
GestureSeg: Developing a Gesture Segmentation System
using Gesture Execution Phase Labeling by Crowd Workers

Sven Kratz
FX Palo Alto Laboratory

3174 Porter Drive
Palo Alto, CA, 94304, USA

kratz@fxpal.com

Jason Wiese
FX Palo Alto Laboratory

3174 Porter Drive
Palo Alto, CA, 94304, USA

wiese@fxpal.com

ABSTRACT
Most current mobile and wearable devices are equipped with
inertial measurement units (IMU) that allow the detection of
motion gestures, which can be used for interactive applica-
tions. A difficult problem to solve, however, is how to sepa-
rate ambient motion from an actual motion gesture input. In
this work, we explore the use of motion gesture data labeled
with gesture execution phases for training supervised learn-
ing classifiers for gesture segmentation. We believe that using
gesture execution phase data can significantly improve the ac-
curacy of gesture segmentation algorithms. We define gesture
execution phases as the start, middle and end of each gesture.
Since labeling motion gesture data with gesture execution
phase information is work intensive, we used crowd workers
to perform the labeling. Using this labeled data set, we trained
SVM-based classifiers to segment motion gestures from am-
bient movement of the device. We describe initial results that
indicate that gesture execution phase can be accurately recog-
nized by SVM classifiers. Our main results show that training
gesture segmentation classifiers with phase-labeled data sub-
stantially increases the accuracy of gesture segmentation: we
achieved a gesture segmentation accuracy of 0.89 for simu-
lated online segmentation using a sliding window approach.

ACM Classification Keywords
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INTRODUCTION
Most current smartphones and wearable devices such as
smartwatches and fitness trackers are equipped with highly-
sensitive inertial measurement units (IMUs). These sensors
usually incorporate an accelerometer, a gyroscope and a mag-
netometer. This triplet of sensors provides information about
the device’s current acceleration, rate of rotation and absolute
orientation. Motion information from a device’s IMU is typi-
cally used for simple mode switching (changing the device’s
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screen orientation from landscape to portrait) and for context-
aware applications (e.g. inferring the user’s activity or mode
of transport), but it can also be used to recognize complex
motion gestures [14, 20, 29].

Gesture-based user interfaces offer a valuable alternative to
other modalities for capturing user input. For instance, smart-
watch touchscreens are incredibly small, which limits their
fidelity as an input device. Even on a smartphone using the
touchscreen typically requires two hands: one to hold the de-
vice and one to interact. Speech interfaces require speaking
out loud, which can be embarrassing (i.e., when walking on
the sidewalk), or even inappropriate (i.e., during a meeting).
Hardware buttons offer a limited input vocabulary (typically
binary), and take up valuable physical space on a device.
While gestures are not always appropriate, they offer a large
vocabulary as input space, and in the right context they con-
tribute to an enjoyable user experience (as evidenced by the
success of the Wii game console).

While the broad vocabulary of gestural interactions is a ma-
jor part of its value, one consequence of this broad vocabulary
is that it can be difficult for a developer who is deploying a
gesture-based interface to design a new gesture and deploy a
system that recognizes that gesture with high precision and
accuracy. For example, a developer has to segment a ges-
ture (i.e., the segmentation of the sensor’s data stream into
non-gesture and gesture segments), choose useful features for
identifying a gesture, and handle uncertainty in the gesture in-
terface.

Gesture segmentation in particular is a significant issue for
designers of user interfaces with motion gesture recognition.
To best make use of the fluidity that gestures enable for inter-
active use, automatic segmentation of the gesture from non-
gesture movements is highly desirable. This is a challeng-
ing problem to solve, which is evident by the many previous
works [14, 20, 17] that have mostly relied on manual ges-
ture segmentation using a push-to-gesture mechanism, i.e.,
requiring some sort of user action to delimit the start and end
of an input gesture. Another approach [27] used a predefined
delimiter gesture to mark the start of a subsequent input ges-
ture. These methods all require an extra step that interrupts
the fluidity of interacting with a gestural interface and thus de-
tracts from the user experience of using a gestural interface.
This paper introduces a new approach for automatically seg-
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menting gestures in an effort to make automatic segmentation
easier and more accurate.

Specifically, we present three main contributions to the area
of automatic gesture segmentation for IMU-based gesture
data:

First, we demonstrate the feasibility of training supervised
learning algorithms to classify specific gesture execution
phases, i.e., the start, middle and end of a gesture, as well
as the actual gesture class of the classified execution phase.
Apart from applying gesture phase detection to the problem
of automatic gesture segmentation, gesture phase detection
can also be used to increase the responsiveness of gesture-
based interfaces, as, e.g., it leaves developers the option of
providing guiding feedback during gesture execution, or al-
ready start executing commands tied to a gesture (i.e., when
the start of a gesture has been detected. ) while the user is
finishing up the gesture movement.

Second, we describe the collection of a comprehensive ges-
ture data set with manually-labeled gesture execution phases.
We describe the technical set-up we used and the lessons
learned when using crowd workers to accomplish the time-
intensive task of labeling motion data in the way we propose.

Third, we show how we used this data set to train a SVM-
based classifier for automatic gesture segmentation. Our re-
sults indicate that using gesture phase information signifi-
cantly improves the accuracy of segmenting motion gesture
data from ambient motion in comparison to using labeled data
where gesture phase information is not used.

