PipeGen: Automated Transformation of a Single-Core Pipeline
into a Multicore Pipeline for a Given Memory Consistency Model

An Qi Zhang
an.qi.zhang@utah.edu
University of Utah
Salt Lake City, Utah, USA

Tobias Grosser
tobias.grosser@cst.cam.ac.uk
University of Cambridge
Cambridge, UK

Abstract

Designing a pipeline for a multicore processor is difficult. One major
challenge is designing it such that the pipeline correctly enforces the
intended memory consistency model (MCM). We have developed
the PipeGen design automation tool to allow architects to start with
a single core pipeline that only enforces single-threaded correctness
and automatically transform it to enforce a given MCM. Our key
innovation is a set of compiler-like transformations that codify
three different ways of enforcing memory ordering at the pipeline.
We have validated that PipeGen correctly enforces the ARMv8 and
x86TSO MCMs on three distinct pipeline implementations, using
litmus tests with the Murphi model checker.

CCS Concepts

« Computer systems organization — Multicore architectures.

Keywords

Memory Consistency Model, Computer Architecture, Microarchi-
tecture, Programming Language, Compiler

ACM Reference Format:

An Qi Zhang, Andrés Goens, Nicolai Oswald, Tobias Grosser, Dan Sorin,
and Vijay Nagarajan. 2024. PipeGen: Automated Transformation of a Single-
Core Pipeline into a Multicore Pipeline for a Given Memory Consistency
Model. In International Conference on Parallel Architectures and Compilation
Techniques (PACT °24), October 14—16, 2024, Southern California, CA, USA.
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3656019.3676889

1 Introduction

Designing a modern, high-performance processor pipeline is a dif-
ficult challenge. In the pursuit of performance, cores often seek
additional improvements by executing instructions out-of-order.
Out-of-order execution must not affect single-threaded functional-
ity, though, and thus microarchitects use structures like the reorder

This work is licensed under a Creative Commons Attribution International
4.0 License.

PACT ’24, October 14-16, 2024, Southern California, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0631-8/24/10
https://doi.org/10.1145/3656019.3676889

Andrés Goens
a.goens@uva.nl
University of Amsterdam
Amsterdam, Netherlands

Dan Sorin
sorin@ee.duke.edu
Duke University
Durham, NC, USA

Nicolai Oswald
mail@nicolai-oswald.de
Nvidia Research
Santa Clara, USA

Vijay Nagarajan

vijay@cs.utah.edu

University of Utah
Salt Lake City, UT, USA

buffer (ROB) and load-store queue (LSQ) to ensure the illusion of
in-order behavior for a given hardware thread.

In addition to single-threaded correctness, another key chal-
lenge is ensuring that a processor comprised of multiple high-
performance cores maintains the desired memory consistency
model (MCM). It is very difficult to reason about the possible in-
terleavings of reads (loads) and writes (stores) across threads on
different cores and whether they are allowed by the MCM. An
architect may design an optimization but fail to realize its full po-
tential on the enforced MCM [1, 20], or more worryingly, make a
design error that leads to the desired MCM no longer being enforced
[10, 16, 17].

In this work, we create the PipeGen design automation tool to
address this design challenge. Specifically, PipeGen enables an ar-
chitect to design a pipeline in an MCM-oblivious fashion, needing
only to enforce single-threaded correctness. The architect speci-
fies the single-core design using a new microarchitectural domain
specific language (DSL) that we have developed for this purpose.
PipeGen then transforms that pipeline into a multicore pipeline
that enforces the specified MCM, as illustrated in Figure 1. A key
insight is that we can achieve this automation as code analysis and
transformations in a DSL, borrowing methods from compiler design.
PipeGen currently uses transformations that encode three different
ways of enforcing memory ordering in the pipeline.

MCM-Oblivious Core
(Specified in DSL)
Apply Core that Enforces
Transformation(s) Desired MCM
Specification of
Desired MCM

Figure 1: Automation goal: Given a pipeline in our DSL that
correctly enforces single-threaded correctness, and a desired
MCM, PipeGen automatically creates a pipeline that enforces
the desired MCM.

PipeGen enables microarchitects to focus on designing their
core, while offloading the burden of correctly implementing the
MCM to our automation tool. PipeGen additionally decouples the
implementation of the ISA and MCM, reducing the work necessary
to enforce a different MCM. In the history of microarchitectures and
MCMs, it has not been uncommon to move between ISAs that use

https://orcid.org/
https://doi.org/10.1145/3656019.3676889
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3656019.3676889

PACT ’24, October 14-16, 2024, Southern California, CA, USA

different MCMs, as Apple has done between IBM, x86TSO, and now
ARMVS. PipeGen creates the possibility of designing an efficient
microarchitecture, and being able to reuse it across different MCMs
by using our algorithms to enforce the desired MCM.

Our DSL is tailored for specifying the structures that comprise a
microarchitecture. The primary structures are queues that contain
one or more entries, such as the reorder buffer (ROB) and load-store
queue (LSQ). As such, we refer to our DSL as “A Queue Language”
(AQL). Within these queues, the architect specifies the controller
state machines that describe the behaviors of these structures. Cru-
cially, we require the architect to identify and label certain key
memory instruction states to facilitate PipeGen’s automation.

PipeGen’s output is a transformed core, described in AQL, that
supports the specified MCM. Our key contribution is a set of three
compiler-like transformations implementing three different meth-
ods of enforcing memory ordering (in-order memory instructions,
load replay, and invalidation tracking). While the methods are well
known, our innovation here is to codify this domain knowledge into
transformations, allowing us to instantiate these on any single-core
pipeline expressible in AQL. With the variety of different pipeline
microarchitectures being implemented across the different types
of processors, this style of design automation has the potential for
broad applicability and impact.

We verify that PipeGen correctly produces these cores by au-
tomatically translating the output AQL into the language of the
Murphi model checker [9] and performing model checking on spe-
cific so-called litmus tests [2]. We have verified PipeGen for a variety
of core models and MCMs. While other backends are possible - e.g.,
to hardware description languages such as Verilog — we leave them
for future work.

While there has been much work on verifying that a given
pipeline core correctly enforces the specified MCM, the most recent
of which is the *-Check suite of tools [14, 17], our point of departure
is that our work is a correct-by-construction approach to generat-
ing pipelines. This correct-by-construction methodology has seen
a recent resurgence for generating coherence protocols [24] and
single-core processors [25] but ours is the first to automate the
generation of MCM implementations to our knowledge. We discuss
related work more extensively in Section 7.

Our contributions are:

e We have created PipeGen, a methodology and a tool for
automatically transforming a single-core pipeline into a mul-
ticore pipeline that adheres to a given MCM.

o PipeGen consists of a DSL called AQL and a set of compiler-
like analyses and transformations. Through these transfor-
mations, we codify, for the first time, three well-known meth-
ods for enforcing memory orderings. This codification allows
us to instantiate these methods automatically on any given
single-core pipeline expressible in AQL.

o We have validated PipeGen on 3 different pipeline implemen-
tations to enforce 2 different memory models (x86TSO and
ARMv8) using 3 different methods for enforcing memory or-
dering (in-order issue, load replay or invalidation-tracking).
These were validated in the Murphi model checker exhaus-
tively running litmus tests. Our results show that PipeGen

Zhang, et al.

produces multicore pipelines that correctly support the spec-
ified MCMs.

2 Background: System Model and MCMs

In this section, we explain our single-core pipeline model and pro-
vide the necessary background on MCMs and how they can be
enforced at the pipeline level.

2.1 Single-Core Pipeline Model

We consider a fairly generic pipeline model that supports out-of-
order execution of instructions while providing precise exceptions
through in-order (i.e., in program order) fetch and commit. The
pipeline consists of multiple structures that manage the out-of-order
execution. Different cores use different structures, but commonly
used examples include the reorder buffer (ROB), load-store queue
(LSQ), physical register file, and post-commit store buffer (SB).

Because MCMs concern the ordering of memory operations
(loads, stores, fences), PipeGen’s transformations focus on the struc-
tures that manage the out-of-order execution of memory operations.
Even in a single-core pipeline, management of memory operations
can be complicated, due to the desire to speculatively execute loads
before all previous (in program order) memory operations have
completed. To ensure that PipeGen is broadly applicable, we con-
sider pipelines with three quite different designs for managing
memory operations as case studies. There are, of course, many
designs because of the many possible trade-offs between structure
size, complexity, performance, and power, and we considered these
three designs to showcase the versatility of PipeGen. In each of
these designs there is an issue queue (IQ) into which all of the
instructions are inserted in program order. The designs differ from
each other based on what happens to a memory instruction upon
dispatch from the issue queue.

