
Fast RMWs for TSO: Semantics and Implementation

Bharghava Rajaram
University of Edinburgh
r.bharghava@ed.ac.uk

Vijay Nagarajan
University of Edinburgh
vijay.nagarajan@ed.ac.uk

Susmit Sarkar
University of St Andrews
ss265@st-andrews.ac.uk

Marco Elver
University of Edinburgh
marco.elver@ed.ac.uk

Abstract
Read-Modify-Write (RMW) instructions are widely used as the
building blocks of a variety of higher level synchronization con-
structs, including locks, barriers, and lock-free data structures. Un-
fortunately, they are expensive in architectures such as x86 and
SPARC which enforce (variants of) Total-Store-Order (TSO). A
key reason is that RMWs in these architectures are ordered like
a memory barrier, incurring the cost of a write-buffer drain in the
critical path. Such strong ordering semantics are dictated by the
requirements of the strict atomicity definition (type-1) that exist-
ing TSO RMWs use. Programmers often do not need such strong
semantics. Besides, weakening the atomicity definition of TSO
RMWs, would also weaken their ordering – thereby leading to
more efficient hardware implementations.

In this paper we argue for TSO RMWs to use weaker atomic-
ity definitions – we consider two weaker definitions: type-2 and
type-3, with different relaxed ordering differences. We formally
specify how such weaker RMWs would be ordered, and show that
type-2 RMWs, in particular, can seamlessly replace existing type-1
RMWs in common synchronization idioms – except in situations
where a type-1 RMW is used as a memory barrier. Recent work
has shown that the new C/C++11 concurrency model can be real-
ized by generating conventional (type-1) RMWs for C/C++11 SC-
atomic-writes and/or SC-atomic-reads. We formally prove that this
is equally valid using the proposed type-2 RMWs; type-3 RMWs,
on the other hand, could be used for SC-atomic-reads (and option-
ally SC-atomic-writes). We further propose efficient microarchitec-
tural implementations for type-2 (type-3) RMWs – simulation re-
sults show that our implementation reduces the cost of an RMW by
up to 58.9% (64.3%), which translates into an overall performance
improvement of up to 9.0% (9.2%) on a set of parallel programs, in-
cluding those from the SPLASH-2, PARSEC, and STAMP bench-
marks.

Categories and Subject Descriptors C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures (Multiprocessors)–

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

Parallel processors; D.1.3 [Concurrent Programming]: Parallel
programming

General Terms Design, Performance, Experimentation

Keywords Read-Modify-Write (RMW), Total-Store-Order (TSO),
Atomics

1. Introduction
Read-Modify-Write (RMW) instructions are primitive synchroniza-
tion operations used to solve a variety of concurrency problems.
Herlihy [15] showed that the ability to read and write to an ad-
dress atomically is critical to solve the consensus problem, which
abstracts important synchronization problems. Most modern pro-
cessor architectures have support for such RMW instructions – ex-
amples include test-and-set (TAS), fetch-and-add (FAA), compare-
and-swap (CAS), and load-linked/store conditional (LL/SC).

In this paper, we concentrate on Total-Store-Order (TSO) ar-
chitectures, variants of which are implemented on mainstream pro-
cessors like x86 and SPARC, and on the use of RMWs to imple-
ment synchronization constructs in TSO. The most pertinent study
of such techniques [6, 27] deals with the new C/C++11 concurrency
model [7, 10], a model which introduces synchronization reads
and writes of various flavors; these reads and writes are referred
to as atomics. Batty et al. [6] have shown that this model is cor-
rectly implementable on TSO by replacing C/C++11 SC-atomic-
writes and/or SC-atomic-reads by RMWs, leaving other language
constructs (reads, writes, fences) to be implemented by plain TSO
reads, writes and barriers.

Unfortunately, RMWs are costly in current TSO architectures,
where they are ordered similarly to a memory barrier [16, 26], in-
curring the cost of a write-buffer drain in the critical path. When
an RMW is issued, the write-buffer is first drained; then the read
and the write (of the RMW) are performed atomically – typically
by locking the cache-line locally and denying coherence requests to
the locked cache-line until the write completes. Thus, instructions
following the RMW are allowed to complete only after the write
(of the RMW) and the pending writes prior to it complete [24].
As a quick illustration, we measured an average latency of 67 cy-
cles for an RMW on an 8-core Intel Sandybridge processor, using
the Splash-2 benchmark suite. The latency does not significantly
change if we insert a memory barrier (mfence instruction) after
each RMW, strengthening the hypothesis of a forced write-buffer
drain. Since efficient synchronization is important to effectively
harness the power of multicores, it is highly desirable that RMWs
are efficient. Nevertheless, the optimization of RMWs has histori-
cally received little attention [3].

61

Figure 1. Dekker’s Algorithm: (a) code snippet. (b) reads and writes involved: W (x) denotes a write to address x, R(x) denotes a read from
address x. (c) using RMWs as memory barriers. (d) replacing reads with RMWs. (e) replacing writes with RMWs. In all subfigures, initially,
x=y=0.

Semantically speaking, why are TSO RMWs ordered like a
memory barrier? We observe that the ordering of RMWs with other
memory accesses in TSO depends on the precise semantics of how
atomic they have to be with respect to those other accesses. TSO
can be defined in terms of a global memory order, a relation over
memory accesses in the program. Existing TSO RMWs are defined
to prevent writes to any address from appearing between the read
and the write in this global memory order [16, 26]. We call this
strict definition type-1 atomicity. We show that this strict atomicity
definition, combined with the other TSO ordering rules, results
in type-1 RMWs being strongly ordered with respect to memory
operations before and after it, just like a memory barrier.

This strong ordering is exploited by programmers in various
synchronization primitives. Fig. 1(a) shows the key steps involved
in the implementation of Dekker’s algorithm for achieving mutual
exclusion and Fig. 1(b) shows the same code in terms of reads and
writes. For correctness, at least one of the reads should return a
value of 1; otherwise both of the threads can enter the critical sec-
tion simultaneously. One way to ensure this is by inserting mem-
ory barriers between the writes and the reads. In fact, since type-1
RMWs behave like memory barriers, they can be used instead of
memory barriers as shown in Fig. 1(c). Alternatively, as shown in
Fig. 1d (Fig. 1e), correctness can also be ensured by replacing reads
(and/or writes) with RMWs, since type-1 RMWs are strongly or-
dered with respect to memory operations before and after it in pro-
gram order. For the same reason, the C/C++11 concurrency model
can be implemented on TSO by replacing SC-atomic-reads (and/or
SC-atomic-writes) with RMWs [6].

The goal of this paper is to examine whether the ordering of
TSO RMWs can be weakened in ways that enable a more efficient
implementation, while remaining strong enough for it to replace
existing RMWs in synchronization idioms. In other words, can we
design fast yet portable RMWs for TSO?

Our approach here is guided by the requirements of general
programs, in particular by just what properties are needed for the
C/C++11 implementation. Thus, this is hardware design exploiting
the freedom provided by language-level concurrency models, and
sufficing for those requirements.

Since the ordering semantics of an RMW depends on its atomic-
ity semantics, our approach to weakening the ordering semantics is
through weakening the atomicity semantics. In contrast to the strict
type-1 atomicity which disallows writes of any address between the
read and the write, we consider two weaker atomicity definitions:
the type-2 atomicity which disallows only reads and writes of the
same address as the RMW; and the even weaker type-3 atomicity,
which disallows only writes to the same address as the RMW.

Our key contribution is to derive the ordering semantics of the
proposed weaker RMWs, and examine if the ordering is strong

enough to replace existing RMWs in synchronization idioms (§2.4,
§2.5). Unlike a type-1 RMW, a type-2 RMW is not explicitly
ordered with respect to memory operations before and after it.
Thus, a type-2 RMW cannot be used as a memory barrier like in
Fig. 1(c). However, we show that a type-2 RMW appears strongly
ordered with respect to any memory operation that synchronizes
with the RMW i.e. any memory operation from another thread that
is to the same address as the RMW. Indeed, like before, Dekker’s
algorithm can be ported to TSO by replacing reads (and/or writes)
with type-2 RMWs. It is worth noting that in the scenario shown
in Fig. 1c (Fig. 1d), each of the RMWs appear to be strongly
ordered with respect to the writes (reads) from the other thread
which synchronize with the RMW; this strong ordering is again
able to guarantee correctness. For similar reasons, C/C++11 can be
ported to TSO by replacing SC-atomic-writes (and/or SC-atomic-
reads) with type-2 RMWs. Thus, type-2 RMWs are able to replace
existing type-1 RMWs in all synchronization idioms, except when
used as a memory barrier.

