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ABSTRACT

As medical organizations increasingly adopt the use of electronic
health records (EHRs), large volumes of clinical data are being
captured on a daily basis. These data provide comprehensive in-
formation about patients and have the potential to improve a wide
range of application domains in healthcare. Physicians and clinical
researchers are interested in finding effective ways to understand
this abundance of data. Use of visual analytics to analyze and ex-
plore healthcare data is one such research direction. In this work,
we present a visualization and analysis environment to understand
patient progression over time. Through the use of optimized data
structures and progressive visualization techniques, we allow users
to interactively explore how patients and their progression change
over time. Compared to existing techniques, our work provides ad-
ditional flexibility in analyzing patient data and has the potential to
be used in a real-time hospital setting. Finally, we demonstrate the
utility of our approach using a publicly available intensive care unit
(ICU) database.

1 INTRODUCTION

The US healthcare system is producing hundreds of thousands of
patient records detailing a wide range of information from admis-
sion times and dates, to symptoms and outcomes. Until recently,
this data has been difficult to access, especially in bulk, often lacked
a useful organization, and thus has been generally underutilized for
clinical research. With the increasing use of EHRs, this paradigm
changes, allowing researchers easy access to a large collection of
information. If used effectively, this data may lead to better predic-
tions of patient outcomes, personalized medication, and more tar-
geted interventions. However, to realize this potential requires the
ability to understand the clinical data in detail. Given the massive
amounts of available data, for example, ICUs may collect real-time
data streams of all patients [1], which implies automatic or semiau-
tomatic techniques to identify and explore interesting patterns and
underlying trends. In this context, visualizing and exploring patient
progression over time can provide valuable insights and facilitate
the decision-making of physicians and clinical researchers.

Several factors need to be taken into consideration when ana-
lyzing this type of data: First, given the large number of patients,
an individual, per-patient analysis is time-consuming and does not
lend itself to finding commonalities and trends. Instead, patients
should be grouped according to various criteria, such as symptoms,
outcomes, etc. Second, to compare groups of patients who arrive at
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different times, their records must be aligned, for example, by their
time of admission, time of major procedures or other common fac-
tors. Third, patient progression over time needs to be presented in a
concise manner to allow simultaneous exploration of large numbers
of patients. Finally, to utilize such a system in a hospital setting, the
analysis must be interactive, allowing users to quickly explore dif-
ferent hypotheses.

The ideal system described above presents a number of practical
challenges, especially for the large databases of interest. First, there
exist a number of potentially interesting metrics by which to group
patients and thus any analysis must be flexible and efficient enough
to change the metric on-the-fly. Furthermore, whereas some met-
rics are easy to apply and absolute (e.g., splits by gender), others
depend on specifying a similarity threshold that determines when
two patients are considered to be in the same group. However, in
practice this threshold is typically not known a priori, and in fact un-
derstanding how patient distributions and progression change with
different thresholds may provide important insights. Most exist-
ing approaches focus on a single metric and a preselected thresh-
old [37, 38]; we present a system that allows users to freely explore
metrics and thresholds in an interactive setting.

Another challenge is the size and complexity of the data. Given
a large number of patients and high temporal resolution, it is often
difficult to grasp the progression of certain groups, let alone iden-
tify salient ones. Therefore, presenting data in a concise manner
and providing support for various parameter selections and simpli-
fications is crucial to provide the necessary insights.

From an analysis perspective, providing an effective exploration
of patient progression requires three abilities: first, grouping pa-
tients within a time step at different similarity thresholds; second,
correlating patient groups over time; and third, interactively visual-
izing and exploring patient progression to understand how different
similarities affect their behavior. In this paper, we focus on extract-
ing patient groups across multiple patient similarities and exploring
their progression with the aid of tracking graphs, where a concise
representation of feature evolution is captured as a collection of fea-
ture tracks, see Figure 1. We provide clinical researchers with a vi-
sualization and analysis environment that is developed based on our
earlier research in the scientific domain [35, 36]. This prior system
couples feature grouping and correlation components with visual-
ization techniques to explore the temporal evolution of features in
combustion data sets.