RELATED WORK
In the following, we provide an overview of related work in
three fields that are closely tied to the topic of this paper:
IMU-based motion gesture recognition, gesture segmentation
and crowd annotation of machine learning data sets:

IMU-Based Motion Gesture Recognition
A significant amount of work has been accomplished in the
area of IMU-based gesture recognition, with the application
of several different machine learning algorithms. Schloemer
et al. [29] used Hidden Markov Models to detect gestures us-
ing data from a game controller’s IMU. Hoffman et al. [14]
applied AdaBoost [23] to an IMU-based gesture data set in
order to improve the recognition accuracy. Several previous
works [2, 19, 20, 24] used Dynamic Time Warping [28] for
gesture recognition. Lastly, Kratz et al. studied methods for
achieving rotation-invariant template-based gesture recogni-
tion [18] and the effects combining accelerometer and gy-
roscope data for different approaches to gesture recognition
[19].

Gesture Segmentation
There has been much prior work in the domain of gesture seg-
mentation. Older work has focused mainly on gesture seg-
mentation from video [3, 4, 10]. A specific sub-domain of
gesture recognition is hand gesture segmentation [7, 21, 34],
mainly to support the recognition of hand sign language. Fur-
ther work has focused on body segmenting body movement

gestures, e.g., for dance [15]. More recently, Wu et al. [35]
used depth information in addition to color imagery and deep
learning for gesture segmentation.

In contrast to video, IMUs provide data that is far sparser than
video. IMU data can also be noisy, increasing the difficulty of
segmentation and recognition. Thus, many of the contribution
in this vast body of work cannot be applied directly to IMU-
base gesture recognition or segmentation.

There have been some previous works on gesture segmen-
tation for IMU-based data. Ashbrook [6] suggests using a
threshold on the variance of the last N samples as decision
criterium for gesture segmentation. We believe that this ap-
proach has two drawbacks: (1) although we might be able to
segment gesture data from inactivity, we have no further in-
formation about the gesture the user is inputing (we believe
that the gesture ID can be detected with some certainty from
the start phase of a gesture), and (2), this method might not
perform well when deployed in the field and used in “noisy”
environments where the user is subjected to motion, e.g.,
when using public transport.

Xu et al. [36] describe a classifier for IMU-based hand ges-
ture that also contains a module for gesture segmentation.
They basically extend Ashbrook’s approach by (heuristically)
checking for additional parameters. The authors also propose
a method of reconciling the heuristic application on multiple
data axes. However, they do not provide any information on
the accuracy of their segmentation approach.

Ruiz et al. [27] proposed using a classifier to detect a “gate-
keeper” gesture that would then enable the entry of a subse-
quent command gesture. The results which we presented in
this paper suggest that such a design is not necessary and that
the intended gesture can be recognized directly.

Crowd Annotation of Gesture data
A large body of work has previously described the use of
crowd workers for the annotation of machine learning data
sets in general as well as gesture recognition in particular.
For instance, Spiro et al. [31] used crowd workers to an-
notate hand movements in video. The Glance project used
crowd workers to rapidly code behavioral events in behavioral
videos [22]. Ouyang et al. [26] used crowd sourcing to cre-
ate a gesture vocabulary for touchscreen-based gestures for
launching mobile applications. The CrowdLearner project
[5] used a crowd-based approach to train classifiers for mo-
tion an on-screen gestures.

We are, at present, not aware of any previous publication
that has tasked crowd workers with labeling gesture execu-
tion phases of such data using video and sensor visualization.
However, Grijincu et al. [12] used video and crowd workers
to annotate video of gestures on tabletop interface.

FEASIBILITY OF GESTURE PHASE CLASSIFICATION
To test the initial assumption that gesture execution phases
(i.e., start, middle and end of a gesture) can be recognized by
a classifier, we analyzed a motion gesture data set that was
used in a previous work [13]. When gathering this data set,
25 test users were asked to perform at least 20 repetitions of
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6 different motion gestures. The data (temporal sequences
of 3-axis acceleration, rotation rate and absolute orientation)
was gathered on an iPhone 4 at a frequency of 100 Hz. The
motion gestures were manually segmented using a push-to-
gesture button, delimiting the start (pushing the button and
holding it) and end of a gesture (releasing the button). In this
way, a total of 3507 gesture entries were recorded.

Extracting Gesture Phase Labels
As we only recorded motion data when the push-to-gesture
button was pushed and held, we did not know the exact length
of the proposed gesture start, middle and end phases. For this
reason, we conducted an exploratory statistical analysis on
the number of data samples per gesture entry in our data set
(Table 1):

average median st. dev. max min
Nr. of Samples 286 266 109 1766 24

Table 1. A set of exploratory statistics on the number of data samples
per gesture entry. N=3507 gestures in total.

Using this empirical data on gesture sample lengths we com-
puted the phase lengths for segmenting the gesture into the
three proposed phases using a value Lcutoff, defined as:

Lcutoff = µ− 2σ (1)

Figure 2 shows how we used Lcutoff to segment the data for
a complete gesture into three phases. We also used Lcutoff to
filter out gestures that are unusually short, i.e., we considered
only gestures with a length of Lcutoff or greater to build a seg-
mentation model.

Segmenting the gesture data like this, we obtain three labelled
data classes, start, middle and end. To obtain a visual indica-
tion that the data would be separable, we conducted a Princi-
ple Component Analysis (PCA) on the labeled data. Figure 1
shows 2D and 3D plots of the PCA with data dimensionality
reduced to two and three dimensions, respectively. Visually,
Figure 1 indicates the possibility of separating start and end
from middle, as those points are spatially well separated. At
this projection dimensionality, there appears, however, to be
a substantial intermixing of start and end (red and blue dots),
which may pose a problem for a classifier.