A type-3 RMW is also not explicitly ordered with respect
to memory operations before and after it, and hence cannot be
used a memory barrier (like a type-2 RMW). However, unlike a
type-2 RMW, it appears strongly ordered only with respect to a
write/RMW (but not a read) that synchronizes with the RMW.
Therefore, Dekker’s algorithm can be ported to TSO by replac-
ing reads (but not writes) with type-3 RMWs. Similarly, C/C++11
can be ported to TSO by replacing SC-atomic-reads (but not SC-
atomic-writes) with type-3 RMWs. Table 1 summarizes the use
of type-1, type-2 and type-3 RMWs in various synchronization
idioms.

In our final contribution, we propose efficient microarchitectural
implementations of the weaker RMWs, which, in contrast to exist-
ing implementations, do not incur the cost of a write-buffer drain
(§3). Our implementation of a type-2 RMW allows instructions fol-
lowing it to retire as soon as the read obtains exclusive ownership
of the cache-line and locks it locally. The write simply retires into
the tail of the write-buffer – thus the write-buffer drain is moved
out of the critical path. To guarantee atomicity, coherence requests
to the locked cache-line are denied until the write (of the RMW)
and the pending writes prior to it complete. However, to prevent a
potential deadlock we need to ensure that the above pending writes
will eventually complete, and not be blocked by an RMW from
another processor. We ensure this by tracking the list of unique
RMW addresses in per-processor bloom filters. When a pending
write (before the RMW) is found to conflict with the list of main-
tained RMW addresses, we revert to draining the write-buffer, thus
avoiding the possibility of a deadlock (§3.2).

The type-3 RMW implementation is almost identical, with one
difference. Since type-3 atomicity permits reads to the same ad-

62

Table 1. Conventional RMW (type-1) vs proposed RMWs (type-2, type-3)
Atomicity Dekker’s with reads Dekker’s with writes Dekker’s with C/C++11 by replacing C/C++11 by replacing

Definition replaced by RMWs? replaced by RMWs? RMWs as barriers? SC-atomic-reads with RMWs? SC-atomic-writes with RMWs?

type-1 ✓ ✓ ✓ ✓ ✓

type-2 ✓ ✓ ✗ ✓ ✓

type-3 ✓ ✗ ✗ ✓ ✗

dress as the RMW between the read and the write, the read need
not obtain exclusive ownership of the cache-line – leading to a
potentially more efficient implementation (§3.3). Our experimen-
tal results (§4) from benchmarks chosen from Splash-2, PARSEC,
STAMP, and lock-free data structures show that in comparison
with the existing type-1 RMW, our proposed type-2 RMW (type-3
RMW) is up to 58.9% (64.3%) cheaper, which translates into an
overall performance improvement of upto 9.0%(9.2%)

We are not the first to propose weaker atomicity semantics for
RMWs in general. In fact, Gharachorloo et al. [12] have already
observed that it is sufficient for RMWs to use a type-3 definition
for atomicity. However, in order for their TSO specification to be
compliant with the original TSO specification, additional program
order edges are added to RMWs, making the RMWs strongly
ordered. In other words, by explicitly adding additional program
order edges, the RMWs in their specification are effectively made
equivalent to type-1 RMWs. In this paper, we consider the case
in which the atomicity definitions are weakened, but additional
program order edges are not added to the RMW. Besides, our
proposed type-2 atomicity definition, to the best of our knowledge
has not been considered before. More on related work in §5.

2. Semantics of TSO RMWs
In this section we will propose definitions of atomicity weaker than
the standard strong definition for RMWs in TSO, and derive the or-
dering properties that apply. We will then use those ordering prop-
erties to demonstrate the use of weakened RMWs in synchroniza-
tion – in particular, we will demonstrate when they are sufficient to
implement the C/C++11 concurrency model.

We begin with recalling the base TSO model (without RMWs),
and then add our new formulations of atomicity. The base TSO
model follows Alglave [2], where our atomicity definitions fit most
naturally. We present here only a brief introduction to Alglave’s for-
mulation published previously. Readers, particularly those familiar
with alternative TSO formulations, should refer to Alglave’s the-
sis for more details. The thesis has a proof of equivalence with the
SPARC definition of TSO [25] is given, which is separately shown
by Owens et al [22] to resemble the x86 multiprocessor model.

2.1 Base TSO

As usual in axiomatic memory models, we first derive a set of
candidate executions from a program. Each candidate execution
contains a set of events and relations over them, and represents a
conceivable execution path (with control-flow unfolded, and values
for each read in the program). In the next step, the memory model
will carve out (via conditions on those relations) which of these
candidate executions are allowed by the model.

The events (memory reads, writes, and barriers) are annotated
with their thread, type, and for memory accesses the associated
address and value. From the program we derive the program order
(po) relation, a local (per-thread) total order over events from
the same thread as they appear in the program. We also consider
two relations which are existentially quantified over: a reads-from
map (rf) and write-serialization (ws), both relations over events.
The relation rf maps, for each read, the write that the read takes
its value from to the read. The relation ws is a linear order per

location relating all (and only) the writes to the same location, and
represents the coherence order of the system (in prior work, this
relation is also called coherence co).

For ease of stating the memory model, we derive various addi-
tional relations from the above. The from-reads relation (fr) relates
a read to all writes to the same location that come after (in ws) the
write it reads from (given by rf). The external-reads-from relation
(rfe) is the subrelation of rf which is restricted to reads which read
from a different-thread write. The communication relation com is
the union of ws, rfe, and fr.

A preserved-program-order relation (ppo) relates all memory
operations from the same thread in program order, according to
TSO ordering rules. Thus it relates all memory operations, except
writes to program order-subsequent reads: In other words, W

po−→
W , R

po−→ W , R
po−→ R all belong to ppo also.

A barrier-separated relation (bar) relates memory operations (on
the same thread) separated in program order by a memory barrier.

The behavior of a program is the set of corresponding execution
witnesses which are valid. A valid execution witness is one where
the union of com, ppo, and bar is acyclic, and satisfies the uniproc
condition. The uniproc condition states that the relation com is
consistent with the per-thread order of memory operations to the
same location. The first condition says that a happens-before-like
relation is acyclic. In this case we call a linear extension of of com,
ppo, and bar the global-happens-before relation (ghb). Informally,
it is the global memory order (also known as execution order) in
which memory operations appear to perform.

2.2 Adding RMWs to the model

We now consider events coming from RMWs. These correspond
to one read and one write to the same location – we denote the
read part of the RMW as Ra and the write part of the RMW as
Wa. In an RMW, the read part comes before the write in program
order – consequently, the read Ra reads an earlier value and not
the value written by Wa. In addition to this, Ra and Wa need to
be performed atomically, where atomicity is one of the following
three definitions:

• Type-1 Atomicity. This is a strict definition of atomicity, used by
existing TSO RMWs [16, 26], that prevents writes of any address
from appearing between the read and the write in the global
memory order. More formally, with type-1 RMWs added to the
TSO model, valid execution witnesses are ones which further
impose that there is no event in ghb between Ra and Wa.

• Type-2 Atomicity. This is a weakening which only prevents
reads and writes of the same address as the RMW from appearing
between Ra and Wa in the global memory order. More formally:

{∀M(x) : M(x)
ghb−−→ Ra(x) ∨Wa(x)

ghb−−→ M(x)}.

• Type-3 Atomicity. This is a further weakening which merely
prevents writes of the same address as the RMW from appearing
between Ra and Wa in the global memory order. More formally:

{∀W (x) : W (x)
ghb−−→ Ra(x) ∨Wa(x)

ghb−−→ W (x)}.

It is important to note that even type-3 atomicity, the weakest of
the atomicity definitions, satisfies the notion of atomicity required
for solving the consensus problem [15] – consensus being the ab-

63

stract problem that models synchronization idioms. Nonetheless,
this does not imply that the three types of RMWs can be used inter-
changeably. In fact, we shall see that each of the three atomicities
gives rise to RMWs that are ordered differently.

Atomicity-induced orderings. Each atomicity definition, by dis-
allowing a specific set of memory operations between Ra and Wa

in the global memory order – effectively requires both Ra and
Wa of the RMW to be ordered identically with such disallowed
memory operations. For example, if just Ra (and not Wa) is origi-
nally ordered before a disallowed memory operation M in the ghb

(Ra
ghb−−→ M), then atomicity requires Wa to also be ordered be-

fore M (Wa
ghb−−→ M) – otherwise M could end up between Ra

and Wa in the ghb. In other words, the atomicity constraint induces
additional memory orderings – the atomicity relation ato is used to
refer to such atomicity-induced orderings. In the above example,
the ordering Wa

ato−−→ M would be an atomicity-induced ordering.
Accounting for such atomicity-induced orderings, the global mem-
ory order (ghb) is the linear extension of the union of com, ppo,
bar, and ato. A valid execution witness, like before, is one which
has an acyclic union of the above relations (including ato), and
satisfies the uniproc condition. Next, we will derive the atomicity-
induced memory ordering constraints for each of the atomicity def-
initions.