Our visual analytics process data in several steps. First, we use
the patient similarity metric introduced in [18] to group patients
across multiple similarity thresholds. Then, patient groups are cor-
related over time by tracking the individual patients within. In order
to allow interactive extraction of data, our system uses optimized
data structures to store these patient group and correlation details.
Within the system, tracking graphs are used to present a global
concise view of patient progression, and progressive visualization
techniques are employed to enable interactive exploration of data.
Finally, in collaboration with clinical researchers, we apply our vi-
sualization and analysis environment to a publicly available ICU



Figure 1: An example tracking graph showing patient progression
over time. Each node represents a patient group and its “track”
shows how that group progresses over time.

database, the clinical database of Multiparameter Intelligent Moni-
toring in Intensive Care (MIMIC II) databases [30], and explore the
temporal progression of patients for varying similarity thresholds.

2 RELATED WORK

A subset of the relevant related work is presented here to pro-
vide context and background for our research work. Analyz-
ing time-varying data sets usually involves feature extraction and
tracking steps. For healthcare data, tracking the progression of
patient groups, i.e., the features-of-interest, is relevant to clini-
cal researchers. Among the many feature definitions and their
computation techniques can be found in the literature, techniques
that extract feature information for all or a large range of values
in a single pass are particularly useful. These techniques often
result in hierarchical representations. For instance, hierarchical
clustering [34, 15, 39, 3, 6] and various other topological tech-
niques [4, 32, 5] have been used to effectively capture flexible fea-
ture hierarchies.

Hierarchical clustering is considered to be one of the most pop-
ular methods for creating a feature hierarchy. It partitions data into
homogeneous groups based on a measure of similarity through the
use of clustering. Depending on the similarity measure used, the re-
sults can lead to very different hierarchies. Moreover, many sequen-
tial and parallel algorithms for hierarchical clustering are available
in the literature. Several important results on sequential algorithms
are presented in [21, 10] and details on previous parallel algorithms
for hierarchical clustering are summarized in [22]. This type of
clustering imposes a hierarchical structure on the underlying data
irrespective of whether such a structure is appropriate. However,
due to its simplicity, many applications have used this method to
explore the clustering hierarchy of features. In this work, we also
make use of hierarchical clustering to group patients within a time
step at different similarity thresholds.

In topological analysis, techniques exist that are able to effi-
ciently extract and encode entire feature families in a single analy-
sis pass. Reeb graphs [24], contour trees [7], merge trees [5], and
Morse-Smale complexes [4] are several such techniques. Among
them, Reeb graph, contour tree, and merge tree are contour-based
and the Morse-Smale complex is gradient-based. As a result, the
Morse-Smale complex captures very different structural informa-
tion.

Visualizing the temporal evolution of features has long been a
problem of interest within the visualization community. Depend-
ing on the subject area, many different techniques have been de-
veloped to address this problem. Traditionally, abstraction, illus-
tration, morphing or animation-based techniques [20, 14, 16] have
been used to visualize temporal evolution of features. Other tech-
niques such as change detection [31] and high-dimensional projec-
tion [17] have also been used in the past. Tracking graphs that show

the feature evolution as a collection of feature tracks that split or
merge over time are considered to be an effective representation
for visualizing feature evolution [28, 35]. These graphs provide
concise global views of feature evolution and are more amenable
to filtering and simplifications. As clinical researchers are particu-
larly interested in concise representations, we make use of tracking
graphs to visualize patient progression over time.

[29] includes a comprehensive survey of information visualiza-
tion systems used to visualize, explore, and query EHRs can be
found. These approaches related to EHRs can be broadly cate-
gorized into two categories: those that focus on a single patient
record [27, 13, 26] and those concerned with a collection of patient
records [33, 37, 38, 19]. Approaches in the first category focus on
providing comprehensive information about a single patient (e.g.,
patient history, significant events, medication, and treatment), and
the second category aims at presenting an overview from multiple
patients. The latter provides less detail on each individual patient
and focuses more on recognizing patterns and outliers within pa-
tient groups. Among these approaches that fall in the second cat-
egory, LifeFlow [38] and OutFlow [37] are particularly interesting
as they visualize event sequences in EHRs. LifeFlow uses color for
a compact view and OutFlow uses a graph-based representation. In
contrast, we do not visualize the progression of patient groups as
an event. At a particular time step, the current event of a patient is
one of the parameters considered within the patient similarity met-
ric used. Also, within our system any similarity metric can be used
to define patient similarities, providing more flexibility.

