feature from 
the light sensor, 1R_Acc uses an accelerometer (movement) 
feature, and 1R_Mic uses a microphone (noise level) 
feature. 
The best performance was achieved by the individual 
models with BN FS (BN w/ feature selection) that shows an 
average of 94.52% accuracy for the sleep and not-sleep 
 

  
General model  Individual model  

% Pre. Rec. F % Pre. Rec. F 
Random 66.81 0.00 0.00 0.00 42.29 0.29 0.82 0.42 
1R_Time 87.53 0.77 0.91 0.83 90.81 0.82 0.93 0.87 
1R_Scrn 77.91 0.63 0.95 0.76 78.83 0.67 0.97 0.78 
1R_Btry 80.73 0.75 0.67 0.71 80.96 0.73 0.74 0.72 
1R_Light 72.79 0.59 0.71 0.64 80.61 0.70 0.84 0.75 
1R_Acc 85.04 0.79 0.79 0.79 89.11 0.84 0.84 0.84 
1R_Mic 89.45 0.84 0.86 0.85 89.33 0.86 0.82 0.84 
C4.5 91.30 0.88 0.86 0.87 93.76 0.89 0.93 0.91 
C4.5 FS 92.36 0.87 0.92 0.89 94.00 0.89 0.95 0.91 
BN 90.19 0.84 0.89 0.87 93.73 0.89 0.93 0.91 
BN FS 93.06 0.87 0.94 0.90 94.52 0.89 0.95 0.92 
Table 3. Averaged accuracies in classifying 10-minute windows 
as sleep/not-sleep and sleep detection results (precision, recall, 
and F-score). Bold shows the best performance for each column. 

 
Figure 4. Averaged errors (minutes) and the standard errors in 
detecting bedtime, waketime, and duration by using the 
individual-model approach 

classification (F = 0.92 in detecting the sleep windows). 
The model produces ±35 minutes, ±31 minutes, and ±49 
minutes errors in detecting the bedtime, waketime, and 
sleep duration, respectively (Fig. 4 shows plus and minus 
time errors separately). The general models show 
comparative performance, for example, BN FS yielded 
93.06% accuracy (F = 0.9) for detecting sleep states, which 
is similar to the individual approach result (see Table 3). 
The global models, however, were less accurate in detecting 
bedtime and waketime, where the global BN FS made 
predictions within ±44 minutes, ±42 minutes, and ±64 
minutes of the ground truth data for bedtime, waketime, and 
duration, respectively. 
The top five selected features were time, battery state, Min. 
of movement, Std. of sound amplitude, and Q3 of sound 
amplitude. 1R algorithm results in Table 3 and Fig. 4 show 
how accurate the information from a single sensor can 
detect sleep. When the model used the regular time of sleep 
information (1R_Time), it yielded average errors of 1 to 1.5 
hours in detecting sleep time. Accelerometer (1R_Acc) and 
microphone (1R_Mic) features produced similar accuracies 
to 1R_Time, which showed the models’ flexibility at 
detecting unusual sleeping hours. On the other hand, the 
screen-on states (1R_Scrn), battery states (1R_Btry), and 
ambient light sensor (1R_Light) features performed poorly. 
The 1R_Scrn shows high recall rate (0.95 and 0.97 for 
global and individual model, respectively) since people 
cannot use phone (turn the screen on) during sleeping, 
while it showed very low precision rate (0.63 and 0.67) 
denoting that not using the phone does not mean people are 
sleeping. In the same vein, 1R_Scrn outputs biased errors 
toward the minus direction in detecting bedtime (i.e. it 
infers a person went to sleep earlier than the actual bedtime) 
and overestimated the waketime and sleep duration. 
Interestingly, 1R_Light also showed similar results to 
1R_Scrn, especially for bedtime detection. It is because the 
ambient light sensor was largely affected by the phone’s 
screen light at nighttime. 
If a sleep monitor system employs an individual model, a 
participant has to manually supply a certain amount of 



         
Figure 5. Averaged errors (minutes) and the standard errors in 
detecting bedtime, waketime, and duration over different size of 
training data (model = individual BN FS) 

ground truth to train the system. We investigated how much 
training data a participant would have to enter to expect 
reasonably good prediction performance. We tested our best 
model, individual BN FS, over different amounts of training 
data where we picked the training data randomly from the 
past of the test date. As shown in Fig. 5, three days to one 
week of manual tagging would be required to train the 
system to achieve more than one-hour level of accuracy for 
sleep detection. 

Daily Sleep Quality Inference 
To classify each participant’s daily sleep quality as good or 
poor, we first detected sleep by using the detection 
algorithm presented in the previous section (for training, we 
used ground truth sleep time), extracted features from the 
detected sleep segment, and then input the features to our 
sleep quality inference models. Here, to detect sleep 
quality, we used our best-performing model (BN FS built 
for individual participants). We could not use the sleep data 
not detected by our algorithm (1.62% of total sleep 
sessions). In addition, we did not include the participants 
who had only one or less days of poor sleep after the 
automatic sleep detection, since the trivial classifier of just 
saying all the sleep is good quality would perform more 
than 90% of accuracy in these cases. As a result, total 362 
 

 
Figure 6. Quartiles (x marks = average) of the accuracy (%) in 
classifying daily sleep quality. The detection rate (F-score) of 
poor sleeps is presented as a line plot where higher values 
denote better performance. A general model was evaluated by 
using a leave-one-user-out cross validation, while an individual 
model was tested by using a leave-one-day-out cross validation. 