2.3 Type-1 RMWs

The strict type-1 definition of atomicity combined with TSO’s
preserved program order ensures that a type-1 RMW is strongly
ordered with respect to memory operations before and after it.

Figure 2. Additional memory orderings induced by type-1 RMW

Lemma 1. An RMW placed between a write W1 and a read R2,
results in the enforcement of W1

ato−−→ Ra, Wa
ato−−→ R2 and

consequently, W1
ato−−→ R2.

Proof. Type-1 atomicity mandates that either Wa
ghb−−→ W1 or

W1
ghb−−→ Ra. As shown in Fig. 2, W1

ppo−−→ Wa. This implies
W1

ato−−→ Ra. Next, we prove the second part: Wa
ato−−→ R2. As

shown in Fig. 2, Ra
ppo−−→ R2. This implies that either R2 occurs

after Wa in the ghb or R2 is between Ra and Wa. Meanwhile,
type-1 atomicity mandates that there cannot be any writes between
Ra and Wa in the ghb; in particular there cannot be any writes
to location z. This implies that even if R2 were to occur between
Ra and Wa, it can be safely be moved after Wa. This in turn
implies Wa

ato−−→ R2. Finally, W1
ato−−→ R2, because of transitivity

(W1
ato−−→ Ra and Ra

ppo−−→ R2).

Such strongly ordered type-1 RMWs result in costly implemen-
tations that involve a write-buffer drain; however, they can be used
to port synchronization idioms to TSO without requiring additional

memory barriers. Below, we demonstrate how type-1 RMWs are
used in various synchronization idioms:

Figure 3. Dekker’s with writes replaced by RMWs. In this and
other examples that follow, RMW (x, 0, 1) means that the RMW
reads a value of 0 from location x and updates it to 1

Dekker’s: write-replacement. One way to ensure that Dekker’s
algorithm works on TSO architectures is to replace the writes with
type-1 RMWs as shown in Fig. 3 [16, 26] In the above example,
we assume that the read R(y) from thread 0 reads the initial value
of 0. For Dekker’s algorithm to work the read R′(x) should read
a value of 1. The following sequence of orderings ensure this:

Wa(x)
ato−−→ R(y)

fr−→ W ′
a(y)

ato−−→ R′(x) – where ato denotes
the additional orderings induced by atomicity.

Figure 4. Dekker’s with reads replaced by RMWs.

Dekker’s: read-replacement. Using similar reasoning, it is easy
to see that replacing reads with type-1 RMWs will also ensure that
Dekker’s algorithm works on TSO (Fig. 4).

Figure 5. Dekker’s with RMWs used as memory barriers. The two
RMWs access different addresses z1 and z2.

Dekker’s: RMWs as barriers. One simple way to make Dekker’s
algorithm work on TSO is to insert memory barriers between the
writes and the reads, as the W → R ordering enforced by the
memory barriers would ensure correctness. Since type-1 RMWs
order memory operations before and after it, they can very well
be used instead of the barriers. As shown in Fig. 5, the following

64

sequence of ordering ensures correctness: W (x)
ato−−→ R(y)

fr−→
W ′(y) ato−−→ R′(x).

Implementing C/C++11 using type-1 RMWs. The C/C++11 con-
currency model [7, 10] is an adaptation of data-race-free-0 [1]
which guarantees SC for data race free programs. It introduces a
variety of atomic memory operations parameterized by different
memory order parameters. Correct compilation depends (among
other things) on mapping these atomic memory operations to hard-
ware primitives. Batty et al. [6] recently proved that C/C++11 can
be implemented on X86-TSO by mapping C/C++11 SC-atomic-
reads and SC-atomic-writes to type-1 RMWs supported by x86 ar-
chitectures (non-SC atomic reads and writes and non-atomic ac-
cesses can simply be mapped to ordinary TSO reads and writes). In
fact, it is easy to adapt this proof and show that it is sufficient to map
at least one of the SC-atomic-writes or the SC atomic reads to type-
1 RMWs (see appendix). Informally, since TSO already preserves
all program orders except the W → R order, we only need to
ensure SC-atomic-writes are ordered with subsequent SC-atomic-
reads; similarly to Dekker’s algorithm, this can be accomplished by
replacing either the reads or writes with type-1 RMWs.

2.4 Type-2 RMWs

We show that, unlike a type-1 RMW, a type-2 RMW placed be-
tween a write W1 and a read R2 does not explicitly enforce any of

W1
ghb−−→ Ra, Wa

ghb−−→ R2, or W1
ghb−−→ R2. However, it disal-

lows Ra
ghb−−→ W1 and R2

ghb−−→ Wa from being enforced 1 – in
effect, a type-2 RMW is implicitly ordered with respect to memory
operations before and after it.

Figure 6. Memory ordering disallowed by a type-2 RMW

Lemma 2. A type-2 RMW placed between two memory operations
W1 and R2, disallows the enforcement of the following two order-

ings: Ra
ghb−−→ W1 and R2

ghb−−→ Wa.

Proof. Let us attempt to prove by contradiction by assuming the

ordering Ra
ghb−−→ W1 is enforced. Since there is no ppo edge

directly connecting Ra and W1, Ra
ghb−−→ W1 we will need to

be enforced via a sequence of edges as shown in Fig. 7. More
specifically, there has to be a write W ′(y) which conflicts with

Ra(y) such that: Ra(y)
fr−→ W ′(y)

ghb−−→ W1(x). But, Ra(y)
fr−→

W ′(y) implies Wa(y)
ato−−→ W ′(y), due to type-2 atomicity. This

leads to a cycle: Wa(y)
ato−−→ W ′(y)

ghb−−→ W1(x)
ppo−−→ Wa(y).

Similarly for the other part let us assume R2
ghb−−→ Wa. As

shown in Fig. 7, this implies that there has to be a read R′′(y)

1 Disallowing an ordering M1
ghb−−→ M2 (say) is not the same as enforcing

M2
ghb−−→ M1. The latter implies that M2 will occur before M1 in every

valid global memory order, while the former implies that it is not necessary
for M1 to occur before M2 in every valid global memory order

Figure 7. Scenario for proof of lemma 2.

which conflicts with Wa(y) such that: R2(z)
ghb−−→ R′′(y)

fr−→
Wa(y). But, R′′(y)

fr−→ Wa(y) implies R′′(y) ato−−→ Ra(y),
due to type-2 atomicity. This leads to a cycle: Ra(y)

ppo−−→ R2(z)
ghb−−→ R′′(y) ato−−→ Ra(y).

Effect of implicitly ordered type-2 RMWs. Since a type-2 RMW
neither enforces W1 → Ra nor Wa → R2, it also does not tran-
sitively enforce W1 → R2. Consequently, a type-2 RMW is not
ordered like a memory barrier; in the next section we will pro-
pose an efficient implementation that does not incur the cost of a
write-buffer drain. At the same time, a type-2 RMW appears to be
strongly ordered with respect to any memory operation that syn-
chronizes with the RMW i.e any memory operation from another
thread that is to the same address as the RMW. As shown in Fig. 7,
with respect to W ′(y) which synchronizes with Ra, W1 appears
to be ordered before the RMW. This is because, type-2 atomicity
induces the ordering Wa(y)

ato−−→ W ′(y), which results in the se-

quence of orderings: W1(x)
ppo−−→ Wa(y)

ato−−→ W ′(y), thereby en-
suring W1(x) → W ′(y). Likewise, with respect to R′′(y) which
synchronizes with Wa, R2(z) appears to perform after the RMW –

the sequence of orderings R′′(y)
ato−−→ Ra(y)

ppo−−→ R2(z) ensures
this. Consequently, type-2 RMWs can seamlessly replace existing
RMWs in synchronization idioms, as we will demonstrate next.

Dekker’s: write-replacement. Similarly to type-1 RMWs, Dekker’s
algorithm will continue to work with writes replaced by type-2

RMWs as shown in in Fig. 3. Since R(y)
fr−→ W ′

a(y), R(y)
ato−−→

R′
a(y) (due to type-2 atomicity). Now, the sequence of order-

ings Ra(x)
ppo−−→ R(y)

ato−−→ R′
a(y)

ppo−−→ R′(x) ensures that

Ra(x)
ghb−−→ R′(x). This in turn implies that Wa(x)

ato−−→ R′(x),
again due to type-2 atomicity.

