Surface Segmentation Using Morphological Watersheds

Alan P. Mangan

Ross T. Whitaker*

Department of Electrical Engineering
University of Tennessee, Knoxville

Abstract

This paper describes a 3D surface segmentation method that
uses morphological watersheds. The use of watersheds is
commonly used to segment images, and in this paper we
describe a generalization of that concept to the task of seg-
menting three-dimensional surface meshes. While the image-
segmentation algorithms operate on the gradient magnitude
or some related edge measure, the surface-mesh algorithm
uses surface curvature. The algorithm segments the surface
into patches, where each patch has a relatively consistent
curvature throughout and is bounded by areas of higher, or
significantly different, curvature.

Keywords: Surface segmentation, watershed algorithm,
surfaces, curvature-based methods.

1 Introduction

By 3D surface segmentation, we mean the process of dividing
the set of nodes that comprise the surface mesh (or edges and
faces) into a number of subsets, where each subset is also
connected. The goal is to be able to take as input a bucket
of polygons and to produce as output a decomposition of the
surface into meaningful pieces. Such a mesh segmentation is
useful for a variety of applications.

One application is mesh reduction. The goal of mesh re-
duction [1, 2] is to reduce the amount of data in a 3D mesh
while maintaining, to a certain degree, the fidelity of the
surface. Most mesh reduction algorithms operate on the
data as a whole. However, as the reduction rates get very
high, reduction algorithms tend to distort the shapes of ob-
jects by removing vertices that correspond to important fea-
tures. We propose that using our segmentation method as a
pre-processing step and operating on each region separately
offers an advantage. With this technique, reduction is con-
fined to regions where the curvature is relatively consistent
throughout. This allows reduction within regions but pre-
vents the reduction of vertices associated with edges and
similar discontinuities indicated by the presence of high cur-
vature.

Because the proposed segmentation method breaks the
surface into regions comprised of consistent curvature and
bounded by high curvature, the geometry of the regions
tends to be relatively homogeneous. Thus, as an alterna-
tive to conventional mesh reduction, one could decrease the
complexity of the surface by fitting more powerful geomet-
ric primitives (e.g. splines or superquadrics) to the distinct
patches produced by the segmentation.

Texture mapping is another technique that could profit
from the application of such a 3D surface segmentation. Tra-
ditionally texture mapping for volumes utilizes a single tex-
ture map for the entire surface [3]. While this might work
well for relatively simple volumes, such as solids of rotation,

*rtwQutk.edu

it does not address the issue of self-occlusion present in more
complicated scenes. Creating an individual texture map for
each segment of the surface rather than the surface as a
whole promises to present a partial solution to this problem.
Because each segment is bounded by high curvature regions
do not extend around edges, thus avoiding self-occlusions for
the most part. In the case of cylinders or similar consistently
curved objects a single texture map can still be created us-
ing an approach along the lines of [3]. This allows for the
creation of a texture-mapped scene based on an arbitrary
3D surface, whether self-occlusions are present or not.

The literature does present some approaches to surface
segmentation [4]. However, these approaches are for the
most part strictly geometric. For instance, many mesh par-
titioning methods strive to break the surface into convex
patches. However, such methods do not attempt to apply
any semantic meaning to the patches (e.g. hyperbolic regions
are broken down into their constituent polygons). Also, such
methods ignore the effects of noise or inaccuracies in the
model the itself. For instance, planar regions, which occur
regularly in geometric models, are rarely perfect planes.

The proposed method makes no assumptions about the
underlying geometry or convexity of the surface in question,
rather, the surface is segmented into patches bounded by re-
gions where the total curvature is relatively high. The moti-
vation is that regions of high curvature represent boundaries
between distinct parts or faces. The surface patches gener-
ated by the watershed algorithm are of arbitrary convexity
(or, topology for that matter); what they share is a common
degree of curvature throughout.

