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ABSTRACT

Understanding temporal evolution of features has long been a prob-
lem of interest for a variety of applications in science and technol-
ogy. Tracking graphs which show the evolution of features across
time as a collection of tracks are the method of choice for represent-
ing such data. However, due to the ever increasing sizes of datasets,
constructing and visualizing them in a comprehensible manner and
performing interactive changes is challenging. Here, we present a
research proposal which enables users to explore and understand
these time-verying data sets, regardless of the underlying data type.
As such, we present a novel visualization and analysis environment
which enables interactive exploration of dynamically constructed
tracking graphs.

1 PROBLEM

One of the most common analysis tasks is the need to understand
the evolution of time-varying features. Often, there exists some no-
tion of a feature-of-interest at each moment in time, e.g. burning
cells in combustion data, twitter topics in social media data, and
these features evolve over time. Exploring and analyzing the behav-
iors of these features with respect to changes in parameters, such as
thresholds, and in time are of interest. However, this poses a sig-
nificant challenge as it involves coupling the analysis both within
and across timesteps. A temporal analysis multiplies the amount of
data that must be considered simultaneously, making it challenging
to present them in a comprehensive manner.

Abstract tracking graphs that indicate the evolution of features
as a collection of tracks that split/merge over time are often used
to represent the complex spatio-temporal relationships across such
features. Creating a tracking graph requires two independent com-
ponents: the ability to define a feature-of-interest; and a way to
correlate them across time. For both aspects, there exists a wide
range of solutions, such as clustering [4] or topological analysis [2]
to define features, and spatial overlap- or predictor-based for fea-
ture tracking [14, 15, 12, 16]. Nevertheless, for the terabyte-scale
datasets common today, constructing these tracking graphs often
results in hours or days of file I/O time alone, making dynamic
modification of feature parameters or correlation criteria infeasi-
ble. Furthermore, creating the corresponding optimal graph layouts
which minimize the edge intersections may take hours to compute
preventing any interactive changes. Finally, for all but the smallest
datasets, such graphs, even assuming an optimal layout, quickly be-
come incomprehensibly large and complex for users to understand.
See Figure 1. These aforementioned reasons severely limit the abil-
ity to explore the relationships between feature selection parameters
and the temporal evolution of features.
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Figure 1: A zoomed in view of a tracking graph for a device scale
combustion simulation dataset [1, 2] visualized and optimized using
dot [6]. The displayed graph only contains 33 of the 324 timesteps
(819 nodes), yet its still nearly incomprehensible due to the complex
interactions.

2 DISSERTATION STATEMENT

In consideration of the above discussion, we propose that it is pos-
sible to dynamically define, extract and simplify tracking graphs for
large-scale time-varying datasets. We further propose that it is pos-
sible to design an interactive framework for addressing the general
task of understanding feature evolution over time without focusing
on any specific application domain. As such, this proposed work
leads to a new framework that couples hierarchical feature defini-
tions with progressive graph layout algorithms to provide an inter-
active exploration of dynamically constructed tracking graphs. The
utility and generality of our approach is demonstrated using several
large-scale scientific and non-scientific data sets.

3 METHODOLOGY & PLAN OF RESEARCH

Defining & extracting dynamic tracking graphs. We intend to
make use of flexible data representations, which are significantly
smaller than the original datasets and yet retain enough information
to perform the desired temporal analysis. As such, one data rep-
resentations for storing the features within timesteps and the other
for storing the correspondences are to be used. For the first, a fea-
ture hierarchy which encodes all possible features in a timestep for
a wide range of parameter settings is used for storing the features
within a timestep. Along with the hierarchy, various feature-based
attributes like first order statistical moments and/or shape charac-
teristics are also computed and stored. Secondly, a new compact
and efficient meta-graph structure is introduced which, similar to
the feature hierarchy for features, stores not one particular track-
ing graph but the entire family of tracking graphs for all possible
feature parameters. Together, these data structures allow interactive
extraction of tracking graphs for a particular set of parameters and
correlations criteria.

Graph layout & visualization. As many datasets involve thou-
sands of features for hundreds of timesteps, the sheer number of
features existing within a tracking graph makes the graph draw-
ing challenging. Nevertheless, we observe that one rarely needs to
look at all features across all timesteps simultaneously. Accord-
ingly, we propose to process the tracking graphs with respect to a
focus timestep and a window of interest. This limits our focus of



interest to a certain sub-region of the global tracking graph. We also
intend to develop progressive graph layout algorithms for comput-
ing the optimal layouts to reduce edge intersections. Here, we pro-
gressively layout the tracking graphs both forward and backward in
time and the user is able interactively change timesteps, expand and
contract the window of interest and thus explore the entire graph.