Dekker’s: read-replacement. Using a similar reasoning, replacing
reads with type-2 RMWs will also ensure that Dekker’s algorithm

works on TSO (Fig. 4). Since Ra(y)
fr−→ W ′(y), Wa(y)

ato−−→
W ′(y) (due to type-2 atomicity). Now, the sequence of order-

ings W (x)
ppo−−→ Wa(y)

ato−−→ W ′(y)
ppo−−→ W ′

a(x) ensures that

W (x)
ghb−−→ W ′

a(x). This in turn implies that W (x)
ato−−→ R′

a(x),
again due to type-2 atomicity.

Dekker’s: RMWs as barriers (different addresses). A type-2
RMW cannot be used as a memory barrier in Dekker’s algo-
rithm if the RMWs used to replace the barriers access different
addresses, since they would not appear strongly ordered with one
another. As shown in Fig. 5, it can potentially allow the following
sequence of operations – Ra(z1), R(y), R′

a(z2), R′(x),W (x),

65

Wa(z1),W
′(x),W ′

a(z1) – which would lead to R′(x) to read a
value of 0.

Figure 8. Dekker’s with RMWs used as a memory barrier. The two
RMWs access the same addresses z.

Dekker’s: RMWs as barriers (same address). A type-2 RMW,
however, can be used as a memory barrier in Dekker’s algorithm
if the inserted RMWs access the same address, since this ensures
that the RMWs appear strongly ordered to one another. As shown
in Fig. 8, type-2 RMWs used in the above fashion ensure that
R′(x) will read the correct value of 1. To see why, first recall

that based on our assumption R(y)
fr−→ W ′(y). This implies that

Wa(z)
rfe−−→ R′

a(z) (as the other possibility W ′
a(z)

rfe−−→ Ra(z)

would result in the following cycle: W ′
a(z)

rfe−−→ Ra(z)
ppo−−→

R(y)
fr−→ W ′(y

ppo−−→ W ′
a(z)). This in turn leads to the sequence

W (x)
ppo−−→ Wa(z)

rfe−−→ R′
a(z)

ppo−−→ R′(x), ensuring that R′(x)
reads the correct value.

Implementing C/C++11 using type-2 RMWs. We formally show
that, similarly to type-1 RMWs, C/C++11 can be implemented
by mapping at least one of SC-atomic-writes or SC-atomic-reads
to type-2 RMWs. Recall that, since TSO already preserves all
program orders except the W → R order, we only need to ensure
SC-atomic-writes are ordered with subsequent SC-atomic-reads.
Intuitively, since type-2 RMWs appear strongly ordered when used
in synchronization idioms, this can be accomplished by replacing
either the SC-atomic-reads or SC-atomic-writes with RMWs. See
appendix for the formal proof.

2.5 Type-3 RMWs

We show that, similarly to a type-2 RMW, a type-3 RMW placed

between W1 and R2 does not explicitly enforce any of W1
ghb−−→

Ra, Wa
R−→2 ghb, or W1

ghb−−→ R2. However, unlike a type-2
RMW it disallows only Ra → W1 (but could allow R2 → Wa)
– in effect, a type-3 RMW is implicitly ordered with respect to
memory operations before it, but not with those after it.

Lemma 3. A type-3 RMW placed between two memory operations

W1 and R2, disallows Ra
ghb−−→ W1 (but could allow R2

ghb−−→ Wa

to be enforced).

Proof. Proof of ¬Ra
ghb−−→ W1 is identical to the first part of

the proof of lemma 2. To understand why R2
ghb−−→ Wa is not

disallowed, let us consider the second part of the proof of lemma 2,

where we assumed R2
ghb−−→ Wa. As shown in Fig. 7, this implies

that there has to be a read R′′(y) which conflicts with Wa(y) such

that: R2(z)
ghb−−→ R′′(y)

fr−→ Wa(y). Recall that type-2 atomicity

Figure 9. Memory ordering disallowed by a type-3 RMW

induced the ordering: R′′(y) ato−−→ Ra(y), which led to a cycle.
However, such an ordering is not induced by type-3 atomicity,
which allows for reads to happen between the Ra(y) and Wa(y),
and so there is no cycle.

Effect of implicitly ordered type-3 RMWs. Since a type-3 RMW
enforces neither W1 → Ra nor Wa → R2, it also does not
transitively enforce W1 → R2. Consequently, a type-3 RMW is
not ordered like a memory barrier. At the same time, a type-3 RMW
appears to be strongly ordered with respect to any write/RMW that
synchronizes with the RMW. As shown in Fig. 7, with respect to
W ′(y) which synchronizes with Ra, W1 appears to be ordered
before the RMW. This is because type-3 atomicity induces Wa(y)
ato−−→ W ′(y), which in turn results in the sequence of orderings:

W1(x)
ppo−−→ Wa(y)

ato−−→ W ′(y) which ensures this. On the other
hand, with respect to the read R′′(y) which synchronizes with Wa,
R2(z) does not appear to be ordered after the RMW, since type-
3 atomicity allows R′′(y) to occur between Ra(y) and Wa(y).
Consequently, type-3 RMWs cannot seamlessly replace existing
RMWs in synchronization idioms, as we will demonstrate next.

Dekker’s: write-replacement. Unlike type-1 or type-2 RMWs,
replacing writes with type-3 RMWs cannot guarantee correctness
(Fig. 3). This is because type-3 atomicity is not able to induce
R(y)

ato−−→ R′
a(y). Hence, the following sequence is allowed:

Ra(x), R(y), R′
a(y), R

′(x),Wa(x),W
′
a(y) – which would lead

to R′(x) to read 0.

Other Dekker’s scenarios. For the other Dekker’s algorithm sce-
narios (Fig. 4, Fig. 5, and Fig. 8) a type-3 RMW behaves identically
to a type-2 RMW.

Implementing C/C++11 using type-3 RMWs. We formally show
that C/C++11 can be implemented by mapping SC-atomic-reads
(and optionally SC-atomic-writes) to type-3 RMWs. However, it is
not sufficient (unlike type-1 and type-2 RMWs) for only the SC-
atomic-writes to be so mapped. Intuitively, since type-3 RMWs
appear strongly ordered only when synchronizing with writes or
RMWs, but not reads, all SC-atomic-reads need to replaced with
RMWs. See appendix for the formal proof.

2.6 Summary

We show that type-2 RMWs can seamlessly replace type-1 RMWs
in various synchronization idioms, except when a type-1 RMW
is used purely as a memory barrier. Given that all modern TSO(-
like) architectures have a dedicated memory barrier instruction,
there is no need to use an RMW as a barrier. Furthermore, type-
2 RMWs can still be used as a memory barrier provided such
RMWs are forced to synchronize with each other (by forcing them
to access the same address). Similarly to type-2 RMWs, type-3
RMWs also do not behave like memory barriers. However, unlike
type-2 RMWs, type-3 RMWs only appear ordered with respect to

66

writes/RMWs (but not reads) that synchronize with the RMW; thus
type-3 RMWs cannot seamlessly replace type-1 RMWs. Neverthe-
less, we show that by replacing synchronization reads with type-3
RMWs, the above synchronization idioms can still be implemented
using type-3 RMWs.

3. TSO RMWs: Implementation
In this section we first discuss how existing type-1 RMWs are
implemented. We then describe our proposed type-2 and type-3
RMW implementations. For the following discussion we assume a
chip multiprocessor with local L1 caches and a shared L2 cache; the
local caches are kept coherent at the L2 cache using a distributed
directory based coherence protocol.

3.1 Type-1 RMW

Recall that a type-1 RMW is strongly ordered with respect to
memory operations before and after it: a type-1 RMW placed
between write W1 and read R2 results in the enforcement of W1 →
Ra and Wa → R2, where Ra/Wa are the read/write of the RMW
respectively. To enforce W1 → Ra, pending writes in the write-
buffer (if any) must complete before Ra can retire.

Furthermore, type-1 atomicity mandates that there should not be
any conflicting reads or writes (to the same address as the RMW)
between Ra and Wa. To ensure this, existing RMW implemen-
tations use a cache-line locking mechanism [16, 20, 26]. The Ra

obtains read/write permissions for the cache-line, and locks it be-
fore it retires, thereby denying coherence requests to the cache-line.
Once Wa completes, the cache-line is unlocked.

To ensure that Wa → R2 is enforced, R2 is allowed to retire
only after Wa completes. In other words, reads that follow the
RMW have to wait until: (a) all writes prior to the RMW are
performed (the write-buffer is drained) and (b) Ra and Wa are
performed. Thus, the type-1 RMW incurs the cost of a write-buffer
drain and the cost of performing Ra and Wa.

Gharachorloo et al. [13] proposed two techniques to provide
efficient memory ordering. Both these techniques can be used to
improve the performance of type-1 RMWs. The first one involves
issuing the read-exclusive request for all pending writes in paral-
lel, to efficiently enforce the write-buffer drain. The actual writes,
however, are completed in-order, keeping with TSO. Parallel issue
of the read-exclusives will be serialized at the local L1 cache and
at the directory, but will make full use of the interconnect and over-
lap invalidation and acknowledgement messages for all the pend-
ing writes. The second technique is to hide part of the write-buffer
drain latency through in-window speculation. Here, the instructions
following the RMW are speculatively executed, but are allowed to
complete only after the RMW and all the pending writes before it
complete.

