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Figure 1: Our framework provides a natural and interactive exploration of tracking graphs (middle), combined with a traditional 3D view of features
(left), and allows a cross-linked selection among them to enable a full spatio-temporal exploration of data. The selected feature is displayed in
’red’ in the 3D feature viewer while the relevant subtree in the tracking graph is highlighted in the other viewer. The images displayed here use
the H Control none dataset.

ABSTRACT

Exploring and analyzing the temporal evolution of features in large-
scale time-varying datasets is a common problem in many areas of
science and engineering. One natural representation of such data is
tracking graphs, i.e., constrained graph layouts that use one spatial
dimension to indicate time and show the “tracks” of each feature as
it evolves, merges or disappears. However, for practical data sets
creating the corresponding optimal graph layouts that minimize the
number of intersections can take hours to compute with existing
techniques. Furthermore, the resulting graphs are often unmanage-
ably large and complex even with an ideal layout. Finally, due to the
cost of the layout, changing the feature definition, e.g. by changing
an iso-value, or analyzing properly adjusted sub-graphs is infeasi-
ble.

To address these challenges, this paper presents a new frame-
work that couples hierarchical feature definitions with progressive
graph layout algorithms to provide an interactive exploration of dy-
namically constructed tracking graphs. Our system enables users to
change feature definitions on-the-fly and filter features using arbi-
trary attributes while providing an interactive view of the resulting
tracking graphs. Furthermore, the graph display is integrated into a
linked view system that provides a traditional 3D view of the cur-
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rent set of features and allows a cross-linked selection to enable a
fully flexible spatio-temporal exploration of data. We demonstrate
the utility of our approach with several large-scale scientific simu-
lations from combustion science.

Keywords: Time-Varying Data, Feature Detection and Tracking,
Parallel Coordinates, Topology-based Techniques, Visualization in
Physical Sciences and Engineering.

1 INTRODUCTION

Defining, extracting and anlyzing features in the increasingly large
and complex datasets produced by state of the art simulations still
poses a significant challenge. Coupling the corresponding analysis
across time steps to understand the temporal evolution of such fea-
tures increases the difficulty exponentially. First, a temporal analy-
sis multiplies the amount of data that must be considered simultane-
ously, often exceeding available memory and other resources. Sec-
ond, the resulting data potentially contain information about thou-
sands of features across hundreds of time steps making it challeng-
ing to present them in a comprehensible manner.

Conceptually, the most natural representation of such data is a
tracking graph showing the evolution of all features across time
as a collection of feature tracks that may merge or split. Given
some feature definition a graph is constructed by first extracting
all features from all time steps and then correlating those features
across time, for example, by considering their spatial overlap. For
the terabyte-scale simulations common today, this step often results
in hours or days of file I/O time alone, making dynamic modifica-
tion of feature parameters or correlation criteria infeasible. Further-
more, creating a suitable graph layout for the entire time series may
take hours using existing tools preventing any interactive changes.



Finally, for all but the smallest datasets, such graphs, even assum-
ing an optimal layout, quickly become too large and convoluted for
users to understand. Consequently, most existing techniques to vi-
sualize and explore time-varying datasets have primarily focused
on high dimensional projections [47], illustration [23], and change
detection [36].

However, recent advances in topological analysis have resulted
in techniques that are able to efficiently extract and encode en-
tire feature families in a single analysis pass [3, 4]. Instead of
computing a set of features per time step and parameter setting,
these approaches compute a meta-representation that encodes all
possible features for a wide range of parameter settings. This re-
duces the problem of feature computation per time step to a single
pre-processing step easily performed in parallel. Nevertheless, the
problems of feature correlation, graph layout and display still re-
main.

In this paper we address these challenges by creating a new flexi-
ble, efficient, compact meta-graph which, similar to the topological
encoding for features, stores not one particular tracking graph but
instead the entire familiy of graphs for all possible feature param-
eters. From this meta-graph we can interactively extract a specific
graph for particular parameters and correlation metrics. We have
also developed progressive layout algorithms that allow us to inter-
actively visualize the resulting graph, providing the user freedom to
change both feature parameters and correlation metrics on the fly.
In particular, starting from a time step of interest, we progressively
lay out the tracking graph both forward and backward in time. The
user can interactively change timesteps or expand and contract the
window of interest and thus explore the entire graph. In fact, this
approach often results in layouts that are locally superior to a global
approach as fewer constraints must be considered. Furthermore, we
provide several techniques to filter and/or simplify the graph based
on various feature attributes in order to reduce its visual complex-
ity. The graph visualization is tightly integrated with a traditional
three-dimensional visualization of the features allowing for the first
time a fully interactive exploration of spatio-temporal features in
massive data sets. Our contributions in detail are:

1. Define and construct a meta-graph in pre-processing from a
sequence of feature families;

2. A progressive algorithm to extract, filter, and simplify a track-
ing graph from a meta-graph;

3. A progressive two-stage layout algorithm for tracking graphs;
and

4. An interactive linked view system combining tracking graphs
and feature displays.

We have tested and validated our framework with several large-
scale scientific simulations from combustion science. However, the
implementation of our framework is general in such a way that it
can be applied to other scientific domains where feature-based anal-
ysis is relevant.

2 RELATED WORK

In this section, we highlight some of the past work involved in this
domain. To facilitate better understanding, we analyze these related
work by categorizing them into four sections: Feature Extraction,
Feature Tracking, Time-Varying Data Visualization and Layered
Crossing Minimization.

Feature Extraction: In using feature based approaches for the
analysis of scientific data, techniques such as isosurfaces [30], in-
terval volumes [17] and thresholding combinations of various scalar
quantities [41] have been used before. However, any changes to the
attributes associated with these features requires re-processing of
the entire time-dependent simulation, so these techniques are costly
to apply. Thus, the use of topological techniques have become in-
creasingly popular, in which the concepts of Morse theory [33] are

used to identify similar sets of features. The well-developed no-
tion of simplification provided by Morse theory makes the resulting
feature analysis techniques hierarchical. In these topological tech-
niques, Reeb graph [32], contour tree [1, 7, 44] and Morse-Smale
complex [21, 28] have been used to define and extract features. The
contour tree encodes topological features for all isovalues of a func-
tion. We base our segmentation method on the merge tree (also
called a join or split tree) which is a sub-structure of contour trees
that tracks either merges or splits of the isocontours [6].

Feature Tracking: Defining and tracking features of interest
has long been an area of interest in the visualization community. It
can identify correspondences between features and reveal temporal
trends in the underlying time-varying data. Methods which are used
for defining, matching and tracking these features can vary based on
the feature type. Data features can be matched based on their cor-
responding positions [38] while topological features can be tracked
using high dimensional geometries [4, 3]. As such [19, 40, 16, 18],
have used critical points in geometric models for feature tracking.

In another line of research, feature attributes like position and
size have also been used for measuring data changes and identifying
feature matches. Samtaney et al. [36] apply methods from object
tracking in image processing to feature tracking. In doing so, they
make use of feature attributes such as centroid, volume and moment
between time steps. Volume overlap of features has also been used
to identify these correspondences [38, 39, 28] and we too utilize this
method to base the feature tracking step in our approach. In some
follow-up-work, motion prediction has also been used to improve
the feature matching accuracy [34].

Time-Varying Data Visualization: Due to the dynamic nature
of time-varying data, general data visualizations differ considerably
from time-varying data visualizations. Traditionally, snapshots of
individual timesteps or animations have been used for visualizing
the evolution of data. Other techniques like High dimensional pro-
jection [47], Illustration [23] and Change detection [36] have also
been used.

Most current time-varying data visualizations focus on man-
aging data more efficiently either by using optimized data struc-
tures [43, 46] or by using compression techniques [37]. The recent
advances in graphics hardware have also facilitated the production
of interactive visualizations [31]. As such, with the use of hardware
accelerations, Wavelet and Moving Picture Experts Group (MPEG)
compression have been applied to time-varying data for achieving
real-time decompression and interactive playback [20].

Previous work like [36] and [34] are closely aligned with our
research, since they also utilize tracking graphs to show the evolu-
tion of features. Reinders et al. [34] employed a linked-view inter-
face similar to ours to assist the visualization. However, our frame-
work has the additional ability of handling large-scale time-varying
datasets.

Layered Crossing Minimization: Crossing minimization is a
problem which has been extensively studied in related areas. Most
crossing minimization techniques require the graphs to be in a hi-
erarchical manner and operate on it in layers, where the vertices in
each layer of the graph are permuted to minimize the total number
of crossings.