3 SYSTEM COMPONENTS

An interactive visualization and analysis environment is essential
to gain an in-depth understanding of patient progression. In this
work, we refine a prior system that relies on dynamically con-
structed tracking graphs to enable feature extraction, tracking, and
simplification [35, 36]. Although this system is designed to study
general time-varying features, so far it has been applied to analyze
features only in scientific simulations. We extend its functional-
ity to effectively visualize patient progression in healthcare data.
This section provides a comprehensive description of our system
partitioned into several subsections dealing with: patient grouping,
patient correlation, visualization, exploration, and implementation.

3.1 Grouping Patients Within a Time Step

The first step towards understanding clinical data is defining its fea-
tures and a time step size based on which subsequent analysis is to
be conducted. For our intended research, the feature-of-interest is a
patient group (i.e., similar set of patients), and a day is considered
to be the appropriate time step size. Next, for each time step in
the data set, these patient groups need to be extracted and aligned.
In this work, to ensure all patients’ hospital stays start at the same
time, we align data based on a patient’s admission time.

Once features are extracted and aligned, they should be grouped
based on a appropriate grouping method. By maintaining a notion
of scale, this feature grouping naturally approximates a meaningful
hierarchy. The naive approach of creating this hierarchy is by ex-
haustively precomputing all possible features at all possible scales.
Many popular grouping algorithms also produce nested sets of fea-
tures for varying scale, which in turn creates these types of hierar-
chies (e.g., hierarchical clustering techniques progressively merge
elements [8] and threshold-based segmentation creates increasingly
larger regions [4]). In our case, we use hierarchical clustering. For
each time step in the data set, patient groups are clustered based on
their similarity to generate a hierarchical representation in the form
of a tree. During clustering, we use the metric of [18] to define
patient similarities but any other similarity metric could be used as
well.



Figure 2(a) shows an example where such a hierarchy is con-
structed by progressively merging individual patients, with the most
similar ones clustered first. Each leaf in the hierarchy represents a
patient and each branch a patient group. Along with the hierarchy,
various patient group-based attributes such as patient count, mean
age and mean heart rate are computed and stored on a per-branch
basis. For a given data set, an offline preprocessing step is used
to compute these patient hierarchies, and the results are stored in a
look-up structure to allow interactive exploration of patient groups.
Within this look-up structure, for each patient group, its parent de-
tails and patient group-based attributes are stored. To determine
correspondences across patients later, each patient is marked with
a unique ID. This hierarchy is computed for each time step in the
data, and is stored in a separate file to allow interactive exploration
of patient groups.

(a) (b)

Figure 2: (a) A patient hierarchy constructed by progressively
merging similar patients, with the most similar ones clustered first.
(b) To extract patient groups, the hierarchy is cut at a fixed thresh-
old, resulting in a forest of subtrees, where each subtree represents
a patient group.

Once the hierarchy is computed, patient groups and their at-
tributes can be quickly and easily extracted for any similarity
threshold within its range, see Figure 2(b). Given a similarity
threshold s within the full range of r, the corresponding patient
groups can be extracted by “cutting” the hierarchy at s. This creates
a forest of subtrees, where each subtree represents a patient group
existing at s.

3.2 Correlating Groups of Patients Over Time
Once patient groups are identified, the next step is to correlate them
over time by tracking individual patients within. Two patient groups
in consecutive time steps are considered to be correlated if they
share at least one patient. All such correlations are extracted for
each time step. To efficiently store and interactively extract these
correlation details, we utilize the meta-graph structure of [35]. Sim-
ilar to the aforementioned patient hierarchy, this meta-graph struc-
ture is able to encode patient group correlations and their attributes
for a range of similarity thresholds.