 
Figure 7. Quartiles of the accuracy (%) in classifying daily sleep 
quality over different amount of training data. Poor sleep 
detection rate (F-score) is presented as a line plot (model = BN 
FS built for individual paticipants). 

sleep sessions from 17 participants were used in this 
specific experiment. Fig. 6 shows the classification 
accuracy and poor sleep quality detection rate by using the 
generally trained models and individual models (we plotted 
the accuracy as quartile graphs here because of the large 
variation for each participants result). BN FS built for 
individuals achieved the best performance on average with 
83.97% accuracy in classifying good and poor quality for 
each sleep (Min. = 25, Q1 = 81.82, Med. = 88.46, Q3 = 
90.48, Max. = 100%) and F = 0.63 in detecting the sleeps 
of poor quality. Please note the class distribution of our 
dataset is highly imbalanced where even the Random model 
could achieve around 70% of classification accuracy by 
predicting all the sleeps as the good class. However, it fails 
to detect poor sleep quality, and the detection of poor sleep 
is more important. 
Using a feature selection phase increased the performance 
much more than in the sleep detection task. It was because 
the feature dimension was too high for the small number of 
samples in the quality inference task. Features that were 
most frequently selected while classifying sleep quality 
include the detected sleep time (bedtime, waketime, and 
sleep duration), Std. of movement, and the previously 
inferred sleep quality (previous day’s quality). Interestingly, 
when we use only the previous day’s quality feature, the 
model (1R_PrevQ) failed to infer daily sleep quality (F = 
0.0). When we used only the waketime or duration feature 
with the individual model, we could detect around half of 
the poor days with poor sleep (1R_WakeT F = 0.45 and 
1R_Dur F = 0.51). 
As shown in Fig. 7, the individual model requires 3 weeks 
of ground truth data in order to produce results comparable 
to our best result (inter-quartile range of the accuracy = 
66.67 to 100%). 

Global Sleep Quality Classification 
For the good and poor sleeper classification problem (note, 
poor sleeper: PSQI global score > 5), we evaluated models 
based on leave-one-user-out cross validation (i.e. built 
general models). We used the individual models to detect 
sleep and infer daily quality, then input their results into the 
global sleep quality classifiers as features along with all the  



         
Figure 8. The averaged accuracy (%) and the standard error in 
classifying participants into good and poor sleeper (global sleep 
quality classification). The detection rate (F-score) of poor 
sleepers is presented as a line plot. 

other sensor features. Since we were not classifying daily 
quality but were detecting good and poor sleepers, we 
included all participant data (27 participants) in contrast to 
the daily classification task (17 participants) where we 
rejected the subjects who had one or no days with poor 
sleep quality. As shown in Fig. 8, BN FS produced the best 
performance with an average 81.48% of accuracy for 
classifying good and poor sleepers and F = 0.81 in 
detecting poor sleepers. Features closely correlated with 
sleep disturbances, such as Avg. width of peaks in sound 
noises, Std. of movement, and Max. of light intensity, were 
selected for global sleep quality detection. 

DISCUSSION 
In this work, we studied several feasibility aspects related to 
using commodity smartphones to detect sleep and sleep 
quality. Given the availability, popularity, and capabilities 
of smartphones, our objective was to assess if smartphones 
might be a reliable/adequate tool to automate collection of 
sleep behavior. 

Detection of Sleep Time and Duration 
Our analysis in estimating of sleep time and duration 
showed that we are able to detect bedtime, waketime, and 
sleep duration with ±35 minutes, ±31 minutes, and ±49 
minutes errors on average compared to the ground truth 
time reported by participants. These ranges seem relatively 
larger than commercial actigraphs like Jawbone and Zeo 
devices that have error rates lower than 10 minutes [14]. 
However, given the flexibility of our data collection and not 
restricting participants’ options in placing their phone in 
certain proximity, our achieved accuracy is significant. 
Besides, many health recommendations related to sleep 
duration assume hour-level accuracy [3] and according to 
sleep experts, precise sleep measurements are not 
necessarily needed to have a meaningful picture of sleep 
behaviors and trends [15]. Hence, our system yielded 
reasonable results in monitoring sleep status. 
Another unique aspect of our study was the ability to detect 
participant’s sleep state in more complex situations such as 