3.2 Type-2 RMW

Recall that a type-2 RMW is not explicitly ordered with respect to
memory operations before and after it in the program order. Since
a type-2 RMW that is placed between memory operations W1 and
R2, does not enforce W1 → Ra, Ra need not wait for the write-
buffer to be drained. However, type-2 atomicity still disallows
conflicting reads or writes from appearing between Ra and Wa

in the global memory order. Similarly to a type-1 RMW, this is
ensured using the cache-line locking mechanism. Like before, Ra

obtains read/write permissions for the cache-line, locks the cache-
line, and then retires. After this, Wa simply retires into the tail
of the write-buffer. At this point the RMW effectively retires, and
allows memory operations following it (e.g. R2) to retire (since
Wa → R2 is not enforced). Finally, when Wa reaches the head of
the write-buffer and completes, the cache-line is unlocked.

Figure 10. (a) shows a code segment that can cause a write-
deadlock. (b) shows an execution order with a cyclic dependency
of non-occurring events resulting in a write-deadlock. fr ordering

Write-deadlocks. The above implementation, while simple, can
potentially result in a deadlock. To guarantee type-2 atomicity,
coherence requests to the cache-line locked by an RMW are denied
until Wa and the pending writes prior to it complete. If such a
pending write W1 is to a cache-line which has already been locked
by another RMW′ from a different processor, then W1 (and hence
Wa) will have to wait until W ′

a completes. If W ′
a itself is stalled

because of a similar write in its write-buffer, a deadlock manifests.
This is illustrated in the code segment shown in Fig. 10(a),

where W (x) occurs before RMW(y), and W ′(y) occurs before
RMW′(x) in program order. As shown in Fig. 10(b), let us as-
sume that Ra(y) and R′

a(x) have retired after locking their respec-
tive cache-lines, while the writes (W (x) and W ′(y)) have retired
into the write-buffer and are yet to complete. Cache-line locking
ensures that W (x) cannot complete until W ′

a(x) has completed,
and W ′(y) cannot complete until Wa(y) has completed. How-
ever, since writes are ordered in TSO, Wa(y) cannot complete until
W (x) completes, and W ′

a(x) cannot complete until W ′(y) com-
pletes. This leads to a write-deadlock.

More formally, our assumptions can be represented by the two

fr orderings: R′
a(x)

fr−→ W (x) and Ra(y)
fr−→W ′(y). Now, type-

2 atomicity induces the two orderings: W ′
a(x)

ato−−→ W (x) and

Wa(y)
ato−−→ W ′(y). This in turn results in a cycle: W (x)

ppo−−→
Wa(y)

ato−−→ W ′(y)
ppo−−→ W ′

a(x)
ato−−→ W (x). Since each of

the memory operations which are part of the cycle have not yet
performed, a deadlock ensues.

Deadlock avoidance. In order to ensure that the deadlock scenario
discussed above never occurs, we should guarantee that none of the
pending writes before an RMW, are to cache-lines locked by other
RMWs – the deadlock safety property. To ensure this, we propose
a mechanism to dynamically maintain the set of unique RMW
addresses accessed by RMWs from all processors – the addr-list.
Furthermore, we make this addr-list available locally to each of the
processors.

Now, when an RMW is performed, if none of the pending writes
in the write-buffer conflict with the addr-list, we can safely say that
these writes are not to locked cache-lines. On the other hand, if
any of the pending writes conflicts with the addr-list, the deadlock
safety property is not guaranteed. In such a case, we revert to type-1
implementation by draining the write-buffer before performing the
RMW – thereby avoiding a deadlock.

There are two challenges to efficiently implementing this mech-
anism in hardware: (a) keeping track of the RMW addresses in
the addr-list efficiently; (b) keeping the addr-list coherent across
all processors. We implement the addr-list using a bloom filter [8],
which is a well understood mechanism for maintaining sets and
supporting membership queries. In order to keep the addr-list co-
herent we simply broadcast the address whenever a new RMW ad-

67

dress is encountered by a processor. Our design exploits the fact
that the number of unique RMW addresses is relatively small –
our experiments show that typically around 1% of the number of
dynamic RMWs are to unique addresses. This in turn means that
the addresses of the RMWs can be stored efficiently in a relatively
small-sized bloom filter, with a low probability of false positives.
More importantly, the number of broadcasts required to keep the
addr-list coherent is minimal.

We now explain the working of our mechanism in more detail.
When an RMW is ready to perform, we first query the bloom filter
for the RMW address. If the address is not found in the filter, we
insert the RMW address into the local bloom filter. In addition to
this, since the addr-list has changed, we broadcast the new address
to all processors. Each of the other processors, upon receiving the
address, inserts the address into its respective bloom filter and sends
back an acknowledgement. Once all acknowledgements have been
received (or if the RMW’s address is found in the addr-list in the
first place), we query the bloom filter with the pending writes’
addresses. If any of these write addresses are found in the addr-
list, this flags a potential deadlock. Consequently, the write-buffer
is drained before performing the RMW like a type-1 RMW. On the
other hand, if none of the pending writes’ addresses are found, the
RMW does not wait for the write-buffer to drain. It locks the cache-
line and simply retires, while the write of the RMW is retired into
the write-buffer.

To see why our scheme is correct note that an RMW can lock
the cache-line and retire (with pending writes in the write-buffer)
only when:

• c1: the RMW’s address is made visible to all processors

• c2: none of the pending writes conflict with the addr-list.

Now, c1 implies that any write (W ′) that could be potentially
involved in a deadlock with the original RMW will conflict with
the local addr-list. c2 implies that an RMW with W ′ in its write-
buffer will revert to type-1, thereby avoiding a deadlock. Consider
the deadlock scenario shown in Fig. 10(c). Recall that in the dead-
lock scenario, Ra(y) and R′

a(x) have retired, but their respective
pending writes W (x) and W ′(y) are unable to complete (inducing

the two fr orderings: R′
a(x)

fr−→ W (x) and Ra(y)
fr−→ W ′(y)).

The fact that Ra(y) and R′
a(x) have retired implies that both x and

y must be present in the bloom filter (from c1). In addition to this,
W (x) and W ′(y) should have checked the filter for conflicts (from
c2). The assumed fr orderings imply that neither of the writes con-
flicted with the bloom filter. This in turn implies that neither x nor
y are in the bloom filter leading to a contradiction.

False Positives. Bloom filters suffer from false positives. The cor-
rectness of our scheme, however, is not compromised. The false
positive may result from either an RMW or a pending write check-
ing the bloom filter. When an RMW, whose address has not been
encountered before, queries the bloom filter and the bloom filter
returns a false positive, the RMW address ends up not being broad-
cast. This is safe, however, because any write which conflicts with
this address will also similarly return a false positive. It is worth
noting that false positives in this case may reduce the number of
RMW broadcasts. Likewise, When a pending write queries the
bloom filter and the filter returns a false positive, the write-buffer is
unnecessarily drained. The correctness of the mechanism, however,
is not affected.

Finally, in our design, the bloom filter keeps track of RMW ad-
dresses of all contexts. In other words, each bloom filter is indepen-
dent of the thread context. While this may increase the probability
of false positives, it again does not present any correctness issues.

It is worth noting that, the probability of false positives in
the filter increases with the number of elements inserted into it,

leading to a performance degradation over time. To handle this,
we reset the bloom filters of all processors when the number of
RMW addresses inserted into the filter exceeds a certain threshold,
which is a function of the bloom filter configuration. To ensure
correctness, when a processor receives a reset request, it waits until
all in-flight RMWs have completed, and responds subsequently.

3.3 Type-3 RMW

Recall that a type-3 RMW, like a type-2 RMW, is not explicitly
ordered with respect to memory operations before and after it. Ra

need not wait for the write-buffer to be drained – it can retire even
if there are pending entries in the write-buffer. However, type-3
atomicity still disallows conflicting writes and other RMWs from
appearing between Ra and Wa in the global memory order. Since
reads to the same memory address can appear between Ra and Wa,
it is sufficient for Ra to get read permissions for the cache-line,
unlike type-1/type-2 RMW which require read/write permission.

If the RMW is to a cache-line owned by the local cache, then
it is locked in the cache itself before retiring Ra, similar to type-
1/type-2 RMWs. If the RMW is to cache-line in shared state,
however, locking the cache-line locally cannot prevent an RMW
from another processor, which also has the cache-line in its local
cache, from performing. To resolve this, we propose a directory
locking protocol, wherein Ra to a cache-line in shared state is
locked in the directory by transitioning the cache-line to a locked
state. When Wa is issued from the write-buffer, the cache-line is
transitioned out of the locked state allowing subsequent coherence
requests to the cache-line to be serviced. This optimization removes
any invalidation delay, incurred by the RMW, from the critical
execution path.