The meta-graph is generated in two steps. First, per-patient cor-
relations are computed using the patient IDs computed above. For
example, two patients in consecutive time steps are considered to
be correlated if they have the same ID. As individual patients are
represented by leaf branches in the feature hierarchy, this step re-
sults in correlations across leaf branches in consecutive time steps.
If a correlation exists, we assign an edge with the weight of 1 across
the two corresponding leaf branches, (bi

t , b j
t+1, 1). Second, these

per-patient correlations are accumulated along the feature hierarchy
to compute the per-patient group correlations. At the accumulation
time, if a correspondence already exists, we accumulate only the
edge weights.

Just as in the patient hierarchy, various correlation-based at-
tributes such as the amount of patient overlap are computed and
stored within the meta-graph structure. Again, once the meta-graph

is computed, patient group correlations and their attributes can be
quickly extracted for any similarity threshold within the full param-
eter range. For a selected similarity threshold s, first, patient groups
existing at s for each time step in the data set are obtained using
the precomputed patient hierarchies. Then, correlations that exist
across those extracted patient groups are obtained from the meta-
graph structure. Together, these extracted patient groups and their
correlations form the tracking graph at f , see Figure 3. This meta-
graph structure is also created in an offline preprocessing step and
the resulting structure is stored in multiple files (i.e., one file per
time step), each containing a set of edges representing its correla-
tions to patient groups in the next time step.

Figure 3: Tracking graph construction. For a similarity threshold s,
first, patient groups existing at that value are obtained from corre-
sponding patient hierarchies. Then, the meta-graph is used to ex-
tract correlation details. Here, the correlations extracted are indi-
cated with black arrows. The resulting tracking graph is displayed
at the bottom.

3.3 Visualizing and Exploring Patient Progression

Our system for exploring patient progression over time contains
three views: patient grouping view, patient progression view, and
patient view, see Figure 4. Within each view, various progressive
visualization techniques are employed to achieve interactivity. For
instance, data is always presented with respect to a focus time step
that is processed first. Data for the neighboring time steps is then
extracted and presented in order of increasing distance. All views
designed for only a single time step (i.e., patient grouping view and
patient view), use the focus to determine their time step. The pa-
rameters such as hierarchy parameters and other filter parameters
are coordinated across all views to provide a fully linked analysis
environment.

3.3.1 Patient Grouping View

To enable researchers to gain a quick visual understanding of how
patients group together for varying similarity thresholds, the patient
hierarchy of the focus time step is visualized within this view. As
the similarity threshold is changed, active patient groups within the
hierarchy are also highlighted. In Figure 4(b), the selected similar-
ity threshold within the hierarchy is displayed in a brown vertical
line, and the active patient groups are highlighted in prominent col-
ors.



Figure 4: Our system contains three views: (a) patient view, (b) patient grouping view, and (c) patient progression view. The patient view
consists of several subcomponents: (d) a word cloud, (e) textual, (f) geometric embedding, and (g) geospatial views. The patient grouping
view shows the hierarchy for the focus time step and the patient progression view displays the tracking graph for the current focus and time
window. Within the patient progression view, nodes are scaled based on the patient group size, and the focus time step is indicated with a black
arrow. Here, a patient group is selected, which results in its progression being highlighted (indicated in red within the patient progression
view). In the patient view, the selected patient group’s details are displayed.

3.3.2 Patient Progression View
This view visualizes the temporal progression of patients using
tracking graphs. Starting from the user-defined focus time step,
nodes and edges are iteratively added both forward and backward
in time up to the user-defined time window to create the tracking
graph, see Figure 4(c). Each node in the graph represents a patient
group. A set of nodes in the same x coordinate indicates groups in
one time step and edges across them indicate their correlations. For
visual clarity, nodes in the focus time step are always displayed in
prominent colors. Progressive techniques as in [35], specifically, a
fast initial graph layout and a slower greedy one, are used to visu-
alize these tracking graphs.

3.3.3 Patient View
Several visualization techniques are combined here to present a spe-
cialized view of patients. Specifically, we integrate word cloud,
textual, geometric embeddings, and geospatial visualizations, see
Figure 4(a).