To obtain an initial classification result, we trained a Support
Vector Machine (SVM) classifier with a Radial Basis Func-
tion (RBF) kernel with the segmented and labeled data. Using
6-fold cross validation, the average accuracy for classifying
the gesture phases was 88.1%.

Discussion
Our preliminary results show that it is indeed possible to train
a classifier to recognize distinct phases of gesture entry. How-
ever, our initial approach has the following shortcomings:

1. The data set used in the preliminary study only includes
motion samples between pressing and releasing the push-
to-gesture button. It may, however, be of interest to also
consider motion samples shortly before and after gesture

EndMiddleStart
Gesture Segment Labels:

Figure 1. 2D and 3D PCA plots of the segmented gesture data. The plots
provide a visual indication that the start and end gesture segment classes
can be separated by a classifier from middle.

execution, as these could contain important motion infor-
mation that could be improve the classification accuracy of
the gesture phases.

2. Since we also want to delimit gestures from other motion,
we will need to train a classifier for a further label, noise.
This will allow us to delimit a legitimate gesture entry from
uninteresting motions of the mobile device.

RECORDING AN IMPROVED GESTURE DATA SET
To address the issues with the gesture data set used in the pre-
vious section, we conducted a new round of gesture record-
ings to obtain an improved data set. Our goal was to cap-

EndMiddleStart

minimum length: L_cutoff

Lcutoff / 2

Lcutoff = avg-2*std

Lcutoff  / 2n *( Lcutoff  / 2 )

Figure 2. The proposed segmentation strategy for our existing data set is
to build a classifier for the start, middle and end phases of a motion ges-
ture. We used empirical measurements of gesture lengths to determine
Lcutoff in order to set the correct number of sample points for each of the
gesture phases.
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Figure 3. The 14 gestures of the newly recorded gesture data set.

ture the complete data stream from each user session, so that
“noise” samples would also be included. In addition to ges-
tures manually delimited with a push-to-gesture button, we
also captured free-form gestures from the users without any
active delimitation.

For the gesture recording we recruited a total of 10 partici-
pants (3 female, 1 left-handed), all staff members of an in-
dustrial research lab. The majority of the participants were
between 30 and 45 years old. On average, the participants re-
ported that they moderate experience (2.7 on a 5-point Likert
Scale, 5=very experienced) with motion gestures.

For the data set, we captured a set of 14 different gestures
with a minimum of 15 repetitions per gesture for each user,
so about 2100 total gesture entries. We chose the gesture set
from gestures used previously in the literature [13, 14, 17,
29], so that it is possible to make comparisons (e.g., classifi-
cation accuracy) with previous work using a subset of gesture
types used in our research. Figure 3 shows an overview of the
gestures we used. During the recording sessions, users were
shown these images as a guide for performing each gesture
type.

We used a Bluetooth YEI 3-Space IMU [37] to record the
gesture data. We recorded the following 3-axis motion infor-
mation at a rate of 120 Hz: absolute orientation, rotation rate,
acceleration and “linearized acceleration”.1

To support manual segmentation of the motion data into dis-
tinct gesture phases, we also captured all user gesture entries
on video from the front and from the side of the user using
a pair of cameras. We implemented a short script in Python
using OpenCV to juxtapose the two video views and record
them to a single video file for each user and gesture type.

The test users found it easy to translate the graphical gesture
representations of the gestures to motions—after data sam-
pling was completed, they rated the ease of this process with
an average of 4.4 on a 5-point Likert Scale (5=very easy).

GESTURE PHASE LABELING VIA CROWD WORKERS
We initially implemented a software tool [16] that can be used
to graphically annotate the gesture data in order to define the
different phases (start, middle and end) of a gesture that we
are interested in. However, initial attempts at annotating the
gesture data manually this way revealed to be a very time
consuming process: about 10 minutes are needed to annotate
the 15 gesture entries per gesture type per each user. Thus, we
estimate that to completely annotate the entire 10 user data set
a proficient annotator will need about 23 h.
1This is the orientation-compensated acceleration of the device, with
the gravity acceleration component removed [37].

Web-Based Labeling Tool
To alleviate the time demands of manually labeling the ges-
ture data, we developed a web-based labeling tool for use with
Amazon Mechanical Turk crowd workers. Figure 4 (a) shows
a screenshot of the labeling tool. The tool shows a time plot
of the 12 sensor values contained in the data together with the
video of a given gesture entry. A time cursor on the gesture
plot is synchronized with the video, so that the annotator can
correlate the video and sensor data in order to delineate the
individual gesture phases. Further controls allowed the an-
notator to select the video playback speed (full, 1/2, 1/4 and
pause) and define the annotation type. The interface provides
buttons to switch between label types (start, mid and end).
Workers can label the data by dragging along the data plot,
with the desired label type selected. A link to a help page
[32] with a tutorial video was provided on the labeling tool’s
webpage.

Implementation Details
The web-based labeling tool was implemented using the
D3.js framework [8] for to generate the plot. We implemented
a custom server backend in Python that, once a task is sub-
mitted by a worker, stores the task metadata and data labels
in a MongoDB database. The webpage is displayed directly
on Amazon Turk’s worker interface through an iframe being
served by our server.