Design 1: LQ/SQ/WB. Design-1 uses three distinct structures to
manage memory instructions: store queue (SQ), post-commit write
buffer (WB), and load queue (LQ). At dispatch from the issue queue,
a store is allocated an address-tagged entry in the SQ. When a store
executes, it writes the value into its SQ entry. When a store commits,
it frees its SQ entry and writes to the tail of the WB. Similarly, at
dispatch, a load is allocated an address-tagged entry in the LQ. At
execute, a load searches the SQ for the most recent store to the
same address that is older than the load. If no match is found in the
SQ, the load accesses the WB for the most recent store to the same
address; if none is found, the load accesses the memory system
(i.e., starting with the L1 data cache). To detect misspeculation in
which a load speculatively reads an address before an older store
(which is possible because an older store’s address might not yet
have been available when the load was ready to execute), when a
store executes it checks the LQ for younger loads that have already
executed; a match indicates misspeculation.

This design provides the most performance of the three we con-
sider. However, all three structures require associative searches. A
load must be able to find address-matching entries in the SQ and
WB, and a store must be able to find address-matching entries in
the LQ.

Design 2: LSQ. Design-2 uses a single load-store queue (LSQ)
and no WB. The LSQ serves the purpose of both the LQ and SQ

PipeGen: Automated Transformation of a Single-Core Pipeline
into a Multicore Pipeline for a Given Memory Consistency Model

Table 1: x86TSO memory orderings. Row labels are earlier in
program order than column labels. AA indicates Any Address,
and SA Same Address.

‘ Load ‘ Store ‘ mfence

Load AA AA AA
Store SA AA AA
mfence | AA AA AA

in Design-1. Because this LSQ must be associatively searched (by
both loads and stores), it cannot be made larger than either the LQ
or SQ from Design-1, and thus can manage fewer in-flight memory
operations. But Design-2 is less expensive that Design-1. This design
also does not have a WB. Stores issue to the memory system when
they reach the top of the ROB, and so stores are performed in order.

Design 3: LB. Design-3 allows loads to speculatively enter a
load buffer (LB) as soon as their addresses are available. (We use a
different term here - buffer rather than a queue - to reinforce that
the unit is simply a staging area for executing the loads.) Because
addresses might be resolved in an arbitrary order, loads in this
design can potentially execute out-of-order, and loads may not
receive data from older stores.

We assume single-core pipelines have the necessary instructions
for providing software-directed ordering (e.g., mfence) but they are
implemented as NOPs until PipeGen transforms the pipeline.

2.2 MCMs

A multicore pipeline must preserve both single-threaded correct-
ness and enforce the architecture’s MCM, where an MCM de-
fines the legal apparent orderings of memory operations across
all threads. Many consistency models exist, from strongly-ordered
models like sequential consistency (SC) and x86TSO to weak mod-
els like release consistency (RC) and ARMv8. We briefly discuss two
widely used models we focus on in this paper: TSO and ARMvS3.

2.2.1 x86TSO. The x86TSO MCM is similar to SC, but relaxes Store
— Load ordering across different addresses. This relaxation permits
the use of the WB in Design-1, which would violate the stricter
SC. When software wants Store — Load ordering to be enforced, it
must insert an mfence instruction between the store and the load.
The mfence enforces ordering between memory instructions by
ensuring older instructions have finished executing before younger
instructions execute. With an mfence between a store and load, the
load must stall to execute in-order with the store or speculatively
execute and then check if it misspeculated. x86TSO orderings are
shown above in Table 1.

2.2.2 ARMv8. The ARMv8 MCM relaxes all orderings, only keep-
ing same address dependencies as they are required for single-
threaded correctness. When ordering is required, it can be added
with load acquires, store releases, and fences. Fences, called Data
Memory Barriers (DMB), come in several varieties, including DMB
SY (orders all loads and stores), DMB LD (orders Load — Load and
Load — Store), and DMB ST (orders Store — Store). Load acquires
and store releases are annotated versions of loads and stores, re-
spectively, that also enforce some orderings: specifically the load

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Table 2: ARMv8 memory orderings. Row labels are earlier in
program order than column labels. AA = Any Address, SA =
Same Address, and No indicates an ordering is not enforced.

DMB | DMB | DMB
LD | LDA | ST | STR Sy ST LD
LD SA | SA | SA | AA | AA No AA
LDA AA | AA | AA| AA | AA No AA
ST SA | SA | SA | AA | AA AA No
STR AA | AA | AA| AA | AA AA No
DMBSY | AA| AA | AA| AA | AA AA AA
DMBST | No | No | AA| AA | AA AA AA
DMBLD | AA| AA | AA| AA | AA AA AA

acquire orders all of the memory operations following it in program
order, whereas the store release orders all of the memory operations
before it. ARMv8 orderings are shown in Table 2.

2.3 MCM Enforcement

Architects have developed mechanisms for manually transforming
an out-of-order single-core pipeline such that it does not violate
the desired MCM. We consider three MCM enforcement mecha-
nisms in this work: In-Order Memory Instructions, Load-Replay
[6], and Invalidation Tracking [11]. These are the mechanisms that
PipeGen will automatically implement when performing its trans-
formations.

2.3.1 In-Order Memory Instructions. One mechanism to order
memory instructions is to execute them in order. To order memory
instruction type X before memory instruction type Y, an instruction
of type Y must stall execution until all older instructions of type X
have completed. For example, our Design-1 has a post-commit WB
that enables loads to be reordered with respect to older stores. To
prevent that reordering, we could require a load to stall until the
WB is empty (i.e., all older stores have completed).

2.3.2 Load-Replay. With load-replay [6] a load may speculatively
execute out-of-order, and this speculation is checked by replaying
the load at commit time. If the replayed load’s value matches the
initial load value, it has correctly speculated. If not, the new value
is written and older instructions are squashed, as they may have
used the misspeculated value.

2.3.3 Invalidation Tracking. Invalidation tracking [11] is an alter-
native mechanism to avoid the need to replay loads at commit. A
core observes the incoming cache coherence traffic—specifically,
invalidation messages—to identify which addresses have been writ-
ten by other cores. Any loads that have speculatively read from
those addresses may have misspeculated. They, as well as older
instructions, are then squashed. Similar to the load-replay mech-
anism, invalidation handling also enforces Store — Load if there
is no WB, since the load must re-execute to again read an updated
value.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

state

@ [guard] conditions
[actions] actions
[transition] S1

| Entry O | Entry 1 | Entry 2 I

BB BB B-H

@ [guard] conditions
[actions] actions
@ [transition] S2
[guard] conditions

[actions] actions

.\ [transition] SO /

Figure 2: Illustration of a queue structure with state fields
shown as registers (boxes with triangles).

3 Input to PipeGen

The input to PipeGen is an MCM-oblivious single-core pipeline.
In theory, an architect could specify the core pipeline using any
language for expressing finite state machines. HDLs like Verilog
or BlueSpec [21] or even state-machine languages like Murphi [9],
for example, would all suffice. However, none of these general-
purpose languages would make it easy for an automated tool like
PipeGen to perform its compiler-like analysis and transformations.
We could either mandate a restricted, stylized version of one of
these languages or use a domain-specific language (DSL), and we
have chosen the latter.

3.1 Abstract Model of Pipeline

We have developed a DSL that enables relatively high-level specifica-
tions that focus on functionality more than cycle-accurate behavior.
The DSL allows the architect to model the core pipeline as an inter-
connected group of queue-based structures that each have one or
more entries. Because our DSL describes queue-based structures,
we call it A Queue Language (AQL). Structures can communicate
with each other by sending messages or signals.

Commonly used pipeline structures include the physical register
file, reorder buffer (ROB), instruction queue (IQ), load queue (LQ),
store queue (SQ), load-store-queue (LSQ), post-commit write buffer
(WB), etc. Structures with multiples entries may have an entry
ordering, such as FIFO.

Each structure entry is logically a state machine. Each entry has a
state (that is initialized to a specified initial state) that consists of one
or more fields. An event (i.e., the arrival of a message from another
structure) can cause an action and possibly a transition of that entry
to a new state. An event satisfies one or more conditions that guard
actions/transitions, as illustrated in Figure 2. We illustrate the state
machine for Design-1’s LQ in Figure 3 which is self-explanatory.