Once Ra obtains a lock and retires, Wa simply retires into
the tail of the write-buffer. At this point the RMW effectively
retires, and allows memory operations following it to retire. Thus
reads that follow a type-3 RMW will only have to wait until Ra

obtains read permission for the cache-line and locks it. Finally,
when Wa reaches the head of the write-buffer and completes, the
lock on the cache-line is released. Similarly to type-2 RMWs, the
implementation of type-3 RMWs also makes use of the bloom filter
mechanism to avoid deadlocks.

4. Experimental Evaluation
The primary goal of our experiments was to compare the cost of
type-1, type-2, and type-3 RMWs. Furthermore, we evaluated the
impact of the different types of RMWs on the overall execution
time of the benchmark programs. Since RMWs are also used to im-
plement C/C++11 SC-atomic-reads and/or SC-atomic-writes, we
also investigated the performance of supporting C/C++11 concur-
rency model with type-1, type-2 and type-3 RMWs. We briefly de-
scribe our implementation before discussing the results.

4.1 Implementation

Table 2. Architectural Parameters
Processor 32 core CMP, inorder

Write Buffer 32-entry deep

L1 Cache private, 32 KB 4-way 2-cycle latency

L2 Cache shared, 1 MB per-core, 16-way 6-cycle latency

Memory 300 cycle latency

Coherence MOESI distributed directory

Interconnect 2D Mesh, 1-cycle link, 4-cycle router latency

Simulator. We use the GEM5 simulator to implement our base-
line system, which is an x86-based CMP composed of inorder pro-
cessors, with local L1 caches and a shared-distributed L2 cache.

68

Table 3. Benchmark Characteristics
Code Suite Problem Size Ratio of RMWs % Unique % write-buffer drains RMW broadcasts

per 1000 memops RMWs for type-2/type-3 RMW per 100 RMW ops

radiosity SPLASH-2 room 15.56 0.28 0.06 0.26

raytrace SPLASH-2 car 13.83 0.02 0.12 0.02

fluidanimate PARSEC simmedium 17.43 0.46 0.09 0.46

dedup PARSEC simmedium 8.10 3.31 0.20 3.12

bayes STAMP bayes+ 34.15 0.91 0.01 0.80

genome STAMP genome+ 6.19 0.64 0.10 0.52

wsq-mst Lockfree 10000 nodes 23.41 3.80 0.07 3.71

Cache latencies were obtained from CACTI [21]. The baseline
uses type-1 RMWs. The local caches are kept coherent using a
distributed directory based on the MOESI coherence protocol. We
chose inorder cores for our simulation as the GEM5’s out-of-order
processor model is unstable for full system simulation of the x86
processor architecture. The choice of inorder cores, however, is a
valid design point owing to the fact that several present and fu-
ture many-core processors, like the Intel Xeon Phi, Sun Niagara
T2, and NVIDIA GPUs, make use of inorder cores as opposed to
out-of-order cores to achieve better performance to power ratios.
As mentioned in the previous section, we implemented a parallel
write-buffer drain mechanism. This improves the baseline signif-
icantly over the serial write-buffer drain. We did not implement
in-window speculation as it is not applicable to inorder processors.
The architectural parameters for our implementation are presented
in Table 2.

We modified the simulator to implement type-2 and type-3
RMWs with deadlock avoidance. In our implementation, we used
a 128B bloom filter with 3 hash functions. It is worth noting that
the only hardware overhead for type-2/type-3 RMWs is the 128B
bloom filter and a RMW threshold counter per processor. Also, we
did not make use of the threshold counter in our simulations as we
ran only a single context which did not require a bloom filter reset
for good performance.

Benchmarks. We evaluate our technique using benchmarks in
Table 3, which includes both lock-based and a lock-free program.
radiosity and raytrace are benchmarks from the Splash-2 suite
which primarily use RMWs in lock/unlock primitives. Similarly,
fluidanimate and dedup (from PARSEC) are also lock-based bench-
marks. It is worth noting here that we chose only the top two bench-
marks from each suite, in terms of the ratio of RMW instructions
to other memory operations. We do this as traditional lock-based
algorithms are highly scalable and do not communicate (or syn-
chronize) very much and thus do not benefit from reducing the
cost of RMWs. On the other hand, lock-free programs use more
RMWs taking advantage of low-latency communication on multi-
cores. wsq-mst is a lock-free parallel spanning tree algorithm [4]
using Chase-Lev work stealing queue. bayes and genome, from the
STAMP (using TL2 [11]), use RMWs for locking writes in trans-
actions and to commit transactions. We ran the benchmarks in their
regions of interest, with the input sizes mentioned in Table 3.

C/C++11 concurrency. Because of the recency of the C/C++11
concurrency model, there is no corpus of C/C++11 code to test our
ideas on. We therefore modified the wsq-mst program to make
use of atomic reads/writes as prescribed by the C/C++11 model.
wsq-mst uses Dekker-like synchronization to update the task queue
pointers while removing tasks from the queue; thus the read and
write of this synchronization primitive corresponds to an SC-
atomic-read and SC-atomic-write respectively. As mentioned ear-
lier, the C/C++11 concurrency model can be realized by replacing
SC-atomic-writes and/or SC-atomic-reads with RMWs. We com-

pare the performance of the different types of RMWs by replacing
either the SC-atomic-reads (wsq-mst rr) or SC-atomic-writes (wsq-
mst wr) with RMWs. We do not consider type-3 RMWs for write
replacement here as that cannot guarantee correctness (as described
in §2.5).

4.2 Cost of RMWs

We split the cost of an RMW in two parts: the cost of performing
the read and write (Ra/Wa); and the cost of handling the writes in
the write-buffer. The average cost of an RMW across the chosen
benchmarks for type-1, type-2, and type-3 RMWs is presented in
Fig. 11(a). As we can see, RMWs are expensive – the average
cost of type-1 RMWs is as high as 69 cycles. We also observe
that the write-buffer drain significantly contributes to the overall
cost of an RMW (58.0% on average). We can infer from this
that a significant number of RMWs have at least one write in the
write-buffer which needs to send out invalidation requests. Also,
a significant number of RMWs are to shared cache-lines which
explains the cost contributed by Ra/Wa.

Using type-2 RMWs, the cost of an RMW reduces by 38.6%-
58.9% when compared to type-1 RMWs across the benchmarks. As
seen from Fig. 11(a), a significant portion of the performance im-
provement is by avoiding the write-buffer drain in the general case.
Recall that we revert to a write-buffer drain, when a write hits in
the bloom filter. As seen from Table 3, the average number of hits
of pending writes in the bloom filter is negligible for each bench-
mark, and is sometimes zero. This explains the low write-buffer
drain cost for type-2 and type-3 RMWs. It is worth noting that the
cost of Ra/Wa itself slightly increases when compared with type-1
RMWs as a portion of the RMWs require broadcasts in addition
to the invalidation request. The number of such RMW broadcasts
depends on the accuracy of the bloom filter. As shown in the table,
the percentage of RMWs that require a broadcast is less than 1.0%
for most lock-based benchmarks except for dedup (3.1%), which
has a higher ratio of unique RMWs to begin with. We have not pre-
sented the increase in network traffic due to RMW broadcasts, as
this number is negligible across all chosen benchmarks (<0.5%).

Type-3 RMWs reduce the cost of the RMW even further. The
average cost of a type-3 RMWs is lower than type-1 RMWs by
up to 64.3%. Type-3 RMWs reduce the cost of Ra/Wa but incur a
similar write-buffer drain delay as type-2 RMWs.

C/C++11 concurrency. Similarly to lock-based benchmarks,
we observe that using type-2 RMWs reduces the average cost of
RMWs by 44.6% (write-replacement), and 43.2% (write-replacement)
respectively, over type-1 RMWs. As mentioned earlier, type-3
RMWs cannot be used for write-replacement. For read-replacement,
type-3 RMWs provide an additional 11.6% improvement over type-
1 RMWs.

