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Penoising Vs Reconstruction

+  Any geowetric/statistical penalty can be
applied in two ways:
1. Gradient descent as filter (choose # iterations)

2. With data (fidelity) term to steady state

Variational
Noise/measurement wmodels, optimality, efc.
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Variational Methods
E.g Anisotropic Diffusion

+ Perona&Malik (1990)

af
Fri V.c(|V)Vf

* Penalty:
- Quadratic on grad-mag with

outliers (discontinvities)

* Nordstrom 1990; Black et. al |
1998

- Favors piecewise const. lmages fl jIpa
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Other Flattening Approaches

Total variation
- Rudin et. al (1992)

Muwford-Shah (1989) related

- Explicit model of edges
- (Cartoon wmodel

Level sets to model edges
- Chan & Vese (2000)
- Tsai, Yezzi, Willsky (2000)

Model textures + boundaries
- Meyer (2000)
- Vese & QOsher (2002)
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PPE Methods
Other Exaples

+ Woeickert (1998)

- (Goherence enhancing

+ Tasdizen et. al (2001)

- Piecewise-flat normals

+ Wilwmore flows
- Miniwmize curvature
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Issues

Prioritize geowmetric configurations a priori
- Works well of the wmodel fits, otherwise...

Free parameters

- Thresholds -> deterwmine when to apply different models
(e.g. “preserve edge or smooth”)

Generality

- (Cartoon-like simplifications are disastrous in many
applications

Increasing the geometric complexity
- s there a better way?
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Observations About Images

+ Statistics of naturalimages are not so random
- Huang & Muwmford (1999)

* But not so simple

- Manifolds in high-dimensional spaces
- de Silva & Carlsson (2003)
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Related Work

PUDE algortihm-Weissman et. al (2003)

- Discrete channels + noise model
- MLE estimation
Texture synthesis
- Efros & Leung (1999)
- Wei & Levoy (2002)

NL-wmeans, Baudes ef al. (CVPR 2005)

- Independent, simultaneously presented
- More later...

Sparsity in image neighborhoods
- Roth and Black 20059
- Elad and Aharon 2006
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Image Model

+ Pixels and neighborhoods Z = (X, Y)
- P(Z), PIXIY)

+ Scenario

- Corrupted image -> noise model
- Prior knowledge P(XIY)
- Theorews:

* Can produce most likely image x” using PIXIY = y’)

* lterate to produce optimal estimate

x|
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Modeling P(Z)

+ Set of image neighborhoods
- large, complex, high-dimensions
» Approach

- Represent complexity through examples
- Nonparawmetric density estimation
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Nonparametric, Multivariate
Density Estimation

* Nonparawmetric estimation
- No prior knowledge of densities
- (an wmodel real densities

+ Statistics in higher dimensions
- Curse of dimensionality (volume of n-sphere -> 0)
+ However, empirically more optimistic
+ Z has identical marginal distributions
+ Lower dimensional manifolds in feature space
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Parzen Windows
(Parzen 1962)

+ Scattered-data interpolation
1
p(z) & m Z G(z — 2i,v)

» Window funetion
- ¢ = Gavussian
- Covariance watrix: ¥ = oI




Entropy
(Shannon 1948)

* Entropy of a random variable X (instance x)
- Measure of vmneertainty - information content of a sample

h(X) = = [ pla)log pla)de = ~E, logp(X)]
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VINTA Sirateqy
Awate & Whitaker CVPR 2005, PAMI 2006

» |terative algorithm

+ Progressively minimizes the enfropy of image
nhds Z = (X, Y)

- Pixel entropies (X) conditioned on nhd values (Y)
- Gradient descent (time steps -> wmean shift)

* Nonparametric density estimation
- Stochastic gradient descent
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Entropy Minimization

* Entropy as sample mean
MZ) = —Epllogp(Z)]
N 57 2iep logp (2:)
~ |1?| > icplog (ﬁ > iea G(zi — 75, w))
- Set & all pixels in image

- Set A: a small random selection of pixels
- z, shorthand for z(s))

» Stochastic approximation
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Entropy Minimization

+ Stochastic approximation
- Reduce Of1BF] 1o OllAlIE]
- Efficient optimization

+ Stochastic-gradient descent

Apr — _)\3h(XalY=y)

~ )‘1/)__1 G(zj—z,\Il) .
-~ | B ZJEA ZkeA G(zp—2,9) i =&
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Mean-Shift Procedure
(Fukunaga et al. 1975)

+ Entropy winization <-> mean shift
)\ — \Ilel €r < Z’U)jiiﬁj

J

 Mean-shift - a mode seeking procedure




Mean-Shift Procedure
(Fukunaga et al. 1975)

+ Pata filtering to reduce noise
- Hand tuned parameters
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Implementation Issves

Scale selection for Parzen windowing
- Automatic - win enfropy with cross validation

Rotational invariance
Boundary neighborhoods

Random sample selection - nonstationary
image statistics

Stopping criteria
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Results
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Checkerboard With Noise

TTTTTTTTT



Quality of Penoising

+ 0, joint enfropy, and RMS- error vs. number of
iterations

Effect of UINTA

100 : :
\ — Gaussian Standard-Deviation
. --== Joint Entropy
801 \ -~ RMS Error

% Decrease From Initial
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lterations
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Vs Perona Malik
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Fingerprint
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Vs Perona Malik
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Vs Coherence Enhancing
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Results

Filtered

Original
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Results

Original Filtered
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Results
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Fractal

TTTTTTTTT



Microscopy




Quantitative Results

+ Generalizes well

- Kela;’rivelv insensitive to a few parawmeters (e.g. nhd
size

+ Compares favorably with s.0.t.a. wavelet
denoisers
- Close but worse for standard images (photographs)

— Better for less typical images (defy wavelet
shrinkage assumptions)

+ Spectral data -> gets even hetter
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Other Applications

(ptimal estimation/reconstruction
- IPMI 09, TMI Q7  noiseless Rician noise ~ esfimatedprior  reconstructed

. t". | ‘ ‘T;’j\.‘;’ '
« Tissue classification

- MICCAI 05, MedlA 06

+ Segwentation
- ECCV 05




Other Work in Microscopy




ET Surface Reconstruction

+ Limited-angle fomography artifacts
- Varies with recon technique “"
*  Approximate solution
- Swooth with discontinvity at interface "\‘
- E.g. anatowical boundary

* Fit wmodel directly to tilt-series data
- Refine interface iteratively
- Deformable wmodel
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ET Surface Reconstruction

Initialization (BP) Final Reconstruction
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Interactive 30 Tools

* Volume rendering

+ Seq3l

- WWW.Sseg3d.org
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Tiling Challenges
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Final Stack




Elegans - Jorgensen
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C. Elegans - Jorgensen
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SBFSEM Images - Chien, Venk ,

*  (hallenges
Axonal cross-sections hard to see with the eye
Anisotropic resolution (26x26x90nw)

Lower signal to noise ratio than TEM

*  Prior Knowledge
Cutting plane nearly perpendicular to axon
Axons rarely branch or terminate
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Tracking Overview

1.  Swoothing/Noise Rewmoval

Initial User Click

o (Automatic)
2.  Axon Initialization

3.  Axon Tracking
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Axon Tracking
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Axon Tracking




Thanks

+ Sponsors (NSF, NIH)
+ Teawm: S. Awate, T. Tasdizen, N. Foster
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