UI Design Considerations for Use on Crowd Working Plat-

forms
Initial test-postings of gesture labeling tasks, or “Human
Input Tasks” (HITs) in Amazon Mechanical Turk jargon,
showed some design weaknesses of the labeling interface that
needed to be corrected:

• Validation: not all crowd workers completed the task cor-
rectly. We therefore added validation code that ensured
gesture labels were entered completely, i.e., all phases of a
gesture input are labeled, and correctly, i.e., start, mid and
end phases of the gesture input are labeled in this order.

• Task Fatigue and Abuse: we noticed that some particular
workers would start out working on the tasks normally, but
would gradually transition to inputting low-quality annota-
tions. At the same time, the task execution time would go
down significantly. We took this as a sign that the work-
ers were abusing the task and rapidly entering valid but
non-meaningful labelings. To correct this issue, we imple-
mented a timeout for the submit button, that would allow
task submission at a random time of 40–70 s after the task
had started (before implementing this the average task time
for non-abusing workers was around 2 minutes).

• Task Window Size: for another set of initial crowd work-
ers, we observed consistently incorrect annotations, al-
though they had not submitted tasks with unusual rapid-
ity. After further investigation, we noticed that labels had
only been added on one side of the the gesture plot. This
led us to the conclusion that part of the task window must
have been obscured by a low screen resolution or shrunken
window size. We thus added JavaScript code to the web
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(a) Crowd Worker UI for Labeling (b) Review UI
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Figure 4. (a) Shows the web-based data labeling tool for use by crowd workers. (b) Shows the web-based review tool used to validate the labeling inputs.

interface to disable the task interface until a the worker ad-
justed the task window to a certain minimum size.

Data Preprocessing for Amazon Turk
To permit data labeling via crowd workers, we had to shorten
the original gesture recordings as they contained on average
15 gesture entries and thus took up to 10 minutes to label
manually—a timespan we deemed was too long for an indi-
vidual crowd worker to work on a single data set. To divide up
the data into smaller subtasks, we therefore used the button-
delimited subset of the data we recorded (where individual
gestures had been delimited using the IMU’s button).

We used the existing button presses as markers to delimit the
gesture. However, we sampled the data such that the 200 ms
preceding and trailing the button-based delimitation were also
visible to the crowd worker. This was done based on our as-
sumption important information may be contained in the data
preceding and trailing the delimiting button press, e.g., cases
where the participant initiated or terminated the gesture en-
try before pressing or after releasing the button, respectively.
While 200 ms may appear short, it is actually a quite generous
addition of data for each gesture. Adding 200ms at the start
and the end of the gesture constitutes roughly 19% increase
in the available data, given the average total gesture length of
248.5 samples and a sampling rate of 120 Hz.

As the video data had also been recorded matching the orig-
inal data sets of 15 gesture entries, we implemented shell
scripts using FFMPEG [1] to process the video data as previ-
ously described.

In this way, we generated a total of 2424 pairs of data and
corresponding video samples.

Review Tool
In initial task deployments, we recognized that a number of
labeling tasks were not completed correctly by the crowd
workers. We therefore implemented a web-based tool to re-
view the crowd workers’ results. Figure 4 (b) shows a screen-
shot of the review tool. It features two main panes. The
left pane shows a list with each row containing information
(loaded from a database) on a submitted worker tasks. On
each worker task row, there is a view button. Clicking this
button shows the video snippet, plot of gesture data and an-
notation results (superimposed on the plot) for the associated
task. If the task is valid, a valid checkbox can be clicked, and
the task’s status in the database will be updated to be valid.

Implementation Details
We adapted the D3.js data viewing components of the worker
interface to develop the review tool. We made use of the
React.js framework [11] to display a dynamic list view con-
taining the worker task metadata. The backend reused most of
the original server script and accessed the MongoDB database
containing the worker task metadata.

Results of Crowd Labeling
After finishing the implementation of worker interface, re-
viewer interface and the backends, we deployed the labeling
tasks on Amazon mechanical turk. A total of 2715 tasks were
deployed on Amazon Mechanical turk. This number takes
into account invalid tasks that were completed incorrectly and
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subsequent re-submitted. At the end of our one-week deploy-
ment on Amazon mechanical turk, we obtained a total of 2192
correctly labeled data sets.

A total of 89 distinct crowd workers worked on the data. The
most productive worker completed 730 correct task assign-
ments, the least one task assignment. The median number of
tasks completed correctly per worker was 5.

INITIAL RESULTS WITH NEW DATASETS
Our initial results indicate that it is possible to train a classi-
fier to distinguish between the start, middle and end phases of
gesture entries. This previous classifier was trained generally
over all different gesture types. For our manually-annotated
gesture data, we trained classifiers for each phase of each ges-
ture. Thus, we intended to find out if it would be possible to
classify the gesture type, for instance, just by looking at the
start phase.

We trained the classifiers using the WEKA toolkit [33], and
therefore preprocessed the gesture data as follows:

All gesture data was mean-shifted and normalized to a [−1, 1]
interval. Then, to obtain feature vectors of homogenous
length we subsampled each marked gesture phase segment
to contain 10 samples of the 12 data points provided by the
sensor. Thus each feature vector has a length of 120. We
used linear interpolation to subsample the data evenly from
the source annotations.