Reducing visual complexity of graphs. For many datasets of
practical interest, even within a window of interest and with opti-
mized layouts, the large number of features and their complex rela-
tionships can make the resulting tracking graphs nearly unmanage-
ably large and difficult to comprehend. As a result, it is not only
impossible to follow a given track through time but also difficult
to identify the salient feature tracks within the graph. Therefore,
we intend to provide several techniques to further filter and sim-
plify these graphs. Specifically, we try to reduce nodes and edges
in a graph so that its underlying patterns can be easily identifiable.
For example, tracking graphs often contain spatially small features
which are not necessarily of interest and many spurious merge and
split events also exist that are distracting rather than being informa-
tive. Using two different approaches: filtering and feature selecting,
we intend on allowing users to interactively sub-select the graph in
both space and time. Furthermore, we also propose to stabilize the
feature evolution over time and produce more temporally cohesive
graphs by locally adapting the feature thresholds.

Framework design. For understanding time-varying features,
apart from the methods for storing features and their correlation
details, it is also essential to maintain an interactive visualization
and analysis environment. We propose a visualization environment
containing of three different views. The first two presenting gen-
eral conceptual views of the time dependent feature hierarchies,
the third presenting a more specialized view for feature embedding.
Combined, these modules allow users to explore features, their evo-
lution, and how different scales affect their behavior. Furthermore,
the entire framework is to be implemented in a progressive fashion
in which all parameter changes, graph manipulations, and layouts
are to be computed interactively in a streaming fashion.

Framework generality. This proposed framework has a major
advantage compared to existing approaches, due to the generality of
the design. Specifically, both methods used for defining and track-
ing features are to be selected and/or modified to accept general
feature hierarchies. We also allow any of the standard clustering
algorithms to define (hierarchical) features and any existing cor-
relation criteria, such as volume overlap or aggregated attributes,
to define correlations. Therefore, various large-scale scientific and
non-scientific data sets can be explored within the proposed frame-
work to understand their underlying trends. In particular, we intend
to make use of combustion, ocean science, cosmology and plasma
surface interaction datasets in the scientific domain and social me-
dia and healthcare datasets within the non-scientific domain.

Pattern identification of graphs. Large and complex track-
ing graphs often contain motifs which are repeated throughout the
graph either because of the feature behavior or the parameter se-
lection. Regardless of the cause, identifying and analyzing these
patterns can reveal interesting details and underlying trends of the
data. On the other hand, some of these frequently occurring motifs
contain little information compared to the space they occupy in the
graph. In such cases, identifying them can lead to the simplification
of the graph. In certain situations, users would like to understand
how much a certain feature’s evolution differs from other feature
tracks in the graph and identifying the patterns within and across
feature tracks is likely to facilitate this process.

Multi-variate feature hierarchies. Up to this point, the pro-
posed work is mainly focused on understanding feature evolution
of time-varying data with respect to single-variate feature hierar-
chies. For each timestep of a given dataset, its feature hierarchy
is constructed by grouping the features at different scales and this

feature grouping is always constructed based on a single parameter,
e.g temperature in burning cells, textual similarity in tweets. Little
research has being done on constructing and analyzing feature hier-
archies for two or more properties [3]. We intend to explore on this
topic of constructing multi-variate feature hierarchies and extend
the proposed framework to handle such hierarchies.

4 PROGRESS TO DATE

Here, a description of the effort and progress on the proposed re-
search plan is presented. The section is partitioned into content
from various publications resulted from my involvement on the
project.

1. Interactive Exploration of Large-Scale Time-Varying Data
using Dynamic Tracking Graphs, W. N. Widanagamaachchi, C.
Christensen, P-T. Bremer and V. Pascucci, Proceedings of
IEEE symposium on Large-Scale Data Analysis and Visualization
(LDAV), Seattle, USA, 2012. [19]

In this paper, we first introduce our framework for interactively ex-
ploring feature evolution in massive time-dependent datasets. The
framework is an interactive linked-view system which combines a
tracking graph layout and a traditional 3D feature display, and is im-
plemented using the ViSUS framework [9, 10]. We utilize topolog-
ical merge trees for storing the feature hierarchy within timesteps
and introduce a new meta-graph structure for encoding families of
tracking graphs. Together, these data structures enable users to in-
teractively define and extract local graphs.