Barycenter [42, 29], Median [15], Greedy-insert [14], Greedy-
switch [14] and Sifting [35] provide examples for some well known
heuristics for theS 2-layer crossing minimization problem. Al-
though heuristic-based algorithms are simple to implement and of-
fer speedy execution at run-time, they are inefficient in several
other aspects. Most heuristic-based techniques use a layer-by-layer-
sweep to reduce crossings in a layered graph. That is, they push
crossings downwards or upwards in the graph until they are re-
solved at layer k. Since these algorithms are restricted to a local



view, they can get stuck in a local minimum, leading to sub-optimal
solutions.

Apart from heuristic-based techniques, several exact methods
have also been used as solutions to this problem. Subdivision-
based formulation, ordering-based formulation and branch-and-
cut-and-price are the three main types of exact methods. The
two widely known exact methods are integer linear programming
(ILP) [11, 25, 24] and semidefinite programming (SDP) [5, 10].
The SDP formulation is used mostly on denser graphs while ILP is
usually faster on sparse ones. In addition to these, methods based
on Planarization [8, 9] and Adjacency matrix transformations [27]
have also been studied.

Due to the progressive nature of our system, we opted to use the
median heuristic, a technique that uses a layer-by-layer sweep.

3 TOPOLOGICAL FEATURE FAMILIES

Our goal is to interactively explore and track the evolution of fea-
tures in a time-varying dataset. One of the most important degrees
of freedom of such a system is the ability to quickly change feature
parameters, for example, by adjusting thresholds or simplification
levels. However, given the expected data sizes, on-the-fly feature
computation is practically infeasible and would require massively
parallel computing resources. The alternative is to pre-compute
features for a wide range of potential parameters and to store the
results in an efficient look-up structure. Here we are using topolog-
ical feature families [3, 2] which can encode a wide range of fea-
ture types and simplifications using hierarchical merge trees. This
section briefly introduces the necessary concepts of topology and
describes how a particular set of features and their attributes can
be efficiently exracted from the feature family represented by each
merge tree.

3.1 Hierarchical Merge Trees
For a smooth simply connected manifold M and a function f : M→
R, the level set of f at the isovalue s, L(s) is defined as the collection
of all points in M with the function value s : L(s) = {p ∈M| f (p) =
s}. A contour is defined as a connected component of a level set.
The merging of contours as the isovalue s is swept from top-to-
bottom through the full range of f can be represented by a merge
tree (Figure 2(a)-(e)). A leaf appears in the merge tree each time a
new contour appears. That is, each time the isovalue passes through
a maximum, a new leaf appears in the merge tree. Each branch in
the merge tree represents a neighboring set of contours which are
subsets of M and joining of branches in the tree indicates contour
merging.

Merge trees are ideally suited to encode threshold-based fea-
tures, e.g. regions around maxima or minima [28, 32, 4, 3, 2]. For
example, given a value t within the full range of f , the correspond-
ing threshold based features can be found by “cutting” the merge
tree of f at t. This creates a forest of sub-trees, where each sub-tree
represents a connected component existing at t. Note that this cut
is not necessarily a horizontal line. For example, Laney et al. [28]
use a simplification-based feature definition using persistences (the
length of leaf branches) to create a cut through the graph and Mas-
carenhas et al. [32] use a locally scaled version of the same metric
called relevance.

As indicated in the figures there exists a natural correspondance
of branches in the merge tree to regions of space. Storing this seg-
mentation information allows one to easily construct the geometry
of a subtree/feature as a union of branch segmentations. Further-
more, one can precompute feature attributes such as first order sta-
tistical moments or shape characteristcs for each feature which are
also stored on a per-branch basis. While merge trees are highly
efficient and flexible, they quantize the space of features to those
involving function values of critical points. This implicit quanti-
zation is often too coarse to be practical. In this case we compute

t

Figure 3: Segmentation for a particular function value, t: obtained
by cutting the merge tree at t and ignoring all pieces below. Each
subtree in the forest of sub-trees is considered as a single feature.

an augmented contour tree by introducing additional valence-two
nodes to split the branches which are longer than a certain desired
interval [6] (Figure 2(f)). In this manner, hierarchical merge trees
encode an entire feature family alongside its segmentation and rele-
vant attributes in a compact and efficient manner. We use the algo-
rithm proposed in [3] to construct feature families for all time steps
in the pre-processing step.