We trained a multi-class SVM classifier (with a radial basis
function kernel, with parameters C = 4.0 and γ = 0.5, ob-
tained via a manual grid search for best accuracy) on training
data labeled with the gesture ID and gesture phase (i.e., a to-
tal of 42 different classes). Our results using 10-fold cross
validation show an average precision of 0.93 (and F1 score
of 0.921 ) with a minimum precision of 0.78 and a maximum
accuracy of 1.0. These results not only indicate that we can
classify the type of gesture being performed but also the cur-
rent phase of gesture performance.

For comparison with our first data set, we also trained a multi-
class SVM classifier (again with a Radial Basis Function ker-
nel, C = 4.0 and γ = 0.5) on the training data labeled just
with the gesture phase for each gesture entry (i.e., three dif-
ferent classes). Using 10-fold cross-validation we obtained
an average accuracy of 0.95 (and F1 score of 0.95). This re-
sult provides us with a verification that our new data set is
on par or better than our initial data set. We also get an in-
dication that manual segmentation, taking part of the lead-in
and lead out of a gesture into consideration, yields improved
recognition accuracy for gesture-phase classification.

However, these results only show the detectability of gesture
phases, not the possibility of segmenting them (or entire ges-
tures) from noise data. In the following, we will more closely
explore gesture segmentation, using the crowd-labeled data
set and an SVM-based approach for segmentation.

SVM-BASED GESTURE SEGMENTATION ALGORITHM
In the following we will describe an SVM-based method to
gesture segmentation. We present a comparison it to a method

Data Type Noise Start Mid End
Sample Count 923,502 184,507 319,134 185,936
Equiv. time in min 128 25 44 25

Table 2. Number and type of samples in our data set. The minute equiv-
alent time is based on the IMU’s 120 Hz sampling rate.

[6] previously described in the literature and also study the ef-
fects of using gesture phase information on the segmentation
accuracy.

Data Characteristics
Data captured from the IMU is represented as temporal se-
quences of 12 dimensional samples representing the IMU’s
sensor readings at a given point in time. Starting out, we
split the data into four subsets based on the data label classes:
Noise, Start, Mid and End data. Consequently, Noise data
was all data that was not labeled with any class, Start data is
data labeled as belonging to the start of a gesture, Mid data
was labeled as belonging to the middle of a gesture and End
data was labeled as belonging to the end of a gesture. The fol-
lowing table provides an overview of the number and type of
samples obtained through our capturing sessions and crowd-
based labeling:

To obtain a better understanding of the labeled data set, we
conducted an initial statistical analysis on the lengths of all
labeled gesture segments, which is shown in Table 3.

Gesture Phase Start Mid End
Number of Instances 2708 2708 2708
Average Length 66.0 114.8 67.7
Median Length 56 101 56
Length Std. Dev. 32.6 37.2 37.2

Table 3. Descriptive statistics on the length of the labeled gesture seg-
ments. Label count denotes the total number of data intervals of a given
gesture phase label.

Data Classes
We hypothesized that the labeling of gesture phase data (i.e.,
the start, middle and end of a gesture) would improve ges-
ture segmentation accuracy. Thus we extracted the following
classes of data from the dataset.

• noise: all data that was not labeled as belonging to a gesture
is labeled as noise. 2714 instances.

• start: all data that was labeled by crowd workers as the
start of a gesture is labeled as start. 2708 instances.

• mid: all data that was labeled by crowd workers as the mid-
dle of a gesture is labeled as mid. 2708 instances.

• end: all data that was labeled by crowd workers as the end
of a gesture is labeled as end. 2708 instances.

• gesture: all data from a contiguous start-mid-end sequence
was labeled as gesture. This class is used to compare the
accuracy of classifiers trained on a gesture segment to that
trained on entire gestures. 2655 instances.
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Data Preprocessing
We preprocessed data sequences representing gestures, ges-
ture phases or noise sequences for building SVM-based mod-
els. To begin, we mean-shifted and normalized the data mag-
nitude to lie within a [−1, 1] interval. Because gesture entries
are sequences of IMU measurements of variable length, we
needed to apply subsampling to equalize the sequence length
for the purpose of representing these subsampled sequences
as feature vectors for training SVM classifiers. Thus, we sub-
sampled each labeled data segment to a standard length of
30 vectors. This resulted in the feature vector for each data
segment to consist of 30 * 12 = 360 elements. We imple-
mented subsampling using linear interpolation, using Code 1
(see Appendix). In a deployed version of this model, simi-
lar preprocessing would take place on the stream of incoming
data, using the parameters calculated during the training of
the classifier.

SVM-Based Segmentation Classifier CSVM

We used a SVM-based classifier for gesture segmentation.
For successful segmentation, the goal of the classifier was set
up to distinguish between noise and gesture data. We used
the libsvm [9] SVM library. We configured libsvm to SVM
models using a radial basis function kernel with the following
parameters C = 1.5, γ = 0.125. The parameters C and γ
were obtained using a manual grid search for best accuracy.
In the following we will refer to the SVM-based classifier as
CSVM.

Heuristic Segmentation Classifier of CHEUR

As a comparison to CSVM, we implemented a heuristic seg-
mentation classifier, CHEUR, based on an approach previ-
ously described by Ashbrook [6]. This approach is based on
calculating the standard deviation of noise data and gesture
data. We calculated the standard deviation for all sequences
belonging to the noise, gesture, start, mid and end classes, re-
spectively. We then aggregated this data, for the sequences
of all the aforementioned classes, respectively, by calculating
average standard deviation across all sequence samples. This
results in a 12 dimensional vector representing the average
standard deviation for each of the classes.