It is worth noting that the cost of RMWs in read-replacement
(wsq-mst rr) is higher than in write-replacement (wsq-mst wr) for
all types of RMWs; with read replacement, there are more entries

69

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

radiosity

raytrace

dedup
fluidanimate

bayes
genome

wsq−mst_wr

wsq−mst_rr

C
yc

le
s

Write Buffer
Ra & Wa

(a) Cost of type-1(left), type-2(center), and type-3(right) RMWs

 0

 5

 10

 15

 20

radiosity

raytrace

dedup
fluidanimate

bayes
genome

wsq−mst_wr

wsq−mst_rr

%
 o

f o
ve

ra
ll

ex
ec

ut
io

n
tim

e

type−1 RMW
type−2 RMW
type−3 RMW

(b) Execution time overhead of RMWs

Figure 11. Experimental Results

in the write-buffer per-RMW, which increases draining cost. The
cost of Ra/Wa, however, is oblivious to whether SC-atomic-read
or SC-atomic-write were replaced. In case of type-2 RMWs, we
observe that the number of writes conflicting with the bloom filter
increases, thereby increasing the cost of an RMW. Also note that
this lock-free program, unlike traditional benchmarks, have more
RMW broadcasts (3.7%) owing to a relatively larger number of
unique RMWs. This affects the performance of type-2 and type-3
RMWs. However, the write-buffer drain cost eclipses the broadcast
overhead.

4.3 Execution time overhead

Although we achieve a significant reduction in the cost of an RMW
in all chosen benchmarks, its impact on the overall execution time
depends on the ratio of RMW operations to other memory opera-
tions. We call this the density of RMWs. Thus, benchmarks with
a larger RMW density benefit more from cheaper RMWs. Table 3
shows the ratio of the number of RMWs to the number of other
memory operations in each of the benchmarks. From Fig. 11(b)
shows the impact of RMWs on the overall execution time for all
the chosen benchmarks. As expected, lock-free algorithms suffer
more from expensive RMWs than lock-based algorithms. Similarly,
bayes and wsq-mst also spend a lot of time performing RMWs. Al-
though genome is a lock-free benchmark, the impact of RMWs on
the overall execution time is less owing to a lower RMW density.
This is because genome performs a lot more operations per trans-
action. As for lock-based benchmarks, radiosity and fluidanimate
spend more than 5.0% of their execution time on RMWs. This,
however, is not the case with raytrace and dedup. This is a result
of the effort put into optimizing traditional lock-based benchmarks.
We can extrapolate that other benchmarks from Splash-2 and Par-
sec will show an even lesser impact of RMWs.

With type-2 RMWs, we get up to 9.0% reduction for bayes,
where the write-buffer drain almost but eliminated, as seen from
Table 3. We also observe a significant reduction in the contribution
of RMWs to the overall execution time in all other lock-free bench-
marks as well. Even radiosity and fluidanimate show a reduction in
overall execution time albeit lesser than 4%. Type-3 RMWs further
improve the overall performance over type-2 RMWs, but only by a
minimal amount (<0.5%).

C/C++11 concurrency. As for the C/C++11 concurrency
model, replacing read atomics with RMWs results in a slightly
higher overhead of RMWs as can be seen from the figure. The best
performance can be obtained by replacing read atomics with type-3
RMWs (7.7% improvement over type-1 RMWs).

In summary, type-2 and type-3 RMWs are significantly cheaper
than type-1 RMWs across all chosen benchmarks. This translates

to a significant reduction in the overall execution time for the lock-
free work stealing queue program which exhibits a higher RMW
density. Traditional lock-based programs also show an improve-
ment in performance. This improvement, however, is only visible
in programs with a high RMW density. Other benchmarks show a
negligible improvement in performance.

5. Related Work
Memory ordering. Over the years, researchers have proposed a
number of techniques for achieving memory ordering efficiently [9,
14, 17, 18, 23]. While any of the above techniques can be used to
efficiently implement the barrier-like ordering of a type-1 RMW,
the goal of our work, however, is orthogonal. Instead of striving to
implement the barrier-like ordering, we ask the question as to why
a TSO RMW should be ordered like a memory barrier in the first
place. Indeed, as we have shown through our weaker type-2/type-3
RMWs, implementing a barrier-like ordering is not necessary.

Weaker atomicity RMWs. Gharachorloo et al. [12] were the first
to observe that it is sufficient for RMWs to use type-3 atomicity
in the context of various memory consistency models. However, in
order for their TSO specification to be compliant with the original
TSO specification, they then added additional program order edges
to RMWs, making the RMWs strongly ordered – hence equivalent
to type-1 RMWs.

The load-reserve/store-conditional instruction is a classic exam-
ple of an RMW in weaker models such as Power [19] which uses
type-3 atomicity semantics. None of the mainstream TSO archi-
tectures, however, provide such an RMW. However, even if a TSO
architecture were to support such an RMW, it would be ordered like
a type-1 RMW. Because of its speculative nature, memory opera-
tions following such an RMW can only be retired after the store-
conditional succeeds, and thus, such memory operations will have
to wait for pending writes in the write-buffer, making the store-
conditional act as a full barrier.

Hardware locking mechanisms. There have been several propos-
als (e.g. [28]) which address issues related to hardware based lock-
ing mechanisms. It is worth noting that these locks refer to the syn-
chronization primitive as a whole and not the RMW instructions
used in these primitives. These proposals primarily deal with lock
contention and fairness. Our proposal is orthogonal to such work as
we deal with the overhead added by the RMW to the local thread.

6. Conclusion
We observed that the atomicity semantics of an RMW is the
key factor which affects the RMW’s ordering semantics, its pro-
grammability, and its implementation cost. Existing TSO RMWs

70

use a strict definition of atomicity (type-1) which results in the
RMW being strongly ordered like a memory barrier. Whereas
type-1 RMWs are costly to implement, they can be easily used
in synchronization idioms on TSO without requiring additional
memory barriers. In this paper, we proposed two weaker atomicity
definitions: type-2 and type-3 atomicity; we formally derived how
type-2 and type-3 RMWs would be ordered, and demonstrated that
the resultant ordering is strong enough to implement various syn-
chronization idioms using the weaker RMWs. We then proposed
efficient architectural implementations of the weaker RMWs – ex-
perimental results show that our proposed type-2 RMW (type-3
RMW) is 58.9% (64.3%) cheaper than an existing type-1 RMW on
average.

Based on our analysis and experimental evidence, type-2 RMWs,
while performing almost as well as type-3 RMWs, are also able to
seamlessly replace existing type-1 RMWs in common synchro-
nization idioms – except in situations where an RMW is used as
a memory barrier. Thus, they appear to be a promising alternative
to existing type-1 RMWs. We also show how the proposed type-2
and type-3 RMWs can be used to implement C/C++11 atomics –
thus making it possible for the compiler to transparently utilize the
proposed RMWs to realize C/C++11 more efficiently.

A. C/C++11 implementation proofs
Recall that the C/C++11 concurrency model [7, 10] has marked
memory accesses of various kinds (only SC is important on TSO,
the properties of the others are automatically satisfied by normal
reads and writes on TSO). We work with the formal description
in Batty et al [6]. For a particular execution of a program, various
relations among the actions corresponding to these operations are
defined, including a happens-before relation; modification order
mo, a total order per atomic location on writes to that location; and
SC order sc, a total order on all SC atomic actions in the execution.
There are several consistency conditions which these relations must
satisfy for the execution to be consistent (briefly, both mo and sc
must be consistent with happens-before; the ithb part of happens-
before must be acyclic; certain shapes contradicting coherence
must not occur within happens-before; and reads must read from
a happens-before consistent write). Furthermore, if any consistent
execution in the sense above has a data race, then the program as a
whole has no defined semantics.

Correct compilation to TSO depends (among other things) on
mapping the atomic accesses to TSO hardware primitives. Batty
et al [6] prove correctness for a few variant mappings on X86-
TSO; specifically, the read-write-mapping of Table 4(a) (from a
prototype by Terekhov [27]), which maps SC-atomic-reads and
SC-atomic-writes to X86-TSO RMWs. It is easy to adapt their
proof and weaken the mapping, making only the SC-atomic-reads
RMW’s as in Table 4(b): read-mapping, or only the SC-atomic-
writes RMW’s as in Table 4(c): write-mapping. We now show
that each mapping above would suffice for correctly implementing
C/C++11 using type-2 RMWs (and reprove for type-1), while for
type-3 RMWs, the read-write mapping and the read-mapping work.
The write-mapping would not work for type-3 RMWs, by Dekker’s
counterexample in the paper (Fig. 3).