Starting from a sequence of feature families our framework con-
sists of two stages: an offline pre-processing step to compute a
meta-graph storing all possible tracking graphs, and a linked view
visualization to interactively explore the spatio-temporal feature
space.

4 META-GRAPHS

As discussed above, storing feature families removes the need for
repeated feature computation and thus makes interactive feature se-
lection possible. However, creating a tracking graph from a set of
features remains an expensive operation. For each consecutive pair
of time steps one must correlate all features. This typically requires
multiple traversals of the corresponding segmentations as well as
constructing search structures. Given hundreds of time steps this
cannot be done interactively. Instead, we propose a new structure
called a meta-graph that, similar to the merge tree for features, en-
codes all possible tracking graphs and relevant attributes. In this
section, we describe how to create the meta-graph between two fea-
ture families, how to augment it with various feature attributes and
correlation metrics, how to progressively extract a tracking graph,
and finally how to filter and/or simplify this graph in preparation
for layout and display.

4.1 Meta-Graph Computation
The purpose of the meta-graph is to encode, for all possible features
at time T , their correlated features in time steps T − 1 and T +
1. The key observation is to efficiently compute and encode this
information so that feature families are nested independent of the
exact feature definition, e.g. threshold, persistence, relevance, etc.
More specifically, since features are represented by subtrees, each
feature that is correlated with a branch b is also correlated with all
its parent branches. In other words, to use the metaphor of terrain,
the top of the mountain is correllated with its base. We use this fact
judiciously to create a simple yet efficient algorithm to compute
meta-graphs.

The algorithm proceeds in two steps. First, we create correspon-
dences between branches of consecutive merge trees. Second, we
accumulate the resulting information for all subtrees/features. For
the first step, we load both segmentation of the two corresponding
trees. Note that these segmentations are typically stored in a sparse
format and do not cover the entire domain. We therefore construct a
look-up of vertex ids to segment/feature ids for one of the segmen-
tations. Subsequently, we iterate over all vertices of the other seg-
mentation and determine whether it overlaps with some segmented
vertex of the first and if so compute the corresponding segmentation



(a)                   (b)                        (c)                                  (d)                                 (e)                                  (f)

Figure 2: (a)-(e) Merge tree construction by recording the merging of contours as the function value is swept top-to-bottom through the full value
range. (f) Augmented merge tree: obtained by splitting all branches in the merge tree which span more than a given range (see Figure 2 in [3]).

id. For each successful pair of overlapping segments (σT
i ,σT+1

j ) in
time steps T,T +1 we either: add an edge to the meta-graph; or if
an edge already exists, increase a counter, tracking the amount of
overlap between both segments. See Figure 4.

timestep t1

t

timestep t0

t

(a)                                                     (b)

Figure 4: Initial edges of the meta-graph for two time steps. (a) Fea-
ture segmentations at t for both time steps (b) Obtaining the physical
overlap between each of the two features in segmentation space to
determine the existence and overlap values of edges in the meta-
graph.

As mentioned above, each subtree of the merge tree represents
a feature. In the second step, we accumulate both the edges and
the overlap information according to the nesting relationships in
the hierarchy, associating each feature to the root branch/node of its
corresponding subtree. In this manner, each feature has a clearly
defined lifetime. In the case of a merge tree, a feature is born at
the parameter value of the upper vertex of the branch, it merges
for parameter values below its root, and it is alive for parameters
in between its two nodes. For each edge (σi,σ j) between nodes,
we determine whether the lifetime of the corresponding features
overlap or not. In the second case, we find the ancestor(s) of the
feature with the higher lifetime, say Σk = ancestorσ j (σi) whose
lifetimes do intersect. We then remove the edge (σi,σ j) and instead
add the corresponding edges for all ancestors in Σk to σ j.

The resulting meta-graph contains nodes corresponding to all
features and each node contains edges to features in adjacent time
steps whose lifetimes overlap. In practice, we store the graph as a
collection of individual files, using one file per consecutive feature
family pair.

4.2 Dynamic Tracking Graphs
Given a meta-graph and the corresponding feature families one can
easily extract a tracking graph for a particular parameter setting.
Given a parameter t, we query the feature families for all nodes
alive at this value and extract all edges between two living nodes.
In practice, we maintain an active set of living nodes that is dynam-
ically updated by including the parent or child branches of nodes
as the threshold changes. Additionally, we provide the ability to
filter edges according to the amount of overlap which effectively
changes the correlation criterion on the fly. Note that one could
easily use more advanced correlation criteria and store the relevant
information on the graph edges.