For classification, we then use the average standard deviation
of the class (i.e., gesture, start, mid and end) we want to seg-
ment as the threshold for the input sequences. We do this
by checking which components of the input sequence’s stan-
dard deviation lie above or below the threshold, obtaining a
boolean vector of comparison results. We then use the mode
of the comparison result to determine the type of data the in-
put sequence belongs to. Code 2 (see Appendix) shows the
implementation of the heuristic function we used.

Results of Data Class and Classifier Comparison
Using our labeled data set, we ran a comparison of the SVM-
based classifier CSVM with the heuristic approach CHEUR.
Since we hypothesize that using gesture phase information
can improve gesture segmentation accuracy, we compared the
accuracy of training CSVM and CHEUR using data labeled
with gesture phase information vs. gesture-only labeling.
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Figure 5. This figure shows a comparison of the accuracy of the SVM-
based (CSVM) and heuristic (CHEUR) classifiers for classification of
each the gesture, start, mid, and data data classes vs. noise.

We thus compared the classification accuracy of classifying
each of the gesture, start, mid, and data classes vs. noise.

To ensure generalizability of the results, we used 10-fold
cross-validation for evaluating CSVM. Since there is less con-
cern with overfitting due to the simplicity of CHEUR, we did
not use cross-validation with that technique.

The results of the comparison are shown in Figure 5. As can
be seen, CSVM performs better than CHEUR for every data
class. More importantly, the results also show that using data
labeled with gesture phase clearly improves segmentation ac-
curacy: the accuracies for gesture vs. noise (no phase infor-
mation) are 0.874 and 0.653 for CSVM and CHEUR, respec-
tively, and the best accuracy was achieved when using start
vs. noise (with phase information) with 0.934 and 0.78 for
CSVM and CHEUR, respectively.

ONLINE SEGMENTATION ALGORITHM
The results of the previous section show that classifiers can
distinguish between noise data and gesture data with a rela-
tively high accuracy. Using gesture phase information to la-
bel the gesture data yields the most accurate result. However,
the previous comparison was run in-place using statically-
labelled data. To obtain better insights into how CSVM or
CHEUR would perform on system with live streaming data,
we implemented a further test harness to train and classify
the algorithm under a simulated live data capture scenario.

Data Chunking and Relabeling
To simulate live data streaming, we partitioned our data into
chunks and attempt to classify each chunk individually as
noise or gesture data. This reflects the way we envision a
gesture segmentation algorithm operating on live data could
be implemented: collect a time series of measurements from
an IMU up to a certain “chunk” length, and then classify the
time series of the chunk to determine if a gesture is being
executed or not, then repeat the process.
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Figure 6. This figure shows the accuracy results for the online segmenta-
tion algorithm using SVM-based (CSVM) and heuristic (CHEUR) classi-
fiers for classification of each the gesture, start, mid, and data data classes
vs. noise.

We chose 83 samples as the chunk size. This is the rounded
up average (82.83) of gesture phase segment length as shown
in Table 3. To obtain labels for the extracted chunks for su-
pervised learning, we used the gesture segment labels from
the original data set to assign a sublabel to each item in a
chunk, corresponding to its position and label in the original
data set. In this case, chunks can initially have sublabels of
multiple types. To find a unified label for the entire chunk,
we calculated the mode of all labels and use this as the final
label for each chunk. Code 3 in the Appendix shows how we
implemented the chunking and labeling.

Chunking the data in this way resulted in the following
amounts of labeled chunks:

Label Noise Start Mid End
Count 9753 2306 3886 2135

Table 4. Number of chunks per data class after chunking.

Classifier Training
We preprocessed the labeled chunks as described previously
to train CSVM. Again, we were interested in the effect of the
labeled gesture phases on training. Thus, we compared the
accuracy of classifying noise vs. the following data classes:
start, mid, end and gesture, where gesture are start, mid and
end combined into a single label. We used 10-fold cross val-
idation when evaluating CSVM. Again as a comparison, we
also evaluated CHEUR on the same data classes.

Results of Data Class and Classifier Comparison
Figure 6 shows the comparison results for the online algo-
rithm. Again, CSVM had a higher accuracy than CHEUR with
a significant margin. The accuracy results of CSVM using
gesture phase labeled data vs. plain gesture data are simi-
lar to those of the previous study (see Figure 5): using the
whole gesture for training yields significantly lower segmen-
tation accuracy than using either of the gesture phases, 0.685

vs. 0.819 for gesture vs. start, respectively. Of the gesture
phase labeled data, start data yielded the highest accuracy,
with end second and mid third, with minimal difference be-
tween start and end classes.

These evaluation results of online gesture classification show
that our method is robust under (simulated) live streaming
conditions. The fact that these results effectively mirror the
previous evaluation using the original static-labeled data fur-
ther strengthens our hypothesis that using gesture phase in-
formation for gesture segmentation classifiers improves seg-
mentation accuracy.

SLIDING WINDOW ONLINE SEGMENTATION ALGORITHM
The evaluation segmentation algorithm described in the pre-
vious section is potentially limited by the fixed data segments
that are used in training and validating the machine learn-
ing approach. To gain further insights into the effects of ges-
ture phase data on automatic segmentation we also explored
a sliding-window approach to online segmentation.