We make use of progressive techniques to maintain the interactivity
during the graph visualization. Consequently, the graph is always
processed with respect to a user-defined focus timestep. Then, start-
ing from this timestep, nodes and edges are iteratively added up to
the user-defined window of interest. The graph layout is also com-
puted as the graph is being created. However, as computing a op-
timal or near-optimal layout is expensive for larger graphs, we use
two different strategies. The user is immediately presented with a
fast initial graph layout which is replaced with a slower greedy lay-
out (with less edge intersections) as soon as it is available. Here, we
make use of the median heuristic for computing the greedy layout.

We also enable changing feature definitions on-the-fly and filter the
graphs using arbitrary feature-based attributes while providing an
interactive view of the resulting tracking graphs. Finally, we test
and validate our framework with several large-scale scientific sim-
ulations from combustion science.

2. Data-Parallel Halo Finding with Variable Linking Lengths,
W. N. Widanagamaachchi, P.-T. Bremer, C. M. Sewell, L.-T. Lo,
J. Ahrens and V. Pascucci., Proceedings of IEEE symposium
on Large-Scale Data Analysis and Visualization (LDAV), Paris,
France, 2014. [18]

Here, we present a novel algorithm for constructing feature hierar-
chies for cosmological data. A “halo” [8] is an over-densed region
of dark matter particles and represents one of the common features-
of-interest within these datasets. One of the two most common defi-
nitions of a halo is friends-of-friends (FOF) clustering [5] where all
particles that are reachable through links shorter than a predefined
distance (the linking length) are considered to be one halo.

We make use of the PISTON library [7] and bring out a data-
parallel, friends-of-friends (FOF) halo finding algorithm for cre-
ating a halo hierarchy for a range of linking lengths. Furthermore,
we couple our algorithm to an interactive analysis environment to
study halos at different linking lengths and track their evolution
over time. Compared to all existing FOF-based halo finding algo-
rithms which require re-computation of halos whenever the linking
length or halo size parameters are changed, our algorithm has an
significant advantage. The feature hierarchy we compute encodes




(a)

E

offshore

(b)

(c)

ctrrend paramieter value

(€4)

Figure 2: Our framework contains a view for (a) feature embedding, (b) feature tracking, and (c) feature hierarchy. The feature embedding view
consists of several sub-components: (d) geospatial, (e) word cloud, (f) geometric embedding, and (g) textual views. Here, a social media data
set is used and the selected feature and its track are indicated in ‘red’.

all possible halos for a wide range of linking lengths. Therefore,
it has the capability to quickly and efficiently compute halos for a
wide range of linking length and halo size parameters without any
re-computation.

Finally, the research conducted within this paper is used to extend
the applicability of our aforementioned framework for exploring
feature evolution over time. Specifically, the feature hierarchies
computed from our halo finding algorithm are used along with a
newly computed meta-graph (where correspondences are computed
using a volume overlap-based correlation criteria) for interactively
exploring the halo evolution over time.

3. Visualization and Analysis of Large-Scale Atomistic Simula-
tions of Plasma-Surface Interactions, W. N. Widanagamaachchi, K.
Hammond, L.-T. Lo, B. Wirth, F. Samsel, C. M. Sewell, J. Ahrens
and V. Pascucci., Proceedings of EuroVis - Short Papers, Cagliari,
Italy, 2015. (To appear.) [20]

Due to the interest in the origin of fuzz-like, microscopic damage
to tungsten and other metal surfaces by helium, plasma-surface in-
teraction simulations have recently been the focus of significant re-
search. In this paper, a simulation-visualization pipeline for cre-
ating a visualization and analysis environment for atomistic sim-
ulations of plasma-surface interactions is presented. LAMMPS
Molecular Dynamics Simulator [11] and the Visualization Toolkit
(VTK) [13] has been used for creating this pipeline.

Simulations show that helium spontaneously aggregates to form
clusters and eventually bubbles, pushing out tungsten surface de-
fects, i.e. voids/cavities. The visualization phase of our pipeline
identifies and visualizes the boundaries between helium-filled re-
gions, tungsten-filled regions, and voids, using an algorithm en-
coded through library calls to VTK. The analysis phase identities
several atom statistics and helium bubble evolution details through
calls to LAMMPS.