being with a bed partner, baby, and/or a pet. The average 
error in sleep duration in our study was ±49 minutes, which 
is the same as reported by Chen et al. in their mobile sleep 
monitor [14] where only sleeping alone situation was 
considered. 
One limitation of our system is that people might not 
remember their exact sleep time when they enter the diary 
in the morning, which could result in some evaluation 
errors (even the diaries have proven to be reliable as we 
described in Related Work). For example, in certain 
situations it was shown that people underestimated the 
amount of time they slept and overestimated sleep onset 
latency [12]. One way to mitigate this kind of error would 
be to measure the bias in the reported sleep time with 
commercial actigraphs and then repeat the study. Since the 
intention of our work is to see if a smartphone is “good 
enough” as a sleep monitor, using other equipment is out of 
scope of this paper. 
Our approach, based on detection of 10-minute windows 
classified as sleep or not sleep has several advantages 
compared to the direct detection of bedtime and waketime 
from the series of sensor values. For example, our approach 
can provide instant detection of participants’ sleep or not-
sleep state for a UbiComp system, without tracking people 
falling asleep or waking up time. Our approach also 
provides additional information about the kinds of 
abnormalities (such as waking up in the middle of night, 
sleep talking, severe snoring) by detecting disruptions as 
awake-like states in-between sleep states. While our current 
design only detects bedtime, wake time, and sleep duration, 
a low-pass filter could be used to resolve misclassified 
states. 

Classification of Sleep Quality 
In inferring daily sleep quality, we achieved an average 
accuracy of 83.97%. Our data collection strategy (including 
co-sleep options and flexible placement of the phone) 
makes inferencing more challenging. For example, the 
phone captures movements if participants place their phone 
on the bed, which results in more accurate detection of 
sleep disruptions. The false positives in the number of 
detected disruptions among solo sleepers might be less than 
for co-sleepers.  
One way of acquiring more accurate data about the sleep 
environment and people’s sleep status for the previous night 
is to ask people to monitor their recorded sleep and label 
disruptions. This option will give the people opportunities 
to capture and remember significant sleep events [25] as 
well as help train models to infer sleep quality. 
Sleep quality inference proved to be more difficult than 
sleep detection. This may be partially caused by the 
challenge of collecting accurate ground truth data. Sleep 
quality can be an ambiguous, making it difficult to report. 
Our query “How was your sleep last night? Rate it on a one 
to five scale score” does not capture the full extent of a 
sleep session. Consider the following scenarios. A person 



 
Figure 9. Quartile distribution of daily subjective sleep quality 
(self-reported score rated by 1 “very poor” to 5 “very good”) for 
each participant. Green and orange denote good and poor 
sleepers, respectively, where good and poor are distinguished by 
PSQI global score > 5 [10]. 

might sleep only a few hours, rising early to catch a flight. 
The quality can be good but the quantity is not enough; they 
do not feel rested. A person might have lots of trouble 
falling asleep, but once asleep they sleep deeply and feel 
rested when they rise 12-hours after going to bed. Finally, a 
person might be awakened by a pet in the middle of the 
night. The sleep was disturbed, but they might or might not 
feel rested. For example, it was shown that people tend to 
overestimate sleep quality with noise disturbances like 
music [35]. In all of these situations the single sleep quality 
question is ambiguous. Better questions could ask people to 
rate if people feel rested, if they feel they got enough sleep, 
and to rate the quality of sleep while asleep. 
Fig. 9 shows that many participants had a small 
interquartile range for daily subjective sleep quality where 
the median quality was “Good.” Nevertheless, subjective 
sleep quality is very important. For example, recurrence of 
major depression is often preceded by a drop in subjective 
sleep quality, but only moderately associated with objective 
sleep quality [16].  
One study limitation is that there is only one month of data. 
Because of this, we lacked enough examples of poor quality 
sleep as these happen with less frequency than good sleep. 
Finally, we could classify good and poor sleepers with 
81.48% of accuracy based on their one month of sleeps. 
The results from this model could be used to assess global 
sleep quality as well as to detect changes of regular quality. 
For example, one of our participants showed a decrease in 
sleep quality reported: “I generally sleep well, but haven't 
been sleeping or feeling well for the past ten days. I have a 
lot of congestion and bronchitis which makes it hard to 
sleep.” We expect to use our model over longer period of 
time to detect those health-related changes. 

CONCLUSION 
The goal of our work was to investigate how well a 
commodity smartphone can sense and model sleep and 
sleep quality without requiring the purchase of any new 
hardware or a significant change in people’s behavior. We 

also wanted to produce a set of insights to help guide the 
development of future sleep technologies, such as the 
amount of ground truth data needed for reasonably good 
detection. Our one-month field trial with 27 participants 
showed that we can detect an individual’s sleep with 
average errors of 35, 31, and 49 minutes for bedtime, 
waketime, and sleep duration. We can also infer an 
individual’s daily and global sleep quality with average 
accuracies of 83.97% and 81.48%, respectively. In our 
future work, we plan to use our dataset to test the feasibility 
of identifying types of sleep disturbances and to study 
recurring patterns in sleep behaviors that might predict 
upcoming problems. Finally, we plan to compare the 
performance of our mobile application with other 
commercially used wearable devices such as actigraphs. 
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