Window Generation and Classifier Training
Instead of using fixed chunks as in the previous section, we
used a sliding window on the gesture data to train and test
a supervised learning algorithm, which decides if the win-
dow contains gesture or noise data. As the size of the sliding
window, we again chose the average gesture phase segment
length of 83 data points. We generated the sliding window
data by shifting a window of 83 data points across our data
sets in 1 data point increments. This resulted in a total of
1,612,996 windows on the data. To generate labels for super-
vised learning we used the gesture segment labels from the
original data set to a assign a sub label to each item in a win-
dow, corresponding to its position and label in the original
data set. We then calculated the mode of all sublabels in the
window to determine the final label for the window.

Because of the large number of potential training samples, we
used only every 100th window for training classifiers. Vali-
dation was conducted using the entire windowed data set. To
evaluate the effect of gesture phase data on automatic classi-
fication, we trained multiclass SVM classifiers on the follow-
ing combinations of data class sets:

S0 = {noise, start, mid, end}
S1 = {start, noise ∪ mid ∪ end}
S2 = {mid, noise ∪ start ∪ end }
S3 = {end, noise ∪ start ∪ end }
S4 = {noise, start ∪ mid ∪ end }
Using libmSVM, we trained a multiclass SVM for S1 and bi-
nary SVMs for S2–S4. We used radial basis function kernels
with the same parameters as in the previous section. As a
comparison, we also evaluated CHEUR on the same data class
sets, however with the loss of multiclass classification.

Results of Sliding Window Segmentation
Figure7 shows the accuracy results of our analysis of the
online segmentation algorithm using the sliding window ap-
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Figure 7. This figure shows the accuracy results for the online segmen-
tation algorithm using CSVM and CHEUR using a sliding window ap-
proach.

proach. Similar to the previous evaluations, training the algo-
rithms with data sets using gesture segment data (S1–S3) to
differentiate between a specific gesture phase and noise plus
other gesture phases resulted in the highest accuracy scores,
with S1 using CSVM achieving an accuracy of 0.819. Also
similar to the previous analyses, CHEUR resulted in the low-
est accuracy accross all data class sets.

Analysis of Offset Effect
We synthetically generated a label for each offset window
based on the ground truth of our labeled data set. Thus, each
window is offset from the start of the nearest ground truth la-
bel in the labeled data set by a specific value. Because the
data set is fully labeled, the range of possible offsets from the
start of nearest ground truth label is constrained. Our analysis
indicates that the offset ranges between (-)446 samples before
and (+)445 samples after the start of the nearest ground truth
label (which is defined to be at 0 offset. Figure 8, bottom,
shows a density plot of the offsets of the sliding windows.
We can see that the offset of the majority of windows lies
within ±100 of the start of a ground truth label.

Figure 8, top, shows the effect of offset on segmentation ac-
curacy. Although the average accuracy is acceptable, there is
a noticeable dip for approximately the first 50 samples after
offset 0. We believe this is not a severe issue as the accuracy
quickly recovers after the dip. We furthermore believe that
the dip is due to labels changing in the original data set (e.g.,
from noise to start) at offset 0, and this is probably the part
of the data which appears most ambiguous to classifiers. We
think that the observed dip and recovery of the segmentation
accuracy could cause a low amount of lag or unpredictability
for the onset point of detecting the start of a gesture when our
approach is used in a live system. We will need to be examine
this phenomenon more closely in future work.

DISCUSSION
In this paper, we explored the hypothesis that using motion
gesture data labeled with gesture phase information increases

Figure 8. Analysis of the effect of the offset of the window with respect
to the original labeled data sample. The top plot shows the segmentation
accuracy given the offset point from the start of a labeled segment for
CSVM on data set S1. The bottom plot shows the density of samples with
a given offset.

the accuracy of automatic gesture segmentation when com-
pared with using gesture data without additional phase infor-
mation. We described our process for collecting a new mo-
tion dataset and for using crowd workers to label the data with
gesture phase information. This dataset allowed us to test our
hypothesis by comparing the accuracy of SVM-based clas-
sification and a heuristic technique on the different types of
labeled data. We conclude from our results that using ges-
ture phase information improves automatic segmentation ac-
curacy.

Use of Crowd Workers for Labeling Motion Gesture Data
One insight we gained in this paper is that, given the proper
instructions and validation routines, crowd workers can be
used effectively to label motion gesture data. The quality of
the data labeling obtained from the crowd workers has re-
sulted to acceptable machine learning accuracy for supervised
learning, and, although the development of the web-based
user interface for use by the crowd workers took a substantial
amount of time, the execution speed of manual labeling us-
ing crowd workers was impressive: all 2715 tasks were com-
pleted within 3–4 hours of an afternoon weekday.

Feedback in User Interfaces
One of the particularly interesting results of these experi-
ments was the high accuracy of the 42-class CSVM classifier.
In general, the more classes that a classifier has, the worse
its accuracy is. The high accuracy of this many-class classi-
fier demonstrates the potential for identifying a gesture just
from its start, while the user is still in the process of com-
pleting that gesture. This kind of subdivision of recognizing
a gesture is particularly valuable in providing a fluid user in-
terface. For example, rather than a developer receiving an
onGestureCompleted callback in her code, she could in-
stead receive onGestureStart, onGestureMiddle, and
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onGestureEnd for detecting a particular gesture, similar
to the event callback for a mouse (e.g. onMouseHover,
onMouseDown, onMouseUp, etc.). The interface can then
provide more immediate feedback to the user (i.e. that the
gesture is being recognized, and updating the UI accord-
ingly).