3.2 Memory Instructions: Instruction States and
Sub-Operations
To faciliate PipeGen’s analysis and transformation algorithms, AQL

considers every memory instruction to start in an initial instruction
state and undergo a sequence of sub-operations that change its state.

3.2.1 Instruction States. AQL employs a canonical set of instruc-
tion states, each of which is a keyword in AQL, and a memory
operation is in one of these states at all times. The initial state

Zhang, et al.

Initial
State

Registers:
> instruction
> read_value
> physical_addr

[guard] await insert(input_instruction)
from Preprocessing

f'f\l—e)zt\‘ [actions] instruction := input_instruction

! States | [transition] Next States ...

[guard] none

[actions]
issue_load_request(physical_addr,
instruction.seq_num) to MemorySystem

[transition] WaitingForResponse

[guard] await (value)
from MemorySystem

[actions] read_value := value

[transition] WriteResult

[guard] none

[actions] write_load_result(
instruction.destination_reg,
read_result) to RegisterFile

[transition] AwaitCommit

[guard] await commit_load() from ROB
[actions] remove_head()
[complete] WaitingForLoadInst

Figure 3: The state machine and state fields of Design-1’s
LQ entries. Each LQ entry first awaits a load to be inserted
in state WaitingForLoadInst. After receiving a load, the en-
try progresses to performing sub-operations (highlighted
in color) such as issuing the load, waiting for it’s response,
and writing it’s result before waiting to be committed. Some
states are simplified away, represented by a dotted line.

of a load or store is ReadyToDispatch. The sequence of subse-
quent states for a load that is not misspeculated are: Dispatched,
ReadyTolssue, WaitingForResponse, WritingToRegister, and
ReadyToCommit. If the load is misspeculated in either Waiting-
ForResponse or ReadyToCommit, its state changes to an earlier
state in the sequence depending on the core design. The ordered se-
quence of subsequent states for a store are: Dispatched, StoreVal-
ueReady, ReadyToCommit, Readytolssue and WaitingForRe-
sponse. The ordered sequence for a fence is: ReadyToDispatch,
Dispatched and ReadyToCommit.

An instruction state transition can either be a progression (i.e.,
proceeding in sequence order) or a reset (i.e., returning to an earlier
state in the sequence). This ordering enables PipeGen to find mem-
ory operations that are older (i.e., have not progressed as far in their
instruction state sequences). Architects can define additional, non-
canonical states for their own purposes, but any user-defined state
between two canonical states is effectively equal to the previous
canonical state.

3.2.2 Sub-operations. AQL considers every memory operation
to perform a subset of a canonical set of sub-operations, each of
which is a keyword in AQL. These sub-operations are: dispatch,

PipeGen: Automated Transformation of a Single-Core Pipeline
into a Multicore Pipeline for a Given Memory Consistency Model

issue_load_request, receive_response, issue_write_request,
write_load_result, and commit.

Explicitly using these canonical instruction states and sub-
operations is critical to PipeGen. At its heart, enforcing memory
ordering in the pipeline is all about controlling when and how these
sub-operations occur. As we discuss later, adding stalls or replays
(or other logic to enforce an MCM) requires PipeGen to identify
when to issue to the memory system, when to replay loads, etc.

3.3 AQL Programming Requirements

PipeGen requires the architect to specify instruction states and sub-
operations such that it can perform its analyses and transformations.
There are several programming guidelines that must be followed.
The programmer must:

o Label the canonical sub-operations. PipeGen then identifies
the canonical instruction states corresponding to the sub-
operations, thereby labeling the canonical instruction states.
One of the primary motivations for developing AQL instead
of using an existing hardware description language (HDL)
is that existing HDLs would not necessarily make instruc-
tion states explicit. (They could be implicitly derived from
the state of the pipeline, but that would greatly complicate
PipeGen.)

e Label a transition with the appropriate label, described in
Section 3.2.1, and illustrated in Figure 3.

e Handle instruction misspeculation.

o Label the message that the single-core design uses for squash-
ing misspeculation.

3.4 Case Study: AQL for the LQ in Design 1

In Listing 1, we provide a snippet of AQL code to provide a sense
of what it looks like. The snippet includes the code that describes
two canonical instruction states in Design-1’s LQ. In each state, the
user specifies what event (i.e., message or signal) the structure is
waiting for before it transitions to its next instruction state.

4 Transformations

Akin to a compiler, the core of PipeGen consists of algorithms for an-
alyzing the input design and transforming it to enforce the desired
MCM. In this section, we describe how PipeGen automatically adds
the three MCM enforcement mechanisms presented in Section 4.

The choice of which transformations to perform depends on
both the user’s desired consistency model and the user’s preference
for the type of MCM enforcement mechanism.

4.1 In-Order Memory Instructions

Consider two memory instructions, M1 and M2, where M1 is before
M2 in program order. To enforce in-order execution of two memory
instructions M1 — M2, the pipeline must stall M2 until M1 has
completed. This enforcement of in-order execution can be used to
provide whatever orderings are required by the desired MCM.

To implement this transformation, PipeGen must:

o Identify the M2 instruction state in which M2 should stall.
o Identify the M1 instruction state in which M2 should un-stall.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

state ReadyToIssue {
listen { // MemSys: MemorySystem
MemSys.issue_load_request(physical_addr,
instruction.seq_num);
transition WaitingForResponse;
} handle squash() from ROB {
reset WaitingForLoadInst;
3
}
state WaitingForResponse {
listen {
await {
when (val) from MemSys {
read_value = val;
transition WritingToRegister;
}
}
} handle squash() from ROB {
reset WaitingForlLoadInst;
}
3
Listing 1: Example AQL code describing
Design-1’s LQ states ReadyTolssue and WaitingForResponse.
ReadyTolssue performs the sub-operation issue_load_request
and transitions to WaitingForReponse. WaitingForResponse
waits for the memory system to respond with the load’s
value in the sub-operation receive_response, then transitions
to WriteToRegister. Both states shown are wrapped in a
listen-handle block, to handle misspeculation by resetting

the entry’s state to WaitingForLoadInst.

e Add logic to stall and then un-stall M2 in these identified
states.

4.1.1 Identifying M2 State in Which M2 Should Stall. Every type of
memory instruction has a canonical instruction state in which it is
about to access the memory system, and we refer to this instruction
state as the memory access state. For a load or store, the access state
is ReadyTolssue. For a Fence, the access state is ReadyToCommit.
The access state of M2 is the state in which M2 should stall to
avoid being ordered ahead of M1. Intuitively, if M2 stalls before
it interacts with the memory system, it cannot appear in memory
order before M1. Because AQL requires labeling of canonical states
in the input pipeline model, it is easy for PipeGen to identify the
memory access state for M2.

But blindly choosing the access state as the state in which M2
should stall could lead to deadlock, if we are not careful. Consider
a pipeline in which instructions of type M2 reside in a dedicated
structure while waiting to access the memory system. Deadlock
can arise if this structure fills with younger instructions and an
older instruction cannot enter it. To avoid this situation, PipeGen
checks if instructions of type M2 enter this M2-specific structure
in program order. If not, PipeGen searches backwards through
the sequence of structures through which instructions of type M2
traverse, and it has M2 stall at the latest structure in this sequence
for which instructions of type M2 are inserted in program order.

4.1.2 Identifying M1 State in Which M2 Should Un-Stall. M2 cannot
un-stall until M1 has completed its memory operation and thus
PipeGen needs to identify M1’s post-memory completion states. The

PACT ’24, October 14-16, 2024, Southern California, CA, USA

post-memory completion states refer to the set of states after the
memory instruction has globally performed. For a load and a store,
the post-completion states are all states after WaitingForResponse—
i.e., all states after a memory response has been received. For a fence,
the post-completion states are all states after ReadyToCommit. Once
again, because these instruction states are labeled in AQL, it is
simple for PipeGen to find their successors. Specifically, PipeGen
extracts the instruction state graph from the input AQL code. As
discussed in Section 3.2.1, in AQL each instruction has a set of states
that it can be in and transitions between these states—we call this
an instruction state graph. PipeGen then performs a reachability
analysis to compute M1’s post-completion states.

4.1.3 Adding Logic to Stall M2 in its Memory Access State and Un-
stall it in M1’s Memory Completion State. When M2 is in its memory
access state, the pipeline must stall M2 if M1 is in any instruction
state prior to its memory completion state. Thus, PipeGen makes
the following transformations:

o Adds logic to the structure that holds M2 when M2 is in
its memory access state (or any state before it if stalling at
the access state causes a deadlock), and this logic queries all
structures that can hold M1 in a pre-completion state.

e Adds logic to the structure holding M2 to stall M2 until
receiving a subsequent un-stall message from a structure
holding M1 in a pre-completion state.

e Adds logic to all structures that can hold M1 in a pre-
completion state, and this logic sends an un-stall message to
the structure holding M2 when M1 changes its instruction
state to its completion state.