As discussed in more detail in Section 5, one is rarely interested
in the entire graph as it is typically too complex to be comprehensi-
ble. Instead, we exploit the fact that the graph is stored in individual
time step “slabs” and, starting for a user-selected focus time step,
Ti, create the graph progressively by first adding the nodes/edges of
Ti+1 then of Ti−1, of Ti+2, etc. At this point we also filter and/or
simplify the graph. For example, we typically suppress nodes with
no edges as they represent noise and allow the user to subselect
based on various feature attributes, e.g. their volume and/or other
statistics. If a node is filtered all incident edges are removed as well
and nodes left without edges are removed recursively. As indicated
in Figure 7 the entire pipeline is implemented in an asynchronous
streaming fashion. Slabs are read from disk in order of distance,
adapted to the current parameter, passed through the filter module,
and handed off to the layout modules.

5 GRAPH LAYOUT AND VISUALIZATION

As discussed above, our framework is designed specifically to re-
main interactive even for large graphs and thus we focus on pro-
gressive techniques to both layout and visualize tracking graphs.
Consequently, we always process graphs with respect to a focus
time step selected by the user. Starting from this time step we it-
eratively add nodes and edges both forward and backward in time
up to a user-defined time window. Furthermore, computing opti-
mal or near-optimal layouts may be expensive for larger graphs and
thus we use two different strategies. As slabs of the graph are read
and filtered from the first two modules, we start both a fast greedy
layout and a slower more optimized one. As a result, the user is
immediately presented with a suboptimal layout which is replaced
with a better one as soon as it is available.

5.1 Greedy Layout
To quickly create a reasonable layout we exploit the fact that feature
families are represented by (binary) trees. As a result, within each
timestep one layout is given by the depth first ordering of features
placing the root in the middle and its subtrees recursively on either
side. Note that in this step we simultaneously “place” all features
independently of their lifetime. While this appears to be a random
and clearly not optimal choice the layout is better than expected.
The reason is that all trees come from a continuously evolving sim-
ulation and are constructed by the same code processing the data in
the same order. Therefore, the trees naturally retain some temporal
coherence making the depth first layout a good initial choice. Fur-
thermore, since the structure of the tree does not change, this layout
needs to be computed only once. In practice, we store the resulting
order and simply adjust the spacing of the given set of living nodes
to be equal. A typical greedy layout is shown in Figure 5(a).

5.2 Optimal Layout
As the system progressively places and displays time steps in the
greedy layout, a background process works on computing an op-
timal layout. While it is possible to use global layout techniques
on all currently loaded time steps this would result in an algorithm



Figure 5: Graph layouts produced by our framework using the H Control none dataset. (focus timestep=6, threshold=15, overlap=20, vol-
ume=1.0) (a) Greedy layout produced as a result of ordering all features in each timestep in a depth first manner (b) Optimal layout produced
using a layered optimization scheme, with the use of the median heuristic.

of order O(T 2) as the first three, then the first five, first seven, etc.
timesteps are considered. Instead we have chosen a layered op-
timization scheme moving outward from the focus time step. In
particular, we assume the layout of the “inward” time step to be
fixed and use the median heuristic to place new nodes. The median
heuristic places each node in the next time step at the median of
all nodes it is connected to in the current time step. This optimiza-
tion is aimed at minimizing edge length and thus reduces crossings.
Such heuristics are known to work well for shorter sequences which
typically are far less constrained than a global tracking graph. As
shown in Figure 5(b), it is quite common for our system to return
layouts of smaller graphs entirely free of intersections. Another
important aspect is the placement of newly created nodes not con-
nected to the current time step. One strategy used, for example by
the popular dot system [26], is to place such nodes on the top (or
bottom) of the graph. However, this often results in graphs with
extreme aspect ratios as shown in Figure 6(b). Instead, we maintain
a list of “empty” positions left by the median heuristic in which to
place new nodes. This results in much more compact and visually
appealing layouts. See Figure 6(a) & 6(c).