• Word Cloud Visualization
This component is dedicated to providing a quick overview of
textual information regarding patients. For a selected patient
group, a word cloud is constructed from the patient group-
based attributes stored within the patient hierarchy, see Fig-
ure 4(d). Here, to obtain more intuitive overviews, the numer-
ical attributes are converted into ranges. This visualization
displays high-frequency words using bigger fonts and brighter
colors, and others in faded and smaller fonts.

• Textual Visualization
As the name suggests, this visualizes textual details of pa-
tients in their native domain (i.e., as text), see Figure 4(e). For

a selected patient group, textual visualization displays its at-
tributes such as hospital admission ID, patient ID, care unit
and age.

• Geometric Embedding Visualization
Regardless of the data type, visualizing geometric embedding
reveals interesting details and trends about data. This view
visualizes the geometric embedding of patients in either 2D
or 3D, see Figure 4(f). As geometric embedding details are
not very obvious for the clinical data, for each time step, the
GraphViz [11] ‘neato’ layout algorithm together with patient
similarity details is used to compute the 2D embedding of pa-
tients.

• Geospatial Visualization
When relevant information is available, we allow data explo-
ration to be augmented with geospatial visualizations, see Fig-
ure 4(g). For instance, if a patient has his physical location
details available for each moment in time (both during and/or
prior to his hospital stay), this information will be visualized
within this view. In addition to visualizing patient geospa-
tial locations, their trajectories can also be displayed to easily
identify data trends related to geographic locations.

3.3.4 Interactive Exploration
As tracking graphs can easily become complex and difficult to un-
derstand, various simplifications have to be performed on them to
successfully understand their underlying trends. Specifically, we
enable several simplification options. Through the linked-view in-
terface, researchers are allowed to explore data sets by changing the
focus time step and time window. They can select a particular day
within a patient’s hospital stay, expand and contract its neighbor-
ing days to view progression both forward and backward in time.



Within our system, the similarity threshold within the patient hier-
archy, correlation amount within the meta-graph and other attribute
values available (i.e., patient group-based and correlation-based),
can all be explored. We also allow tracking graphs to be filtered by
the length of stay of a patient group, which enables small patient
stays to be eliminated from the analysis.

Valence two and zero nodes of a tracking graph can be hidden to
prevent visual clutter, nodes can be scaled based on their size, and
progressions of certain patient groups can be highlighted. To help
researchers maintain context across systems’ views, we also make
use of correlated color maps and allow nodes to be colored using
various patient group-based attributes. All these options combined
enable researchers to interactively simplify tracking graphs, isolate
interesting patient progressions and explore their parameter space.

3.4 Implementation
Our system is implemented using the ViSUS framework [25, 23],
which provides the basic building blocks for designing a streaming,
asynchronous dataflow. Figure 5 shows the dataflow utilized within
our system.

Figure 5: Our system’s dataflow contains several modules. The data
is read into the system using the Data Reader module. Then,
this node and edge information is filtered according to the current
parameters within the Filter module. This module sends the re-
sultant data to Layout and View modules simultaneously. The
two Layout modules within the dataflow compute the relevant
graph layouts and the View modules render the information re-
ceived.

The Data Reader module is dedicated to reading data into the
system. It checks whether all data required for the current track-
ing graph has been loaded. If needed, it loads the required data
and passes it to the Filter module. This module filters the received
patient group and correlation details for the current parameter and
attributes values. This filtered information is then simultaneously
sent to layout and view modules.

Each of the two layout modules computes a graph layout and
sends those layout details to the relevant view modules for ren-
dering. The Hierarchy Graph Layout module computes the initial
layout for the tracking graph and sends this information to the Pa-
tient Grouping View and Patient Progression View modules. This
hierarchy graph layout is computed only once for each time step
as the data is read for the first time. The second layout module,
Greedy Graph Layout, computes a greedy layout for the tracking
graph each time its parameters change and passes them to the Pa-
tient Progression View module. This greedy layout is computed
to make sure the edge crossings are minimized within the tracking
graph.