The surface segmentation method presented in this pa-
per is based on morphological watersheds, which are used
in image processing to achieve sensible, reliable partition-
ing of images. For images the algorithm commonly oper-
ates on the gradient magnitude of the input image. For 3D
surface meshes we use the total curvature of each vertex
on the surface. For this results in this paper, the surface

(a) Surface model

(b) Total Curvature

Figure 1: The isosurface of a volume (a) and the total cur-
vature at each vertexr (b) (Red indicates low curvature, in-
creasing through green and blue.) serve as inputs to the seg-
mentation algorithm.

meshes are computed from volume data sets using marching
cubes [5], and the curvature of the surface at the vertices is
calculated directly from the volume data. The volumes were
in turn created using the method described in [6]. Figure
1(a) shows one such surface mesh, and Figure 1(b) the total
curvature of this surface. The watershed segmentation algo-
rithm, described in Section 2, consists of two steps. The first
step is the identification of distinct catchment basins. The
second step is a region merging process, which combines in-
significant regions (identified by the depth of the catchment
basin), thereby making the results less sensitive to noise. We
present results in Section 3, where we examine the perfor-
mance of the algorithm in the presence of noise and present
segmentations for several data sets.

2 The Watershed Algorithm

This section describes the strategy used in the watershed al-
gorithm and the specifics of the implementation. The input
to the system is a surface mesh where the total curvature
at each vertex is known. Where the image processing ver-
sion of the algorithm operates on a rectilinear 2D grid of
points, we have extended the algorithm to a manifold in 3D,
consisting of a mesh of connected vertices where each ver-
tex also has associated with it a set of neighboring vertices.
For this work, the mesh is extracted from a 3D volume and
the mean, H, and Gaussian curvature, K, are found from
[7]2. The total curvature, D, is calculated from these using:
D? = 4H? —2K?. Linear interpolation of volume derivatives
are used to compute the curvatures at the vertex locations
(which lie along grid lines). A lower threshold is then applied
to the curvature as shown in Figure 2. This step is performed

Figure 2: Thresholding the total curvature.

so that relatively flat areas where the curvature is extremely
low throughout will be classified as exactly flat, easing the
computational burden during later processing. Once this
threshold has been applied the watershed algorithm proper
can begin.

There are two different strategies for implementing the
watershed algorithm. One strategy is to start at the bottom
of a catchment basin and fill upward. The second strategy,
which we use, is to track points downward to their associated
minima. Thus, a brief overview of the algorithm is:

1. Locate and label all local minima, each of which forms
the bottom of a catchment basin.

2. Flat regions with uniform curvature are then found,
labeled, and classified depending on whether they have
any neighboring vertices adjacent to their boundaries
lower than their curvature or not.

3. Move a token (downward, steepest descent) starting
from each remaining unlabeled vertex of the mesh until
it encounters a labeled region.

4. Merge shallow regions with their neighbors until the
depths of all remaining regions are above a preset
threshold.

Flat Plateau

Flat Minimum

(a) Minima labeling. (b) Flat regions.
Figure 3: Labeling of local minima and classification of flat
TegIons.

2.1 Initial Labeling

The watershed method first finds and labels all local minima,
i.e. those vertices with curvature lower than that of all of
their neighbors, as in Figure 3(a). Each minimum also serves
as the initial seed for a surface region, i.e. a distinct region
on the surface formed during the descent of vertices along
their paths of steepest descent. Next, flat regions are found.
These are one of two types as shown in Figure 3(b); either
flat plateaus or flat minima; depending on whether they have
any neighboring vertices on their borders lower than their
curvature or not. Flat minima are labeled and treated in
the same manner as local minima. After all flat regions are
found a descent is made from each of the flat plateaus until
a labeled region is encountered.

2.2 Descent

For flat plateaus the descent starts from the boundary ver-
tex of the plateau whose neighbor, not of the region, has
the lowest curvature. Imagine a drop of water placed at the
starting vertex, flowing towards the point of lowest curva-
ture. Each vertex it encounters on its path “downwards” is
labeled with the same identifying label as the first labeled
vertex it encounters, as shown in Figure 4. This drop will
either flow all the way to a local (labeled) minimum, or hit
a labeled vertex already associated with a minimum. Hence
the name watershed. The plateau and its path of descent are
than labeled and joined to the region finally hit during the
descent. The final step in the initial labeling stage is then to
allow all other unlabeled vertices to similarly descend until
they hit a labeled region, then join them to that region.