5.3 Local Layout Adaptation
Once an optimal layout is computed for a time step, we adapt, rather
than recompute this layout in case of parameter changes. As the
user selects new filter values, parameters or overlaps, nodes and
edges can appear, disappear, merge or split. Instead of reverting to
the greedy layout which often would be a somewhat drastic change,
we remove and add nodes to the current layout and simply adjust the
scaling along the y-axis. While not optimal, this strategy preserves
temporal coherence and typically results in a significantly better
layout than the default greedy one. Furthermore, using animation
for splitting or merging of nodes conveys important structural in-
formation to the user. Nevertheless, any change in the structure of
the graph triggers a new optimal layout and thus ultimately this is
what the graph will converge to.

5.4 Graph Visualization
In visualizing the tracking graph, our system uses several visual
effects like animation, fading, feathering and correlated color map-
ping to help the user maintain context. Any time the layout of a time
step changes we animate the nodes to slowly approach their new po-
sition over several frames. This preserves the context and prevents
rapid and drastic changes in the layout. Furthermore, we allow to

hide nodes of valence two to prevent visual clutter and highlight
important events such as births, deaths, splits, and merges. Similar
to the animation approach, nodes and edges that appear or disap-
pear are blended in or out to prevent visual artifacts. Finally, edges
leaving the time window of interest are feathered out.

Nodes can be colored using various attributes such as their vol-
ume or the function value of their highest maximum. More im-
portantly, the colormap between the segmentation and the graph
display is shared providing an important link and contextual in-
formation to the user. For more details we refer the reader to the
accompanying video.

6 SYSTEM DETAILS AND IMPLEMENTATION

In this section we describe different aspects of our system, the im-
plementation and various design choices made to ensure interactiv-
ity. The system is implemented using the ViSUS framework [45]
which provides the basic building blocks for designing a stream-
ing, asynchronous dataflow. As usual the dataflow is built up from
different nodes connected by pipes that pass messages and data.

The core of our dataflow is shown in Figure 7. The Data Reader
continuously checks whether all requested data has been loaded and
if not passes the corresponding file(s) one-by-one immediately into
the filter module. The reader will cache slabs of the tracking graph
as long as there is memory available. The filter first extracts the rel-
evant nodes and edges according to the current parameter and then
proceeds to filter according to attribute values, valences, correla-
tion metric, etc.. The reduced slab is then sent simultaneously to
the two graph layout modules that will compute the corresponding
layout. Once a layout has been computed it is passed on to the ren-
dering module which integrates it with the currently drawn graph.
Each time the user changes relevant parameters or subselections the
current processing is interrupted and restarted, though the renderer
maintains its current state for visual continuity.

Since individual feature families tend to be small (compared to
the raw data) the first couple of time steps are processed rapidly
providing instantaneous feedback to the user. Subsequently, the
layout is adjusted in a progressive and continuous fashion allowing
the user to judge how long a given graph will likely require for an
optimal layout. In our examples the graph drawing is typically not
restricted by the performance of the system but rather by the com-
plexity of the graph. For large sets of features or broad windows of
time the system will quickly create layouts for a larger number of



Tracking Graph

(a)

Figure 6: For a complex tracking graph, from the Swirl dataset, (a) & (b) compares the optimal layout produced by our framework with the one
produced by Dot, respectively. Similarly, (c) & (d) compares the optimal layout produced by our framework with the one produced by Dot, for a
much simpler tracking graph, from the H Control none dataset.

nodes than is feasible to comprehend easily. Usually this results in
a further subselection by the user.

6.1 User Interface and Interaction

The user interface consists of two main views: one for the tracking
graph (Figure 8(b)) and one for the 3D segmentation (Figure 8(a)).

Figure 7: The core of the dataflow within the tracking graph viewer.
Data Reader module reads the necessary data and passes them
onto the filter module where the relevant nodes and edges are ex-
tracted according to the current parameters and attributes. The re-
sultant data are sent to the two graph layout modules simultaneously
to compute the corresponding layouts. Graph Renderer module uses
the data received from the graph layout modules to display the graph.

Both windows allow the user to select the primary feature param-
eter and focus time step and the selections are linked. In addition,
the tracking graph display provides various options to filter nodes
based on volume, edges, overlap and choosen number of time steps.
We also allow the user to hide valence-two nodes and instead dis-
play unbroken lines to save screen space. Both windows allow the
cross-linked picking of features and the graph display will auto-
matically highlight the subgraph containing the selected feature as
shown in Figure 1. Finally, we provide the option to color nodes
based on various attributes such as their volume, the highest maxi-
mum present in the subtree etc.