Again, the research conducted within this paper is used to extend
the applicability of the framework for exploring feature evolution
over time. Here, we visualize the computed helium bubble evolu-

tion details within our framework and allow scientists to understand
the evolution details of helium bubbles by exploring its parameter
range.

4. Understanding Feature Evolution over Time using Dynamic
Tracking Graphs, W. N. Widanagamaachchi, P.-T. Bremer and V.
Pascucci, Proceedings of IEEE transactions on Visualization and
Computer Graphics, Chicago, Illinois, USA, 2015. (Submit-
ted.) [17]

In this paper, we mainly focus on improving and extending our
framework for exploring feature evolution over time. Although the
framework presented in [19] is able to provide interactive explo-
ration of tracking graphs, there still remained a number of open
challenges for applying it to the next generation of even larger
datasets. One is the graph drawing which remains restricted by
the limited number of nodes and edges a human can reasonably
understand. Therefore, simplifying the graphs and selecting sub-
graphs allows users to easily perceive the graphs and their underly-
ing trends.

Here, we introduce a new three-pass layout algorithm to optimize
and simplify tracking graphs by exploiting a fuzzy parameter selec-
tion. Within a user-specified parameter range, this algorithm locally
adapts the feature definition parameters and produces more tempo-
rally cohesive graphs. Specifically, using feature stability over time
as a criterion, we optimize the graph in a greedy fashion and re-
duces the total number of non-valence two nodes.

Additionally, using two different approaches, filtering and feature
selecting, we allow users to extract local graphs in both space or
time. Filtering significantly reduces the complexity of the graph
by lowering both node and edge count without losing any pertinent
information. Here, we allow filtering based on any feature-based
or edge-based attributes and the feature track length. For feature
selecting, we enable the capability to spatially sub-select features
and their tracks by screening according to their respective bounding
boxes. However, as it is often useful to concentrate on a particular
feature and its evolution rather than a particular region in space,
we also provide the additional ability to select a certain feature in



the focus timestep and then use the graph connectivity to extract all
related tracks both forward and backward in time.

Within this paper, we have generalized our framework by modify-
ing the tracking graph creation approach of [19] to accept general
hierarchies rather than only for spatial segmentation. The visualiza-
tion environment is also modified to contain three different views:
feature evolution, feature hierarchy and a feature embeddings view.
See Figure 2. For the feature embeddings view, several visualiza-
tion techniques (geometric, geospatial, word cloud and textual vi-
sualizations) are combined to present a specialized view of features.
Finally, several new datasets from both scientific and non-scientific
domains, e.g. ocean science, social media, are used for demonstrat-
ing the generality and versatility of our approach.

5 TIMELINE

The table 1 shows the intended timeline for this aforementioned
proposal. The research work that has been accomplished, the re-
maining work and the expected time to complete them, is given in
individual sections.

fining & extracting dynamic tracking graphs [
01. Feature hierarchy construction
02. Meta-graph construction
03. Tracking graph generation
04. Extending both data structures to accept general hierarchies
raph layout & visualization [
05. Initial layout computation

06. Greedy layout computation

07. Interactive visualization

educing visual complexity of graphs [

08. Tracking graph sub-selection

a. Filtering

b. Feature selection

09. Cohesive graph creation based on adaptive thresholding
Framework design

AN NN ENENEN > ENENENEN [~

v 10. Data visualization
v 11. | Data exploration
v 12. Implementation
Framework generality 2 months
v 13. Scientific datasets
v a. Combustion
v b. Ocean science
v ¢. Cosmology
v d. Plasma-surface interaction
14. Non-scientific datasets
v a. Social media
b. Healthcare
Pattern identification within graphs [ 3 months
15. | Motif identification
16. Graph simplification
Multi-variate feature hierarchies [ 4 months

17. Multi-variate feature hierarchy construction
18. Adding support to the current framework

Table 1: Timeline.

6 INPUT EXPECTED FROM PANELISTS

Listed below are couple of inputs I would appreciate to gain from
the Vis Doctoral Colloquium panelists with regard to the aforemen-
tioned research proposal.

e Feasibility of the current research plan
e Modifications & improvements to proposed research work
e Applicability of methods to other areas of research

e Relevance to existing methods & research problems

Potential extensions & applications
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