%
A

(a) 1D descent.

Curvature
@ Low

& Medium
QO High

(b) Descent along 3D mesh.

Figure 4: Descent until labeled region encountered.

Figure 5: Merging adjacent regions with shallow depths.

2.3 Region Merging

After the final step above all of the surface vertices are la-
beled and assigned to a region. However, leaving the surface
in this state can, due to small fluctuations in surface cur-
vature, yield an over-segmented result. To alleviate this we
merge the regions together in order to obtain reasonable re-
sults. This is done by combining with their neighbors those
regions deemed insignificant (as in Figure 5). The saliency
measure is watershed depth, which is the maximum height
of the water that the region could contain without spilling
over into an adjacent region. In order to proceed with this
step several additional pieces of information are needed for
each region. The vertex with the lowest curvature for the
region is found, used to later estimate the depth of the re-
gion. The boundary of the region is found, and from this all
neighboring regions are determined. For each neighbor B
the boundary vertex of the current region A adjacent to B
with the lowest curvature is also found. From these bound-
ary vertices the lowest (in terms of curvature) boundary ver-
tex of the region is then calculated. With this information
available region merging can then proceed.

The region merging is done based on the importance of a
given region. The depth of the region is found and used as a
measure of the region’s significance. The depth is calculated
as the difference between the lowest vertex in the region and
the lowest vertex on the region’s boundary. If this depth falls
below some preset threshold then the region is merged with
one of its neighbors. The neighbor adjacent to the lowest

O Boundary vertex with adjacent neighbor

@ Boundary vertex with lowest curvature

Figure 6: Region merging. As each new region is added to
the current region, indicated by the shaded area, its list of
neighbors and associated boundary vertices needs to be up-
dated accordingly.

boundary vertex is selected as that one with which to merge.
If this lowest boundary vertex happens to have two neighbors
adjacent to it, then the neighbor with the lowest curvature
at that point is chosen. For implementation purposes rather
than re-label all of the region’s vertices with the label of the
neighboring region it has merged with, a pointer is set for
the region indicating with which region it is merged. It also
proves necessary to check all other regions merged with this
one, and change their pointers to where they all indicate
that they are all now merged with the same region.

Once a region is joined with another it is necessary to
update the information of this new region. This requires
comparing and changing the lowest curvature vertex and ad-
justing the neighbor information of this new region. All of
the current region’s neighbors need to be added as neighbors
of the new region, unless they themselves are merged with
the new region. The current region, and all other regions
which had been in turn merged with it, need to be then re-
moved from the new region’s list of neighbors. The boundary
vertices associated with these neighbors also have to be re-
moved from their respective arrays. The regions are merged
in this manner according to Figure 6. Once this information
has been updated, the new lowest boundary vertex has to
be calculated and set. This merging procedure is iteratively
applied to all regions on the surface until no further regions
are within the preset depth threshold. At this point the
watershed algorithm is complete.

3 Results

We have implemented the proposed watershed algorithm and
used it to segment the surfaces of several volumetric data
sets; simple shapes such as spheres and torii, surfaces with
added noise, and a reconstruction of a real scene.

Results of using the watershed algorithm to segment the
surface of a sphere can be seen in Figure 7. Figure 7(a)
shows the results of using the method without any region
merging. This serves to underscore again the necessity of

(a) No region
merging
(348 regions).

(b) Threshold (c) Threshold =
= 0.0002 0.001
(6 regions). (1 region).

Figure 7: Segmentation of a sphere using the watershed al-
gorithm.

region merging, as even a relatively homogeneous shape such
as a uniform sphere gives rise to several hundred regions
(348) when segmented without any merging. However, with
the use of a small threshold when merging the majority of
these regions are combined with their neighbors. Figure 7(b)
shows the use of a threshold of 0.0002, yielding 6 regions.
Using a threshold of 0.001 manages to segment the sphere
into one region, the desired output.

The performance of the algorithm in the presence of addi-
tive, uniform noise is displayed in Figure 8. Figure 8(a) is the
segmentation of a torus without noise, and Figures 8(b)-(d)
shows the torus with varying levels of additive noise applied
to the curvature of each vertex. With 5% added noise the

) Torus, no) Torus, 5%
noise. noise.