This stall we add is conservative in that not all controllers that
can hold M1 in a pre-complete state need to be queried. For example,
in Design-1, a load is inserted in the IQ, LQ, and ROB, and has
state in all of these controllers. Querying all of these controllers’
state is redundant, because the LQ holds all in-flight loads and
their instruction states. The IQ and ROB do not contribute any
information about loads beyond what the LQ already has.

4.2 Load-Replay

The load replay transformation has the pipeline replay each load
at ReadyToCommit (reusing the originally computed address) and
compare the replayed value to the value that was returned from
the memory system when the load earlier executed speculatively.
To implement this transformation, PipeGen must:

o Add logic to re-issue each load to the memory system when
the load is ready to commit.

o Identify where the original, speculative value is held.

e Add logic to compare the replayed load value to the original,
speculative value. If the values differ, the logic must use
the misspeculation recovery logic provided by the user for
recovering from single-core misspeculation.

4.2.1 Adding Logic to Replay Loads. PipeGen must first identify
where in the pipeline loads are issued to the memory system. Be-
cause the user labels the canonical instruction states, PipeGen can
find where a load transitions from ReadyTolssue to WaitingForRe-
sponse; this transition occurs in the structure that issues loads. We
refer to this structure as the load-issuing structure. PipeGen adds

Zhang, et al.

logic to the load-issuing structure to make it perform the replay
load. If the system contains a structure that holds committed writes
before they are written to memory, such as a post-commit write
buffer (WB), that structure is logically part of the memory system
and it is queried at replay. (PipeGen is able to identify whether
or not an input pipeline has a post-commit WB by performing
reachability analysis on post-commit store states.)

To identify whether there is a post-commit WB, once again
PipeGen extracts the instruction state graph—this time of a store
instruction. PipeGen then performs a reachability analysis starting
from the store’s ReadyToCommit state, and identifies the set of post-
commit states of the store. Within the post-commit states of the
store, PipeGen searches for the ReadyTolssue and WaitingForRe-
sponse states, and a match indicates the presence of a post-commit
WB.

PipeGen must similarly identify where in the pipeline that loads
commit, which we refer to as the commit structure. At that location,
PipeGen adds logic to send a message from the commit structure
to the load-issuing structure, requesting a load to be issued and
stalling until the response from the memory system arrives at the
load-issuing structure.

4.2.2 Identifying Where the Original Load Value Is. PipeGen
searches for the sub-operation keyword write_load_result. The
structure that includes that keyword is the structure that holds the
data that has been returned by the memory system.

4.2.3 Adding Logic to Compare the Original Value to the Replayed
Value. PipeGen identifies the structure where a load commits, using
the commit sub-operation keyword. PipeGen adds logic there to
(a) send a message to the structure that holds the originally read
value of the load, requesting a response with the original value, (b)
send a message to the load-issuing structure to replay the load and
receive a newly read value, (c) compare the two values, and (d) if
the values differ, trigger the single-core misspeculation recovery
mechanism.

4.3 Invalidation Tracking

The invalidation tracking transformation observes incoming coher-
ence invalidations and compares their addresses to the addresses
of in-flight loads that have already speculatively executed. To im-
plement this transformation, PipeGen makes the following trans-
formation:

e Adds a structure to track the addresses of speculative loads.
e Adds logic to compare the addresses of speculative loads to
the addresses of incoming coherence invalidations.

4.3.1 Adding Structure to Track Addresses of Speculative Loads.
PipeGen adds a structure whose entries are the addresses (and
sequence numbers) of loads that have already been speculatively
executed. The entries of this structure, which we refer to as Load-
Tracker, are unordered. LoadTracker can be queried by address,
and it accepts messages for adding and removing entries. PipeGen
adds logic to (a) add an entry whenever a load performs the sub-
operation issue_load_request and (b) remove an entry whenever
a load performs the sub-operation commit. LoadTracker can also
accept messages to reset it (i.e., clear all of its entries).

PipeGen: Automated Transformation of a Single-Core Pipeline
into a Multicore Pipeline for a Given Memory Consistency Model

4.3.2 Adding Logic to Compare Addresses of Speculative Loads to
Invalidations. PipeGen adds logic to the memory system to send the
addresses of incoming coherence invalidations to LoadTracker. If
there is a match, LoadTracker resets itself and triggers the pipeline’s
single-core misspeculation mechanism to squash the misspeculated
load and all instructions younger than it.

5 Usage Model

In the last section we discussed the three transformations used
for enforcing a given MCM. How does the architect specify what
transformations to employ? More generally, what is the usage model
of PipeGen?

Conceptually, PipeGen takes as input a single-threaded pipeline
and the MCM and produces a pipeline that enforces the MCM. More
concretely, the input pipeline is expressed in AQL, our DSL. What
about the MCM? The MCM is expressed as a MOST table [18, 19]
which is a standardized format for expressing the memory orderings
enforced by the MCM. For example, the MOST table for x86TSO
specifies that TSO enforces the Load — Load, Load — Store, and
the Store — Store orderings, and the fact that an x86TSO fence
instruction, mfence, is ordered with loads, stores, and other mfences.

PipeGen first employs extensive litmus testing to determine what
orderings are already enforced by the input pipeline. For example,
in most input pipelines, the Load — Store ordering is enforced by
default because stores are only allowed to issue to the memory
system after any previous loads commit. For the orderings that
are not enforced by default, PipeGen must enforce them. But the
architect must specify which transformation to use for enforcing
each ordering.

We introduced three transformations in the previous section:
inorder (IO), load replay (LR), and invalidation tracking (IT). As
we discussed in the previous section, IO is the most flexible and
can enforce all 4 combinations of memory orderings and fences.
LR and IT can enforce the M — Load ordering (where M is a load,
store, or fence). Therefore, for every ordering in the MOST table,
PipeGen could potentially offer a choice if that ordering can be
enforced by both IO and LR/IT. The architect should then specify
what transformation must be employed for enforcing that ordering
guarantee. We leave this to the architect because they are in the
best position to make this choice depending on the type of pipeline.
As an extreme example, consider an input pipeline that is not spec-
ulative and uses a post-commit write buffer which can violate the
Store — Load ordering. In such a pipeline it makes sense to use only
the IO transformation because of the lack of speculative capabilities
in the original pipeline. We show the MOST table for the x86TSO
processor in Table 3. As we can see, there are three choices for
enforcing the Load — Load ordering; the architect chooses one of
them. The Load — Store ordering happens to be already enforced
and is indicated in the table. Other entries follow a similar pattern.

6 Output: Results and Verification

PipeGen’s output is the transformed pipeline with the MCM mech-
anisms in place. Currently, PipeGen produces this output both in
AQL and in the language of the Murphi model checker [9]. Other
output formats are possible, such as Verilog or BlueSpec, but given

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Table 3: MOST table of TSO ordering transformation choices.

‘ Load ‘ Store ‘ mFence
Load LR, IT or IO Y 10
Store LR, IT or IO 10 10
mFence | LR, IT or IO 10 10

that the first goal of PipeGen is ensuring functionality, Murphi is
more useful.

We have used the Murphi output to verify that PipeGen pro-
duces pipelines that correctly enforce the specified MCMs. We
have explored combinations of three different single-core pipeline
designs (Designs 1, 2, and 3), two different MCMs (x86TSO and
ARMv3), and three MCM enforcement mechanisms (i.e., the three
transformations from Section 4).

But before discussing the verification results, we show sample
output generated by PipeGen to convey a feel for the automation
performed.

6.1 Example Output generated by PipeGen

In this section, we show sample output generated by PipeGen for
Design-3. Recall that in Design-3 loads can issue to the memory
system out-of-order from the load buffer (LB), violating the Load
— Load ordering. (We consider a design which has precisely one
entry in the LB.) We use PipeGen to enforce this ordering using the
In-order (IO) transformation.

At first look, manual IO enforcement might look trivial for this
situation: stall the issue of a load to the memory system until all
earlier (in program order) loads complete. An architect manually
implementing this transformation might be tempted to implement
this at the LB since that is where loads are issued to the memory
system. But as discussed in Section 4.1 this could lead to a deadlock.