Handling Uncertainty
This approach of segmenting a gesture into its start, middle,
and end also has the potential to improve the handling of un-
certainty in detecting gestures. A whole-gesture classifier has
one chance to classify a gesture correctly. However, classify-
ing the start, middle, and end of a gesture offers the possibility
of three different classifications, which could be combined to
improve the classification accuracy. One way this could be
used is as a tie-breaker (e.g. first use a whole-gesture classi-
fier and then follow up with gesture phase classifiers if the
confidence is too low). They could also be used as votes
(e.g. only two of the three gesture phases have to classify
the correct gesture, the minority vote is thrown out). Further-
more, this approach maps nicely to the concepts introduced
by Schwarz et al. [30]

LIMITATIONS AND FUTURE WORK
While the results of these experiments demonstrate the po-
tential value of using gesture phase classification to improve
the accuracy of segmenting gestures from noise and classify-
ing those gestures, there are some limitations to the existing
experiment design that highlight important opportunities for
future work.

Dataset and Crowd Labeling
Although the crowd workers generally performed well on
their labeling tasks, the dataset may still be imperfect. Due
to the sheer number of workers and task items, there may still
be errors in the labeling. Another issue is that the labeling
may not be optimally consistent between crowd workers. Al-
though we specified how the data should be labeled in a series
of tutorial videos shown to the crowd workers, there may still
be individual variations between crowd workers that we could
not control.

Using data initially delimited with a ”push-to-gesture” button
may have potentially injected some hysteresis into the data
set, favoring the recognition of gesture start and stop points.
However, we believe that the button push does not have a sig-
nificant effect: The button on the IMU were micro switches
with very little travel. Since it was a physical button, the
users usually already had their finger placed on it. So the to-
tal movement required to press the button was much smaller
than, for instance, tapping a touch screen button on a smart-
phone. More important, the section “Initial Results” presents
gesture phase recognition results using a subset of the non-
button data that was manually annotated, which clearly shows
that gesture phases can be detected independent of any button
press. Our main results reflect this.

Additionally, all data was recorded under laboratory condi-
tions, with the users mostly stationary. Future evaluations
will need to test whether the approach proposed in this paper

fares well under higher-intensity user motion (e.g., traveling
on public transport). However, the present results should be
suitable for enabling auto-segmenting gestural interaction for
scenarios where the user is using the device in a stationary
setting. Furthermore, we achieved good segmentation accu-
racy results without needing to model individual users.

Testing Method
The tests we conducted demonstrate the potential value of us-
ing gesture phase data for training classifiers for automatic
gesture segmentation. However, all tests were conducted on
the existing data set. Even the simulated live streaming evalu-
ation may be overly optimistic. Thus a follow-up experiment
with users entering live data is desirable.

In the case of the online segmentation algorithm using a slid-
ing window approach, segmenting the data set into sliding
windows resulted in an overabundance of training data. We
had to subsample to every 500th window to obtain accept-
able model generation times with using SVMs, yet still used
16130 labeled feature vectors for training. Other machine
learning techniques, e.g., deep learning, that are better suited
to large training data sets might result improved accuracy in
this case.

We believe, however, that the current paper contributes the
foundations needed to implement live gesture segmentation
system in the near future: the engineering effort that we put
into generating the labeled data set and the results of tests we
conducted on the use of gesture phase information for auto-
matic gesture segmentation will be of great utility when de-
veloping such a system.

Future Work
With the insights gained from this paper, our immediate intent
is to develop and evaluate a live prototype gesture segmenta-
tion application on a wearable device such as a smartwatch.
Furthermore, we aim to explore the use of further machine
learning approaches with the aim of increasing our segmen-
tation accuracy. Lastly, we would like to extend our approach
to gesture segmentation to other sensor techniques such as
skeletal tracking by depth cameras and use it to enable gesture
segmentation in augmented workspaces, where, for instance,
a users’s desk is tracked via a depth camera.

APPENDIX
This appendix contains listings of several Python methods
which we referenced in the paper and were used in prepro-
cessing and conducting evaluations on our data sets. All code
is written in Python using the NumPy [25] scientific comput-
ing library.

Code 1. Data subsampling.
def subsample(data, num_items):

rows = data.shape[0]
subsampled_data = []
for k in xrange(num_items):

5 idx = float(k) * float(rows-1) \
/ float(num_items)

low = math.floor(idx)
high = math.ceil(idx)
fac = idx - low
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10 # linear interpolation between
# low and high
value = data[low, :] * (1.0-fac) \

+ data[high, :] * fac
subsampled_data.append(value)

15 return subsampled_data

Code 2. The comparison function for CHEUR. The function returns
either true or false.
def heuristic(sequence):

std = np.std(sequence, axis = 0)
comp = std > NOISE_THRESH_STD
r = mode(comp)[0][0]

5 return r

Code 3. Chunking/labeling algorithm for online segmentation test.
def chunk_and_label(in_data,

in_labels,
chunk_len = 83):

chunks = []
5 labels = []

datalen = len(in_data)
idx = 0
while idx + chunk_len < datalen:

fr = idx
10 if idx + chunk_len > datalen:

to = datalen
else:

to = idx+chunk_len
majority = mode(in_labels[fr:to])

15 labels.append(majority)
chunks.append(in_data[fr:to])
idx = to

return chunks, labels
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