(2 regions) (2 regions)

) Torus, 15%) Torus, 20%
noise. noise.

(56 regions)

(109 regions)

Figure 8: Segmentation of a torus with different levels of
additive noise applied.

torus is still segmented into 2 regions, but the boundary be-
tween the regions is no longer as well defined. The torus
has a relatively high degree of curvature throughout its sur-
face, meaning that the addition of any amount of noise has
detrimental effects upon the segmentation. 15% added noise
severely affects the segmentation, the 2 main regions are
still somewhat preserved, but many small additional regions
are created around the former boundary. At 20% noise the
segmentation has degraded completely and no longer corre-
sponds to the underlying geometry.

Initial results of using the system on the sequence of data
shown in Figure 1 with different threshold values are shown
in Figure 9. The first segmentation in Figure 9(a) has the
lowest threshold value, 0.15, and as expected the greatest
number of regions, 626. Increasing the threshold to where
fewer regions merge together, i.e. the criterion for the rel-
ative significance of each region is lowered, naturally leads
to less regions. The method can be sensitive to the thresh-
old level. Changing the threshold by as little as 0.05 leads
to significantly fewer regions, and visibly alters the appear-
ance of the final scene. The more the threshold is increased
the more dramatic the final changes perceived in the scene.
Segmentation results for additional volumetric data sets are
presented in Figure 10.

(a) Threshold = 0.15
(626 regions).

(b) Threshold = 0.25
(306 regions).

Figure 9: Segmentation of a scene using varying threshold
levels. 9640 regions before merging.

(a) Dart Segmentation.

(b) Jet Segmentation.

Figure 10: Dart and jet Segmentations.

4 Conclusions

We have presented here a method of surface segmentation
which uses a generalization of morphological watersheds to
3D meshes. As demonstrated by the results, the method
can segment isosurfaces of a 3D volume into regions that
are bounded by dramatically differing curvature. Future
work involves generalizing the technique to accept surface
data in the form of a polygonal mesh and finding the cur-
vature directly from the model. The algorithm also displays
some sensitivity to the user-specified threshold. Varying the
threshold allows for different levels of segmentation, the ex-
act level depending upon the final application.

Acknowledgments

Thanks go to the Computer Graphics Group at the Califor-
nia Institute of Technology for providing the jet and dart
volume data. Thanks also to Samuel Burgiss Jr. for his as-
sistance in preparing this paper. This work is supported by
the Office of Naval Research grant N00014-97-0227.

References

[1] Hugues Hoppe, “Progressive Meshes,” Computer Graph-
ics (SIGGRAPH 96 Proceedings), pp. 99-108, July 1996.

[2] William J. Schroeder, Jonathan A. Zarge, and
William E. Lorensen, “Decimation of Triangle Meshes,”
Computer Graphics (SIGGRAPH 92 Proceedings), vol.
26, no. 2, pp. 65-70, July 1992.

[3] Makoto Maruya, “Transforming Object-Surface Texture
Data into a Texture Map,” NEC Research and Develop-
ment, vol. 36, no. 2, pp. 335-341, Apr. 1995.

[4] Bernard Chazelle, David P. Dobkin, Nadia Shouraboura,
and Ayellet Tal, “Strategies for Polyhedral Surface De-
composition: An Experimental Study,” in Proceedings
of the 11th Annual ACM Symposium on Computational
Geometry, June 1995, pp. 297-305.

[6] William E. Lorensen and Harvey E. Cline, “Marching
Cubes: A High Resolution 3D Surface Construction Al-
gorithm,” Computer Graphics (SIGGRAPH 87 Proceed-
ings), vol. 21, no. 4, pp. 163-169, July 1987.

[6] Ross T. Whitaker, “A Level-Set Approach to 3D Recon-
struction from Range Data,” To Appear: International
Journal of Computer Vision, 1998.

[7] James Sethian, Level Set Methods: Evolving Interfaces in
Geometry, Fluid Mechanics, Computer Vision and Ma-
terials Science, Cambridge University Press, New York,
1996.