Why? Let us consider two loads, 1d1 and 1d2, with 1d1 before 1d2
in program order. Suppose 1d2’s address resolves first and it enters
the LB. Now, if the IO enforcement were implemented at the LB,
then the issue of 1d2 would have been stalled until the earlier 1d1
has its result from the memory system. But 1d1 will never be able
to enter the LB as that space is occupied by 1d2.

This example illustrates that even a seemingly simple enforce-
ment method like IO can be tricky when specializing for different
pipelines. As discussed earlier, PipeGen identifies that loads do not
enter the LB in program order and therefore searches “backwards”
to identify a suitable structure where IO can be safely implemented.
In Design-3, that structure is the issue queue (IQ).

Listing 2 shows the “before” and “after” versions of the issue
queue for a load instruction (the “after” parts are shown in blue).
As can be seen, the original pipeline code simply dispatches the
load to the LB when the LB unit is ready (lines 22-28). PipeGen
identifies the IQ as a suitable structure to enforce IO. It then adds
the code to check whether there are undispatched (to the LB) prior
loads (lines 3-17). This is a simple associative search within the
entries of the IQ as shown. We argue that with the knowledge of
this output snippet, it should be a fairly easy task for the architect
to implement these changes in any hardware design language such
as Verilog.

29

PACT ’24, October 14-16, 2024, Southern California, CA, USA

state IQScheduleInst{

// ASSOCIATIVE SEARCH

bool any_unexecuted_older_loads = false;

await IQ.search((entry.instruction.seq_num <
instruction.seq_num) &
entry.instruction.op == 1d,
min(instruction.seq_num -

entry.instruction.seq_num)) {
when search_success() from IQ {

if (entry.curr_state == iq_schedule_inst) {
any_unexecuted_older_loads = true;
} else {
any_unexecuted_older_loads = false;
}
3
when search_fail() from IQ { }

}
// STALL IF THERE ARE ANY OLDER LOADS IN THE IQ
if (any_unexecuted_older_loads) {
reset IQSchedulelnst;
3
if (instruction.op == 1d) {
if (load_buffer.state == ready) {
load_buffer.execute_load(instruction);
remove () ;
complete IQWaitForInst;
¥
}
3

Listing 2: Example output AQL code of the IQ in Design 3.

In summary, this example illustrates that: (1) Even seemingly sim-
ple transformations are not easy to specialize for a given pipeline;
(2) PipeGen’s automatic transformation solves this problem; and
(3) It is relatively straightforward for an architect to look at the
PipeGen output to implement the changes in any HDL.

6.2 Verification Methodology

We run litmus tests to check if all orderings allowed by the MCM are
possible and all orderings disallowed by the MCM are impossible.
By using Murphi to “run” the litmus tests we ensure that each
litmus test is explored exhaustively (i.e., every possible interleaving
of instructions is tested). While litmus testing is not a complete
proof, it is widely used and quite effective.

The litmus tests we run cover multi-core orderings, checking that
the algorithms have added the orderings required by x86TSO and
ARMvS. The basic litmus tests are MP (Message Passing), Dekker’s,
LB (Load Buffering), and n7, where we additionally run several
barrier variants of MP, LB, and Dekker’s to test barrier instruction
orderings required by x86TSO and ARMv8. A barrier instruction
may be between instructions in the Dekker’s, LB, and MP litmus
tests, where stores and loads may be releases and acquires.

MP litmus test. The message passing (MP) litmus test is shown
in Table 4. In MP, with standard stores and loads, Core 1’s reads
should not be able to read 1 and 0 in r1 and r2, respectively, if Store
— Store and Load — Load are enforced.

Dekker’s litmus test. The Dekker’s litmus test is shown in
Table 5. If Store — Load is enforced, then reading the results 0 and
0 in both cores is not possible, but it is possible if that ordering is
relaxed.

Zhang, et al.

Table 4: MP Litmus test, parameterized. With standard stores
and loads, core 1reading 1 and 0 in r1 and r2 respectively is
not allowed in x86TSO, and allowed in ARMvS.

Core 0 ‘ Core 1
Store [x] 1 Load r1 [y]
[Opt. Barrier Inst.] | [Opt. Barrier Inst.]
Store [y] 1 Load r2 [x]

Table 5: Dekker’s litmus test, parameterized. Core 0 and 1
both reading 0 is only possible if Store — Load is not enforced.
This outcome is observable in x86TSO and ARMvS.

Core 0 ‘ Core 1
Store [x] 1 Store [y] 1
[Opt. Barrier Inst.] | [Opt. Barrier Inst.]
Load r1 [y] Load r1 [x]

Table 6: The LB litmus test. If Cores 0 and 1 both read 1inr1,
then the MCM relaxes Load — Store. This outcome is allowed
in ARMv8.

Core 0 ‘ Core 1
Load r1 [x] Load r1 [y]
[Opt. Barrier Inst.] | [Opt. Barrier Inst.]
Store [y] 1 Store [x] 1

Table 7: The n7 litmus test. If Cores 0 and 2 both read 1 and 0
in r1 and r2, then the MCM relaxes Store — Load or Load —
Load. This outcome is allowed both in x86TSO and ARMvS.

Core 0 ‘ Core 1 ‘ Core 2
Store [x] 1 | Store [y] 1 | Load r1 [y]
Load r1 [x] Load r2 [x]
Load r2 [y]

LB litmus test. The load buffering LB litmus test is shown in
Table 6. If Load — Store is enforced, then reading 1 in both cores is
not possible, but is possible if the ordering is relaxed.

N7 litmus test. The n7 litmus test is in Table 7. In this test, a
LSQ that has a post-commit WB and that enforces Load — Load,
but does not enforce Store — Load, permits (a) Core 0 reading 1
into r1 and reading 0 into r2 and (b) Core 2 reading a 1 into r1 and 0
into r2. The second load in Core 0 thus reads from address y before
Core 1’s store writes to y, and after it writes to y, Core 2’s first load
reads from y. Then the second load reads 0 from x as Core 0’s store
is in its SB.

As TSO includes the mfence instruction, we exhaustively test all
combinations of load and store instructions with an mfence added
between the instructions, resulting in 7 litmus tests per design.
Similarly, ARMv8 introduces LDAR, STLR, DMB SY, DMB ST, and

PipeGen: Automated Transformation of a Single-Core Pipeline
into a Multicore Pipeline for a Given Memory Consistency Model

DMB LD, resulting in 22 litmus tests per design after adding litmus
test variations of MP, LB, and Dekker’s with these ARMvS fence
instructions.

6.3 Transformation Combinations Used in
Experiments

PipeGen can apply three different transformations, described in
Section 4, and it can apply them in isolation or in combinations.
We consider three combinations:

o In-order memory instructions only. The in-order memory in-
struction transformation can be used to provide any ordering
that is desired.

o In-order memory + load replay. This combination uses load
replay to provide some orderings (M — Load) and in-order
memory for the rest.

o In-order memory + invalidation tracking. This combination
uses invalidation tracking to provide some orderings (M —
Load) and in-order memory for the rest.

In Table 8, we show how we use these three transformation com-
binations for a cross-product of the three designs and two MCMs
we consider in this evaluation. As there are 3 LSQ microarchitec-
tures, and 3 combinations of transformations to evaluate on each
microarchitecture for each MCM (TSO and ARMv8), we litmus test
9 experiments per MCM. Across TSO and ARMv8, we litmus test the
7 and 22 litmus tests respectively from Section 6.2 per experiment,
for a total of 63 and 198 litmus tests.

6.4 Results for Design 1

Design-1 lets loads and stores execute in any order (that does not
violate single-thread correctness), and as a result, it does not enforce
Load — Load, Store — Store, or Store — Load orderings. Design-1
does enforce Load — Store though, as loads have completed their
access when they commit, and stores have not yet been issued to
the memory system when they commit.

6.4.1 Verifying Transformation Combinations that Enforce TSO.
The results corroborate that all of the generated pipelines behave
as expected, allowing the allowable litmus test outcomes and disal-
lowing the prohibited outcomes. Unlike some other design/MCM
pairs we discuss later, the transformations do not cause any overly
conservative orderings.

6.4.2 Verifying Transformation Combinations that Enforce ARMVvS.
The results are shown in Table 9, where most expected behaviors are
exhibited, except for the grey cells. The enforced MCM is slightly
stronger than the ARMv8 MCM. Specifically, in the Dekker’s litmus
test with an added DMB ST fence, transformation combinations
with Invalidation Tracking and Load Replay both enforce Store —
DMB-ST — Load. This is because DMB-ST stalls until prior stores
complete, and loads following the DMB-ST can only commit after
the DMB-ST commits. With invalidation tracking and load replay
taking care of misspeculated loads, this results in Store - DMB-ST
— Load to be enforced.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

6.5 Results for Design 2

Design-2 is similar to Design-1 in terms of the orderings it enforces,
except that without a post-commit WB, stores are executed in-
order at commit. Loads still execute out of order and forward from
older stores. Thus Design-2 enforces Load — Store by default (like
Design-1) but also Store — Store because of the lack of a WB.