Our dataflow contains three view modules. The first view mod-
ule, Patient Grouping View, visualizes the patient hierarchy of the
focus time step. Once the module receives the necessary node and
hierarchy details from Filter module and the layout details from
Hierarchy Graph Layout module, it renders the patient hierarchy.
The Patient Progression View module initially renders the tracking

General Patient demographics, hospital admissions,
discharge dates, room tracking, death dates
(in or out of the hospital), ICD-9 codes,
unique code for healthcare provider, and
type (RN, MD, RT, etc).

Physiological Hourly vital sign metrics, SAPS, SOFA,
ventilator settings, etc.

Medications IV meds, provider order entry data, etc.
Lab Tests Chemistry, hematology, ABGs, imaging,

etc.
Fluid Balance Intake (solutions, blood, etc), output (urine,

estimated blood loss, etc).
Notes & Reports Discharge summary, nursing progress

notes, etc; cardiac catheterization, ECG,
radiology, and echo reports.

Table 1: An overview of the data categories within MIMIC II clini-
cal database

graph using the hierarchy graph layout. Then, as the greedy layout
becomes available, it is integrated with the current graph. The third
view module, Patient View, provides more specific views of patients
(geometric embedding, geospatial, word cloud, and textual visual-
izations). Once this module receives the required data, depending
on which visualization mode is selected, the corresponding compu-
tations and renderings are triggered. Each time parameters and/or
selections are changed, the current processing within the dataflow
is interrupted and restarted. However, rendering within the views
maintains the current state for visual continuity.

Most parts of our system (except word cloud and geospatial
visualizations) are implemented in C++ and use OpenGL render-
ing. The word cloud and geospatial visualizations make use of
JavaScript libraries and functions such as d3-cloud [9], a Wordle-
inspired word cloud layout, and Google maps [12]. Within the sys-
tem, the integration between C++ and JavaScript is achieved using
the Awesomium library [2], which enables C++ code to be seam-
lessly integrated with HTML UI and to maintain interactions across
the two.

4 RESULTS

We enable clinical researchers to study the progression of pa-
tients via interactive exploration of dynamically constructed track-
ing graphs. The effectiveness of our framework is demonstrated
with the use of a publicly available ICU database.

The clinical database of Multiparameter Intelligent Monitoring
in Intensive Care (MIMIC II) databases [30] contains comprehen-
sive EHR data collected from hospital medical information systems
(both patient bedside workstations and hospital archives). This data
is obtained from a set of ICUs including medical, surgical, coro-
nary care, and neonatal in a single tertiary teaching hospital in the
2001 to 2008 time period. It includes patient information that falls
into various categories such as general, physiological, medications,
fluid balance, notes, and reports, see Table 1. The entire database
totals to about ≈ 27GB and contains information about tens of
thousands of ICU patients. In order to visualize MIMIC II clini-
cal data within our framework, the relevant patient hierarchies and
meta-graph structures need to be computed and stored. This is done
in an offline preprocessing step.

First, for each day in a patient’s hospital stay, patient details
available in the database (e.g., admission ID, age, gender, race,
ICD-9 code, drug code, hospital stay length, mean heart rate, mean
temperature, and max urine output) are extracted, which results in
38291 patient admissions from 32536 patients. These details are
then aligned to make sure all admissions fall on the first time step
of the resultant data set. The resulting data set after aligning con-



tains 174 time steps (i.e., 174 days).
Patients in each time step are then clustered together using the

metric of [18]. This patient similarity metric was previously ap-
plied to the same MIMIC II clinical database to identify patient
similarities within the first day of the ICU stay [18]. In order to
apply the metric to our research, the required clinical, administra-
tive, and categorical variables are extracted from the database for
each day within a patient’s hospital stay. Next, correlations across
patient groups are computed by tracking individual patients within
the groups.

Once the patient groups and their correlation details are stored
in our data format, the total data size is reduced to ≈ 680MB. By
precomputing the patient hierarchies and meta-graph structures and
storing them using optimized data structures, we allow interactive
exploration of patient progression over time for several gigabytes
of data.