A.1 A generic outline of the proof strategy

The proof is fairly standard, following the proofs in [5, 6]. In
particular, the way of constructing SC orders is derived from the
earlier paper.
Mapping read-from maps, and mo First, the events occurring in
the hardware models are related to the C/C++ actions from the cor-
responding program. For everything except the C/C++11 SC atom-
ics, this is straightforward, as ordinary reads and writes correspond
to C/C++11 reads and writes. For the SC actions, we assume that

there is a unique mapping that can be derived. Then the hardware
rf relation corresponds to the reads-from map of C/C++11, and the
hardware ws relation (restricted to atomic locations) corresponds to
mo of C/C++11.
ghb contains the C/C++11 ithb Here we notice that under any
mapping (and any kind of RMW), each of the components of
C/C++11 inter-thread-happens-before are part of ghb, by the con-
struction via release sequences. Thus the ghb is a greater relation
than the C/C++11 ithb.
Constructing the C/C++11 SC order. This part of the proof cru-
cially depends on the mapping, so we will have to parametrize the
proof by the mapping. We consider, as in the proof of SC actions on
Power [5], an arbitrary linearization of the union of posc, program-
order on SC actions; wssc, ws restricted to SC actions; frsc, which
relates SC reads to all SC writes to the same location coherence-
after the write the read reads from; and erfsc, which relates a SC
read and the last SC write in coherence before the write, or that
write if a SC write, that the read reads-from.

We will then show that these relations are included in the ghb
relation, and thus their union is consistent with ghb. As a corollary,
by the acyclicity of ghb, we get that the union is acyclic and thus
can be extended to a linear SC order.
C/C++11 concurrency. Assuming we can construct the SC or-
der as above, we are now in a position to verify the consistency
in C/C++11 of all behaviors permitted by TSO (with the variant
RMWs) for race-free C/C++11 programs:

• Acyclicity of ithb: First, the ithb is contained within ghb, which
is acyclic.

• Consistency of happens-before and mo: Second, mo should be
consistent with C/C++ happens-before (which we get by ws be-
ing included in ghb, and the uniproc condition).

• Coherence diagrams: Third, the coherence diagrams [6] CoRR,
CoRW, CoWR, and CoWW, must not be contradicted by the
happens-before, which we get by the construction of ghb.

• Consistency of SC order: Fourth, sc should be consistent with
happens-before and mo, which we get by our construction of sc.

• Reads read from a consistent write: Fifth, SC reads must read-
from a write not happens-after the sc-last SC write, which we
get by construction of sc. Other reads must read from a happens-
before consistent write, where we note that all reads read from the
last write to the same location in ghb. It is possible, however, that
there is no C/C++11 happens-before relating the read and write
(hb is smaller than ghb). Then, we find a race in the original
C/C++ program, contradicting the race-free assumption.

• Constructing a race: Suppose we have found a read and a write
that it reads-from that are not C/C++11 happens-before related.
We find the minimal such pair in ghb (we know ghb is acyclic,
so this is well-founded). Cut off the program without this read,
and anything program-order after that write. Now we add back
the read, but read from a C/C++11 allowed write; and it races
with the original write. We complete the program execution in
any consistent way, to get a racy consistent execution. Note that
without speculative execution as in Power, this proof is much
simpler than the corresponding proof for Power [5].

A.2 Instantiating the generic proof

Now we fill in the pieces above for each atomicity definition and
each mapping. The remaining obligation is finding events in the
TSO execution corresponding to the C/C++11 SC atomics, and
proving that posc, wssc, frsc, and erfsc are contained within ghb.

Read-write-mapping and read-mapping. For these mappings, we
consider the write Wa of the RMW for the SC read, and the write

71

Table 4. Mapping from C/C++11 to X86
(a) read-write-mapping

Operation x86 Impl.

non-SC read mov

SC read lock xadd(0)

non-SC write mov

SC write lock xchg

(b) read-mapping

Operation x86 Impl.

non-SC read mov

SC read lock xadd(0)

non-SC write mov

SC write mov

(c) write-mapping

Operation x86 Impl.

non-SC read mov

SC read mov

non-SC write mov

SC write lock xchg

(either by itself in the read-mapping, or from the RMW for the
read-write-mapping) for the SC write. Then poscis a part of ghb
(they are same-thread writes). wsscis a part of ghb by definition
of write-serialization. Every frscedge must be consistent with ghb,
since the subsequent write cannot be in ghb between Ra and Wa of
the RMW, using any atomicity definition. Every erfscedge must be
consistent with ghb, since the write read-from must be coherence-
before the Wa of the SC read, and cannot come between Ra and
Wa in any atomicity definition.
Write-mapping Here SC reads are mapped to plain reads, and thus
there is no write to use as above. Instead, we use the read as is for
SC reads, and the read Ra of the RMW for the SC write. Using
this mapping, poscis a part of ghb (they are same-thread reads).
For write-serialization, wsscis a part of the ghb, since Ra of each
write must be before that write in fr. Likewise, erfscis a part of
ghb, but the proof has two cases. For same threads, Ra of the write
is ghb-before the read (same-thread reads). For different threads,
Ra from the write is ghb before Wa in fr, and Wa is before the SC
read in rfe. The last piece required is frsc. The SC read is certainly
before in fr Wa of the RMW, but we are now considering Ra as
representing the SC action. For Type-1 and Type-2 RMWs, it is
consistent to impose that the SC read is before Ra, since they are
to the same location, and no same-location actions can be in ghb
between Ra and Wa. Then we get the required result.

For Type-3 RMWs, since a read can be in between Ra and Wa

of a RMW, this strategy will not work. This is the point where the
proof fails for Type-3 RMWs.

Acknowledgements
We would like to thank Peter Sewell and the anonymous reviewers
for their helpful comments and advice for improving this paper.
This work is supported by the Centre for Numerical Algorithms
and Intelligent Software, funded by EPSRC grant EP/G036136/1
and the Scottish Funding Council to the University of Edinburgh.
Susmit Sarkar was supported by EPSRC grant EP/H027351.

References
[1] S. V. Adve. Designing memory consistency models for shared-memory

multiprocessors. PhD thesis, Madison, WI, USA, 1993. UMI Order
No. GAX94-07354.

[2] J. Alglave. A Shared Memory Poetics. PhD thesis, 2010.

[3] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and
M. T. Vechev. Laws of order: expensive synchronization in concurrent
algorithms cannot be eliminated. In POPL, pages 487–498, 2011.

[4] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm
for symmetric multiprocessors (smps). J. Parallel Distrib. Comput.,
65(9):994–1006, 2005.

[5] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying
and compiling C/C++ concurrency: from C++11 to POWER. In
Proc. POPL, 2012.

[6] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In POPL, pages 55–66, 2011.

[7] P. Becker, editor. Programming Languages — C++. 2011.
ISO/IEC 14882:2011. A non-final recent version is available at

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2011/n3242.pdf.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[9] C. Blundell, M. M. K. Martin, and T. F. Wenisch. Invisifence:
performance-transparent memory ordering in conventional multipro-
cessors. In ISCA, 2009.

[10] Programming Languages — C. 2011. ISO/IEC 9899:2011. A non-
final recent version is available at http://www.open-std.org/
jtc1/sc22/wg14/docs/n1539.pdf.

[11] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In DISC,
pages 194–208, 2006.

[12] K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy, and M. Hill. Speci-
fying system requirements for memory consistency models. Computer
Systems Laboratory, Stanford University, 1993.

[13] K. Gharachorloo, A. Gupta, and J. L. Hennessy. Two techniques to
enhance the performance of memory consistency models. In ICPP
(1), pages 355–364, 1991.

[14] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is sc + ilp=rc? In ISCA,
pages 162–171, 1999.

[15] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13:124–149, January 1991.

[16] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual. Number 253669-033US. December 2009.

[17] E. Ladan-Mozes, I.-T. A. Lee, and D. Vyukov. Location-based mem-
ory fences. In SPAA, pages 75–84, 2011.

[18] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient sequential
consistency via conflict ordering. In ASPLOS, pages 273–286, 2012.

[19] I. B. Machine and A. C. I. Staff. PowerPC Microprocessor Common
Hardware Reference Platform: A System Architecture. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1995.

[20] M. Michael and M. Scott. Implementation of atomic primitives on
distributed shared memory multiprocessors. In Proc. HPCA, 1995.

[21] N. Muralimanohar and R. Balasubramonian. Cacti 6.0: A tool to
understand large caches.

[22] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. In Proc. TPHOLs, 2009.

[23] A. Singh, S. Narayanasamy, D. Marino, T. D. Millstein, and M. Musu-
vathi. End-to-end sequential consistency. In ISCA, pages 524–535,
2012.

[24] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence. Morgan and ClayPool Publishers,
2011.

[25] C. SPARC International, Inc. The SPARC architecture manual (ver-
sion 8). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[26] C. SPARC International, Inc. The SPARC architecture manual (ver-
sion 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[27] A. Terekhov. Brief tentative example x86 implementa-
tion for C/C++ memory model. cpp-threads mailing list,
http://www.decadent.org.uk/pipermail/cpp-threads/
2008-December/001933.html, Dec. 2008.

[28] E. Vallejo, R. Beivide, A. Cristal, T. Harris, F. Vallejo, O. Unsal, and
M. Valero. Architectural support for fair reader-writer locking. In
Proc. MICRO, 2010.

72

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