6.5.1 Transformation Combinations to Enforce TSO. Design-2’s sin-
gle LSQ disallows the weaker orderings (in the yellow cells of Table
10) from the litmus tests when tested with the Load Replay and
Invalidation Tracking transformations, even for Dekker’s and n7, as
Design-2 has no post-commit WB, resulting in Store — Load being
enforced. (Different from grey cells, the yellow cells indicate that
while the relevant orderings are disallowed by PipeGen, the order-
ings would also have been disallowed by any manual enforcement
technique. Thus, yellow cells are disallowed not because of the
conservatism demonstrated by PipeGen but because of the design
itself.)

6.5.2 Algorithms Combinations to Enforce ARMv8. Shown in Table
11, Design-2 with only the in-order algorithm applied meets the
expected orderings, except in the event of Dekker’s with the DMB
LD barrier (the grey cell) which behaves stronger than required; this
is because the load is stalled until the barrier is committed which
can’t commit until the store completes. With invalidation tracking
and load-replay the test results (the yellow cells) are all disallowed
as there is no post-commit WB, causing the two mechanisms to add
Load — Load and Store — Load, as loads’ speculation is validated
after older stores complete.

6.6 Results for Design 3

Although Design-3 is different from Design-2 (microarchitecturally
speaking), like Design-2, it also enforces Store — Store and Load
— Store by default (and violates the other two orderings) while
also relaxing Store — Load for the same address. Therefore, the
results that we observe for Design-3 are identical to those observed
for Design-2 in enforcing x86TSO as well as ARMV8 (Tables 10 and
11), except for N7 that makes use of Store to Load forwarding in its
allowed outcome.

6.7 Summary

In summary, our results show that PipeGen always generates
pipelines that adhere to the intended MCM,; i.e., our generated
pipeline never violates the intended MCM. In a couple of examples
(involving fences — the grey cells) PipeGen shows slightly stronger
behavior than what the intended MCM would show.

7 Related Work

Verification. There has been a rich history of verifying processor
pipelines using theorem proving and model checking [5, 12, 13].
Each of these techniques verify a model of the processor, typically
expressed as a state machine, and verify it against the instruction
set specification. More recently PipeCheck [17] uses the uspec rep-
resentation of pipelines to verify the MCM orderings of a pipeline
using exhaustive litmus testing. For each litmus test, PipeCheck con-
structs a happens-before graph of the memory instruction events,
and a cycle in this graph corresponds to whether an outcome is

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Zhang, et al.

Table 8: Three tested ordering mechanism combinations per design. Each combination is either IO (In-order), IO + LR (using IO
and Load Replay), and IO + IT (using IO + Load Replay). An ordering may already be enforced (Y) or unenforced (N). *“Design 3

does not enforce Store to Load for the same address.

Design 1, TSO

Design 2, TSO Design 3, TSO

TSO Orderings I0 | I0O+LR [I0O+IT 10 |IO+LR [IO+IT IO | IO+LR | IO+IT
Ld — Ld 10| IR IT I0| IR IT I0| IR IT
Ld — St Y Y Y Y Y Y Y Y Y
St — St 10| 10 10 Y Y Y Y Y Y
St — Ld N| N N N | IR IT N*| LR IT
Ld —> mF Y Y Y Y Y Y Y Y Y
St — mF 10| 10 10 Y Y Y Y Y Y
mF — Ld 10| IR IT I0| IR 10 10| IR 10
mF — St Y Y Y Y Y Y Y Y Y
mF — mF Y Y Y Y Y Y Y Y Y
Design 1, ARM Design 2, ARM Design 3, ARM

ARM Orderings I0[IO+LR[IO+IT 10 |IO+LR [IO+IT IO | IO+LR | IO +IT
Ld — Ld N | IR IT N | IR IT N | LR IT
Ld — St Y Y Y Y Y Y Y Y Y
St — St N N N Y Y Y Y Y Y
St — Ld N N N N | IR IT N*| IR IT
LDA — Ld, LDA I0| IR IT 10| IR IT I0| IR IT
LDA — St, STR Y Y Y Y Y Y Y Y Y
Ld, LDA — STR Y Y Y Y Y Y Y Y Y
St, STR — STR 10| IO 10 Y Y Y Y Y Y
Ld, LDA — DMB SY/ST/LD Y Y Y Y Y Y Y Y Y
DMB SY/LD — Ld, LDA 10| LR IT 10| LR IT 10| IR IT
St, STR — DMB SY/ST 10| IO 10 10| 10 10 10| 10 10
DMB SY/ST/LD — St, STR Y Y Y Y Y Y Y Y Y
DMB SY/ST/LD — DMB SY/ST/LD Y Y Y Y Y Y Y Y Y

disallowed. This is similar to Herd [3], where cycles in memory
instruction executions indicate a disallowed outcome. In contrast to
pipeline verification, our work is focused on the top-down correct-
by-construction [8] generation of pipelines, in which we add the
required MCM orderings, rather than verifying that an existing
pipeline correctly enforces MCM orderings.

Hardware Description Languages. Our work is related to hard-
ware description languages such as Verilog, VHDL, Chisel [4], and
Bluespec [22], in that we share the end goal of generating hardware
designs. The point of departure of our work is that our approach
is not general: our goal is geared towards generating processor
pipelines as opposed to general hardware designs; in fact, our DSL
is specialized to processor pipelines, and our transformations take
advantage of this domain knowledge.

Microarchitecture Description Languages. Our work is most
closely related to what we call microarchitecture description lan-
guages. These works raise the level of abstraction of microarchitec-
ture design by using a DSL for expressing aspects of microarchitec-
ture and using compiler technology to lower it to hardware. The
earliest example of this is the Teapot language [7] for generating co-
herence protocols. Other early works raised the level of abstraction
of processor pipelines for single-core processors [15, 23].

This area has had a recent resurgence. With open instruction sets
and the advent of hardware startups, there is a demand for faster,
more reliable and cheaper microarchitecture design. ProtoGen [24]
proposes a DSL for synthesizing cache coherence protocols that are
correct by construction, and they also use model checking to verify
the synthesized protocols. PDL [25], proposes a pipeline description
language and supports limited out-of-order execution. But PDL does
not support multicore processors and as a consequence does not
help enforce MCMs. To summarize, ours is the only approach to our
knowledge that automates the generation of MCMs at the pipeline
level.

8 Conclusion

One of the biggest challenges in designing an out-of-order pipeline
is ensuring that it correctly supports a desired MCM. While MCM
enforcement mechanisms have been previously developed, applying
them manually is challenging and error-prone. We have developed
PipeGen to automate that design challenge. Specifically, given an
MCM and a single-core pipeline design that is MCM-oblivious,
PipeGen outputs a pipeline that correctly supports the given MCM.
We have verified PipeGen for a variety of single-core pipelines,
MCMs, and MCM enforcement mechanisms.

PipeGen: Automated Transformation of a Single-Core Pipeline
into a Multicore Pipeline for a Given Memory Consistency Model

Table 9: Design 1 ARMvS litmus test results.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Table 11: Design-2 (Design-3) ARMvS litmus test results.
*Design-3 doesn’t allow N7, as it doesn’t forward from stores.

Desien 1 ARMv8 n-Ord In-Order In-Order +
esie Expected I Inval Load-Replay . ARMv8 In-Order | In-Order +
Design 2 E ted In-Order +Inval | Load-Repl
MP Allow Allow Allow Allow Xpecte a oad-Repay
MP DMB_SY Disallow | Disallow | Disallow Disallow MP Allow Allow Disallow Disallow
MP DMB_SY i i i i

MP DMB_LD Disallow | Disallow | Disallow Disallow = Disallow | Disallow | Disallow Disallow
DMB_ST MP DMB_LD Disallow | Disallow | Disallow Disallow

MP DMB_LD DMB_ST
DMB_ST Allow Allow Allow Allow MP DMB_LD
Mismatch DMB_ST Allow Allow Disallow Disallow

Mismatch
MP Ordered Disallow | Disallow | Disallow Disallow 1Smare
LDAR STLR MP Ordered
Disallow | Disallow | Disallow Disallow
MP Unordered LDAR STLR
Allow Allow Allow Allow
LDAR STLR MP Unordered . .
Allow Allow Disallow Disallow
MP Only . . . X LDAR STLR
Disallow | Disallow | Disallow Disallow
LDAR STLR MP Only Disallow | Disallow | Disallow Disallow
Dekker’s Allow Allow Allow Allow LDARs STLRs
Dekker’s LDAR Allow Allow Allow Allow Dekker’s LDAR Allow Allow Disallow Disallow
Dekker’s STLR Allow Allow Allow Allow Dekker’s STLR Allow Allow Disallow Disallow
Dekker’s Dekker’s . .