7 RESULTS

We demonstrate the power of our technique using three large-scale
combustion simulations. The H control none dataset simulates an
idealized premixed hydrogen flame with no turbulence. Here we
are analyzing 100 time steps of an adaptive mesh resolution (AMR)
simulation at an effective resolution of 256× 256× 768 totaling
about 400GB of input data [12]. The SwirlH2 dataset represents
a device scale, lean, premixed, low-swirl flame computed using
a low Mach number combustion code LMC [13]. The data con-
sists of 331 time steps of an AMR grid at an effective resolution of
1024×1024×1024 totaling about 4 TB of raw simulation data. In
both data sets the features of interest are burning cells defined as
regions of high fuel consumption. However, there exists no unique
threshold and exploring the evolution of burning cells under vary-
ing thresholds is one of the primary goals of this analysis. Here
we compute feature families of the fuel consumption rate as well as
various feature-based statistics such as the volume of features, their
average temperature, and their position. Unlike in previous stud-
ies in [4, 3] where tracking graphs took hours to compute and only
for a single carefully selected threshold the accompanying movie
demonstrates our ability to fully and interactively explore these
datasets by varying thresholds, subselecting features and exploring
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Figure 8: User interface of the system. The images displayed here use the Swirl dataset. (a) 3D segmentation viewer (b) Tracking graph viewer
(c) Color palette editor used to change the current color scheme used (d) Slider editor for attributes.

various feature correlation thresholds.
The last dataset, temporalJet, describes a temporally evolving

turbulent CO/H2 jet flame undergoing extinction and reignition at
different Reynolds numbers [22]. The simulations were performed
with up to 0.5 billion grid points and periodic boundary conditions
in the mean flow direction and we analyze 231 snapshots totaling
roughly 1TB in raw data. The features of interest are local maxima
of the scalar dissipation rate which form thin pancake-like regions
under compressive turbulent strains. Unlike the previous two exam-
ples we do not use a threshold-based feature definition but rather a
relevance threshold that locally adapts the threshold according to
the higher maximum in the neighborhood. As shown in Figure 6(a)
the resulting graphs are extremely dense and complex and virtually
unmanageable with traditional graph layout tools.

Figure 5 shows a small portion of a graph in both the greedy as
well as the optimized layout. Clearly the greedy layout is inferior,
creating a large number of crossings, yet it still proves valuable for
large graphs by providing users with immediate feedback about the
their size and complexity. In addition, even in the greedy layout
there exist noticeable subgroups of nodes which behave similarly
and are laid out in parallel as a result of the natural temporal co-
herency present in the data. The greedy layout enables the user to
quickly interrupt the rendering of needlessly complex graphs and
helps guide the selection of better thresholds.

Figure 6 (a) & (b) shows a comparison between a layout com-
puted in dot [26] and one produced by our system. Dot seems
unable to reuse the space occupied by dying nodes and as a result

creates a graph with extreme aspect ratios that is very difficult to ex-
plore let alone understand. Our system on the other hand manages
to create a fairly compact layout with relatively few intersections.
Overall, our layout does produce more intersections, yet the graph
is still significantly more comprehensible.

8 CONCLUSION

We have presented a new framework to interactively explore fea-
tures in massive time-dependent datasets. By creating a new meta-
graph structure to encode families of graphs and using progressive
and asynchornous graph layout algorithms we enable in-depth ana-
lyis of terabytes of data using commodity hardware. Neverthe-
less, there remain a number of open challenges in order to apply
these techniques to the next generation of even larger simulations.
First, the graph drawing remains restricted by the limited number of
nodes and arcs a human can reasonably understand. Selecting sub-
graphs alleviates the problem but is contingent on finding features
of interest beforehand. Therefore, new techniques are needed to
find and highlight interesting features or events in massive graphs.
Also if one can identify the critical timesteps in the entire dataset,
visualization can even start with a compact view of the full track-
ing graph and then focus on one particular region of interest. This
would be very useful when analyzing significantly large datasets.
Furthermore, to complete the analysis capabilities of the tool we
are planning to integrate more statistical views of the data along
the lines of [2]. Finally, there exist more complex topological fea-
ture descriptors such as the Morse-Smale complex that may require



Figure 9: A optimal layout produced by the system for the TemporalJet dataset (focus timestep=50, threshold=0.2, overlap=20, volume=1.0)
.

different meta-graph structures.
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