Researchers are provided with the flexibility to vary the patient
similarity thresholds and explore the entire parameter space inter-
actively. Such interaction provides an understanding of how pa-
tients group together for varying similarity thresholds within a par-
ticular day in their hospital stay. Figure 6 shows several examples
of patient groups and their progression for 30, 34, 35, 36, and 40
similarity thresholds. As the similarity thresholds decrease, more
patients are grouped together, reducing the complexity of the track-
ing graph. For a specific similarity metric, exploring the full range
of similarities enables researchers to gain insights on that metric’s
range of values. In our case, upon exploration we realized that for
this particular patient similarity metric, the appropriate similarity
threshold range is 30-38. Any similarity threshold below or above
that range either grouped all patients into one group or divided each
patient to be in a separate group.

Our system presents a global concise view of patient progression
over time using tracking graphs. The full tracking graph showing
the patient progression over time at 36 similarity threshold is dis-
played in Figure 7. By observing these tracking graphs, specifically
feature track length indicating the hospital length of stay of patients,
it is clear that although many of the patient stays are less than 90
days (i.e., 3 months), our data set also contains several longer pa-
tient stays. Of 32536 patients, we found 6 patients with hospital
lengths of stay greater than 90 days.

More importantly, various simplification options available in our
system allow researchers to further simplify the tracking graphs.
For example, filtering the tracking graph by correlation amount al-
lows removal of the least frequent patient progression paths from
the tracking graph, making frequent patterns more prominent. If an
analysis is to be conducted only on longer hospital stays of patients,
filtering options available within our system, specifically filtering
tracking graphs by the length of a feature track, are useful. Figure 8
illustrates several such simplification results.

Additionally, the patient view of our system is useful for obtain-
ing an overview of patient groups. As the user selects a certain
patient group, this view displays the details of its patients. The
word cloud visualization provides a quick visual overview of the
information within a selected patient group, see Figure 4(d). The
numerical attributes such as age and hospital length of stay are con-
verted to ranges to obtain more intuitive results. The exact patient
details are also presented in the textual visualization within the sys-
tem, see Figure 4(e).

5 CONCLUSION AND FUTURE WORK

In this work, we present a visualization and analysis environment
for understanding patient progression over time. The system’s inter-
active abilities to explore patient progression for different similarity
metrics and for varying similarities are a distinct advantage over ex-
isting techniques used in healthcare. Using our system, researchers
are able to explore how patients group together and progress over

Figure 6: Effects of varying the similarity threshold to explore the
temporal progression of patients. Here, patient groups and a portion
of their corresponding tracking graphs are shown at 30, 34, 35, 36,
38 similarity thresholds. The focus time step of the tracking graphs
is indicated with a black arrow, and the nodes are scaled based on
the patient group’s size. In each graph, patient progression for 10
time steps both forward and backward in time from the focus time
step is displayed.

time, identify frequent progression paths, and also refer back to the
native space of data for a visual understanding. By combining opti-
mized data structures and progressive visualization techniques, we
enable interactive exploration of terabytes size data, which provides
the platform to use this type of analysis in a hospital setting.

Within this work, an existing patient similarity metric is utilized
for defining patient similarities. At each moment in time, patient
similarities are computed by looking at a patient’s current clini-
cal, administrative, and categorical information. A better similar-
ity metric would be one that considers both the current information
of the patient and the entire history starting from the hospital ad-
mission time. In order to obtain better results, we hope to utilize
such a similarity metric in the future. In this work, we demon-
strate the applicability of our approach using a publicly available
ICU database. We are looking into obtaining additional health-
care databases to use within our system, specifically, databases with
geospatial information for which the patient view within our sys-
tem would prove to be more beneficial. Finally, we aspire to use
our visualization and analysis environment in a real-time setting to
assist the decision-making process of our collaborating physicians
and clinical researchers.



Figure 7: The entire tracking graph showing the complete patient progression for the MIMIC II clinical database. The graph contains 1110
nodes and 1288 edges for a total of 174 time steps. Here, 36 similarity threshold is used.

Figure 8: Simplifications of tracking graph. (a) A tracking graph showing the patient progression for the first 50 days within the hospital stay
at 37 similarity threshold. (b) Tracking graph in (a) filtered to contain only correlations with overlap≥2. (c) Tracking graph in (a) filtered to
contain only patient groups with size≥5.
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