LDAR STLR Allow Allow Allow Allow LDAR STLR Allow Allow Disallow Disallow
Dekker’s Disallow | Disallow | Disallow Disallow Dekker’s Allow Allow Disallow Disallow
DMB_SY Dekker’s

8 Disallow | Disallow | Disallow Disallow
Dekker’s DMB_SY
Allow Allow Allow Allow ,
DMB_LD Dekker’s . . .
. Allow Disallow | Disallow Disallow
Dekker’s . . DMB_LD
Allow Allow Disallow Disallow 5
DMB_ST Deldcer’s Allow Allow Disallow Disallow
LB Disallow | Disallow | Disallow Disallow DMB_ST
LB LDAR Disallow | Disallow | Disallow Disallow LB Disallow | Disallow | Disallow Disallow
LB STLR Disallow | Disallow | Disallow Disallow LB LDAR Disallow | Disallow | Disallow Disallow
LB STLR Disall Disall Disall Disall
LB Disallow | Disallow | Disallow Disallow 1satow 1satow 1satow 1satow

LDAR STIR LB Disallow | Disallow | Disallow Disallow

LB DMB_SY Disallow | Disallow | Disallow Disallow LDAR STLR

LB DMB_ST Disallow | Disallow | Disallow Disallow LB DMB_SY Disallow | Disallow | Disallow Disallow

LB DMB_LD Disallow | Disallow | Disallow Disallow LB DMB_ST Disallow | Disallow | Disallow Disallow

n7 Allow Allow Allow Allow LB DMB_LD Disallow | Disallow | Disallow Disallow
n7 Allow Allow™ Disallow Disallow

Table 10: Design-2 (Design-3) TSO litmus test results. “Design-
3 disallows N7, as it doesn’t forward from stores.

In-Order + | In-Order +
Design 2 l;?;gcsé(e)d In-Order Inval. Load
Handling Replay
Mess? se Disallow | Disallow | Disallow Disallow
Passing
MP Fence | Disallow | Disallow | Disallow Disallow
Dekker’s Allow Allow Disallow Disallow
Delker’s Disallow | Disallow | Disallow Disallow
Fence
LB Disallow | Disallow | Disallow Disallow
LB Fence | Disallow | Disallow | Disallow Disallow
n7 Allow Allow™ Disallow Disallow

PipeGen’s fundamental contribution is a set of transformations
that codify three different methods of enforcing MCMs at the
pipeline. Another important contribution is the identification of
important states and sub-operations which are essential to perform
these transformations.

But this work is only the first step. While we have used our own
DSL for specifying the input, it would be interesting to explore
whether existing HDLs can be extended to convey the important
annotations that are required to implement our transformations.
Secondly, whereas a Murphi backend validates that PipeGen works
correctly, it would be interesting to create an HDL backend.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

Acknowledgments

This work is supported by the National Science Foundation under
grant CCF-200-2737 and the Engineering and Physical Sciences
Research Council, through grant EP/V038699/1.

References

[1] 2014. Gem5 TSO implemention which permits only one operation in the store
buffer. https://gem5-users.gem5.narkive.com/RqRv5GVj/lsq-bottleneck-when-
using-x86-tso

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus: Run-

ning tests against hardware. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems. Springer, 41-44.

[3] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding cats: Mod-
elling, simulation, testing, and data mining for weak memory. ACM Transactions
on Programming Languages and Systems (TOPLAS) 36, 2 (2014), 1-74.

[4] Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew Water-
man, Rimas Avizienis, John Wawrzynek, and Krste Asanovic. 2012. Chisel:
constructing hardware in a Scala embedded language. In The 49th Annual Design
Automation Conference 2012, DAC 12, San Francisco, CA, USA, June 3-7, 2012,
Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun (Eds.). ACM, 1216-1225.
https://doi.org/10.1145/2228360.2228584

[5] Jerry R. Burch and David L. Dill. 1994. Automatic verification of Pipelined
Microprocessor Control. In Computer Aided Verification, 6th International Con-
ference, CAV *94, Stanford, California, USA, June 21-23, 1994, Proceedings (Lec-
ture Notes in Computer Science, Vol. 818), David L. Dill (Ed.). Springer, 68—80.
https://doi.org/10.1007/3-540-58179-0_44

[6] Harold W Cain and Mikko H Lipasti. 2004. Memory ordering: A value-based
approach. ACM SIGARCH Computer Architecture News 32, 2 (2004), 90.

[7] Satish Chandra, Brad Richards, and James R. Larus. 1996. Teapot: Language
Support for Writing Memory Coherence Protocols. In Proceedings of the ACM
SIGPLAN’96 Conference on Programming Language Design and Implementation
(PLDI), Philadephia, Pennsylvania, USA, May 21-24, 1996, Charles N. Fischer (Ed.).
ACM, 237-248. https://doi.org/10.1145/231379.231430

[8] Edsger W. Dijkstra. 1967. A constructive approach to the problem of program cor-
rectness. (Aug. 1967). http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.
PDF circulated privately.

[9] David L Dill. 1996. The Mur ¢ verification system. In Computer Aided Verification:

8th International Conference, CAV’96 New Brunswick, NJ, USA, July 31-August 3,

1996 Proceedings 8. Springer, 390-393.

Marco Elver and Vijay Nagarajan. 2016. McVerSi: A test generation framework

for fast memory consistency verification in simulation. In 2016 IEEE International

Symposium on High Performance Computer Architecture, HPCA 2016, Barcelona,

Spain, March 12-16, 2016. IEEE Computer Society, 618-630. https://doi.org/10.

1109/HPCA.2016.7446099

Kourosh Gharachorloo, Anoop Gupta, and John L Hennessy. 1991. Two techniques

to enhance the performance of memory consistency models. Computer Systems

Laboratory, Stanford University.

[12] Ravi Hosabettu, Ganesh Gopalakrishnan, and Mandayam K. Srivas. 2000. Verify-

ing Advanced Microarchitectures that Support Speculation and Exceptions. In

Computer Aided Verification, 12th International Conference, CAV 2000, Chicago, IL,

USA, July 15-19, 2000, Proceedings (Lecture Notes in Computer Science, Vol. 1855),

E. Allen Emerson and A. Prasad Sistla (Eds.). Springer, 521-537. https://doi.org/

10.1007/10722167_39

Ravi Hosabettu, Mandayam K. Srivas, and Ganesh Gopalakrishnan. 1998. Decom-

posing the Proof of Correctness of pipelined Microprocessors. In Computer Aided

Verification, 10th International Conference, CAV *98, Vancouver, BC, Canada, June 28

- July 2, 1998, Proceedings (Lecture Notes in Computer Science, Vol. 1427), Alan J. Hu

and Moshe Y. Vardi (Eds.). Springer, 122-134. https://doi.org/10.1007/BFB0028739

[14] Yao Hsiao, Dominic P Mulligan, Nikos Nikoleris, Gustavo Petri, and Caroline
Trippel. 2021. Synthesizing Formal Models of Hardware from RTL for Effi-
cient Verification of Memory Model Implementations. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 679-694.

[15] Daniel Kroening and Wolfgang J. Paul. 2001. Automated Pipeline Design. In
Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV,
USA, June 18-22, 2001. ACM, 810-815. https://doi.org/10.1145/378239.379071

[16] George Kurian, Omer Khan, and Srinivas Devadas. 2013. The locality-aware

adaptive cache coherence protocol. In Proceedings of the 40th Annual International

Symposium on Computer Architecture. 523-534.

Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2014. PipeCheck: Spec-

ifying and verifying microarchitectural enforcement of memory consistency

models. In 2014 47th Annual IEEE/ACM International Symposium on Microarchi-

tecture. IEEE, 635-646.

Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret Martonosi. 2015.

ArMOR: defending against memory consistency model mismatches in heteroge-

neous architectures. In Proceedings of the 42nd Annual International Symposium on

[2

[10

[1

[13

(17

[18

Zhang, et al.

Computer Architecture, Portland, OR, USA, June 13-17, 2015, Deborah T. Marr and
David H. Albonesi (Eds.). ACM, 388-400. https://doi.org/10.1145/2749469.2750378
Daniel Joseph Lustig. 2015. Specifying, Verifying, and Translating Between Memory
Consistency Models. Ph.D. Dissertation. Princeton University.

Milo MK Martin, Daniel J Sorin, Harold W Cain, Mark D Hill, and Mikko H Lipasti.
2001. Correctly implementing value prediction in microprocessors that support
multithreading or multiprocessing. In Proceedings. 34th ACM/IEEE International
Symposium on Microarchitecture. MICRO-34. IEEE, 328-337.

Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high
level specifications. In Proceedings. Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, 2004. MEMOCODE 04. IEEE, 69-70.
Rishiyur S. Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from
high level specifications. In 2nd ACM & IEEE International Conference on Formal
Methods and Models for Co-Design (MEMOCODE 2004), 23-25 June 2004, San Diego,
California, USA, Proceedings. IEEE Computer Society, 69-70. https://doi.org/10.
1109/MEMCOD.2004.1459818

Eriko Nurvitadhi, James C. Hoe, Timothy Kam, and Shih-Lien Lu. 2011. Automatic
Pipelining From Transactional Datapath Specifications. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 30, 3 (2011), 441-454. https://doi.org/10.1109/
TCAD.2010.2088950

Nicolai Oswald, Vijay Nagarajan, and Daniel J Sorin. 2018. ProtoGen: Automati-
cally generating directory cache coherence protocols from atomic specifications.
In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 247-260.

Drew Zagieboylo, Charles Sherk, Gookwon Edward Suh, and Andrew C Myers.
2022. PDL: a high-level hardware design language for pipelined processors. In
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 719-732.

[19

[20

[21

~
£,

[23

[24

I
i

A Artifact Appendix
A.1 Abstract

This paper provides an artifact, which includes a docker image,
prepared with all the necessary files and an environment to repro-
duce the tables in the paper. The minimum requirements to run
our artifact are 15 GB of RAM, and 10 GB of disk space. However,
the more cores and RAM that’s available, the faster the artifact
evaluation will be, as we provide an automated script in the docker
image to run experiments in parallel, and each experiment requires
at least 15 GB of RAM.

The docker image contains a python3.10 script that will run
all the experiments and corresponding litmus tests to reproduce
the tables in the paper. The instructions to run the script are in
the README-Artifact-Evaluation.md README file in the docker
image.

A.2 Artifact check-list (meta-information)

e Run-time environment: Docker image.

e Hardware: Use a computer with enough RAM for the experi-
ments, at least 15 GB. The more cores and memory, the better,
as each litmus test will use the ‘at least 15 GB’, and multiple
litmus tests can be run in parallel.

o Execution: Open docker image, run automated python test
script to run all experiments and corresponding litmus tests.

e Output: Result of litmus tests, shows if MCM orderings are

enforced. Check that the output matches the paper’s expected

results.

Experiments: Use our PipeGen framework to transform LSQs,

run litmus tests in the Murphi model checker.

o How much disk space required (approximately)?: 10 GB

e How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes (docker)

o How much time is needed to complete experiments (approxi-

mately)?: 4-5 days

Publicly available?: Yes, on Zenodo

o Code licenses (if publicly available)?: Yes, MIT

https://gem5-users.gem5.narkive.com/RqRv5GVj/lsq-bottleneck-when-using-x86-tso
https://gem5-users.gem5.narkive.com/RqRv5GVj/lsq-bottleneck-when-using-x86-tso
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1007/3-540-58179-0_44
https://doi.org/10.1145/231379.231430
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD209.PDF
https://doi.org/10.1109/HPCA.2016.7446099
https://doi.org/10.1109/HPCA.2016.7446099
https://doi.org/10.1007/10722167_39
https://doi.org/10.1007/10722167_39
https://doi.org/10.1007/BFB0028739
https://doi.org/10.1145/378239.379071
https://doi.org/10.1145/2749469.2750378
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/TCAD.2010.2088950
https://doi.org/10.1109/TCAD.2010.2088950

PipeGen: Automated Transformation of a Single-Core Pipeline
into a Multicore Pipeline for a Given Memory Consistency Model

o Data licenses (if publicly available)?: N/A
o Workflow framework used?: Python Script
e Archived (provide DOI)?: 10.5281/zenodo.12682811

A.3 Description

A.3.1 How to access. Our artifact is publicly available at https:
//zenodo.org/uploads/12682811. The artifact.tar file on Zen-
odo is a tarball of a docker image. Please load the docker im-
age (ie. docker load < artifact.tar) and run it inter-
actively (i.e. run the image with docker run -it aql). The
docker container will have the artifact files, python script, and
the README-Artifact-Evaluation.md file.

A.3.2 Hardware dependencies. There are no special hardware de-
pendencies, the artifact should run on any modern computer.

A.3.3 Software dependencies. All software dependencies are con-
tained already in the docker image. For completeness, the docker
image uses: python3.10, pandas, tabular, Lean v4.9 (latest version),
elan 3.1.1, cmurphi5.5.0, and g++.

A.3.4 Data sets. Not applicable.
A.3.5 Models. Not applicable.

A.4 Installation

Download the archive. tar file from Zenodo (https://zenodo.org/
uploads/12682811). Run docker load < archive.tar, which will
add the docker image aqgl. Run the docker image interactively with
docker run -it aql.

A.5 Experiment workflow

Follow the instructions in the README-Artifact-Evaluation.md
README file in the docker image. These are instructions for run-
ning the python script “run-1litmus-on-1sgs.py" to reproduce the
experiments and tables in the paper. Line 356 in the python script
makes the script run all experiments. Line 358 in the script shows
an example of running specific experiments. The workflow this
script automates consists of applying transformations on input LSQ
microarchitectures per memory model and main transformation
experiment from the paper. Each of these experiments is evalu-
ated with litmus tests in a model checker, to examine the resulting
memory model orderings the produced microarchitecture enforces.
These memory model orderings are collected in tables, as shown in
this paper.

A.6 Evaluation and expected results

As described above, this artifact transforms a LSQ microarchitecture
to enforce a specified memory model. The evaluation of whether a
memory model is enforced, and determining which orderings are
enforced as a result of PipeGen’s transformations is performed by
checking litmus tests in the Murphi model checker. Litmus tests
check for at least one memory model ordering, and as a memory
consistency model consists of a number of orderings, by checking
the enforced orderings with litmus tests, we can determine if a
microarchitecture enforces a memory consistency model. If a mi-
croarchitecture enforces a few more orderings than specified, this
is conservative, but acceptable.

PACT ’24, October 14-16, 2024, Southern California, CA, USA

The results of the litmus tests are printed in tables, and should
match the paper’s table. The one exception being the LB LSQ mi-
croarchitecture with the N7 litmus test, the ARM memory model,
enforced with only the IO (In-Order) transformation, which is dis-
allowed, and will be updated and explained in the camera-ready
version.

A.7 Experiment customization

Experiments can be customized if desired, by changing the trans-
formations used.

A.8 Notes

This artifact uses a docker image tarball, containing all dependen-
cies, and an automated script to run all experiments in the paper.

A.9 Methodology

Submission, reviewing and badging methodology:
o https://www.acm.org/publications/policies/artifact-review-
and-badging-current
e http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html

https://zenodo.org/uploads/12682811
https://zenodo.org/uploads/12682811
https://zenodo.org/uploads/12682811
https://zenodo.org/uploads/12682811
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

	Abstract
	1 Introduction
	2 Background: System Model and MCMs
	2.1 Single-Core Pipeline Model
	2.2 MCMs
	2.3 MCM Enforcement

	3 Input to PipeGen
	3.1 Abstract Model of Pipeline
	3.2 Memory Instructions: Instruction States and Sub-Operations
	3.3 AQL Programming Requirements
	3.4 Case Study: AQL for the LQ in Design 1

	4 Transformations
	4.1 In-Order Memory Instructions
	4.2 Load-Replay
	4.3 Invalidation Tracking

	5 Usage Model
	6 Output: Results and Verification
	6.1 Example Output generated by PipeGen
	6.2 Verification Methodology
	6.3 Transformation Combinations Used in Experiments
	6.4 Results for Design 1
	6.5 Results for Design 2
	6.6 Results for Design 3
	6.7 Summary

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

