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Abstract—The recent convergence towards programming lan-
guage based memory consistency models has sparked renewed
interest in lazy cache coherence protocols. These protocols
exploit synchronization information by enforcing coherence
only at synchronization boundaries via self-invalidation. In
effect, such protocols do not require sharer tracking which
benefits scalability. On the downside, such protocols are only
readily applicable to a restricted set of consistency models, such
as Release Consistency (RC), which expose synchronization
information explicitly. In particular, existing architectures with
stricter consistency models (such as x86-64) cannot readily
make use of lazy coherence protocols without either: changing
the architecture’s consistency model to (a variant of) RC at the
expense of backwards compatibility; or adapting the protocol to
satisfy the stricter consistency model, thereby failing to benefit
from synchronization information.

We show an approach for the x86-64 architecture, which is a
compromise between the two. First, we propose a mechanism to
convey synchronization information via a simple ISA extension,
while retaining backwards compatibility with legacy codes and
older microarchitectures. Second, we propose RC3, a scalable
hardware cache coherence protocol for RCtso, the resulting
memory consistency model. RC3 does not track sharers, and
relies on self-invalidation on acquires. To satisfy RCtso effi-
ciently, the protocol reduces self-invalidations transitively using
per-L1 timestamps only. RC3 outperforms a conventional lazy
RC protocol by 12%, achieving performance comparable to a
MESI directory protocol for RC optimized programs. RC3’s
storage overhead per cache line scales logarithmically with
increasing core count, and reduces on-chip coherence storage
overheads by 45% compared to a related approach specifically
targeting TSO.

Keywords-multiprocessors; cache coherence; memory consis-
tency models;

I. INTRODUCTION

In recent years we have seen widespread convergence
towards clearly defined programming language level memory
consistency models, such as C11 [1], C++11 [2], [3] and
Java [4]. These programmer-centric models require the
programmer to explicitly distinguish and label data and syn-
chronization operations at a much higher level of abstraction,
rather than having to deal with the low level details of the
hardware level consistency models [5]. It is beneficial to
convey the language level labels to the hardware, as hardware
can exploit this information for improved performance. Since
data operations need not be ordered among themselves,
there are fewer restrictions on, e.g. out-of-order pipeline
implementations.

In addition to the performance benefits, cache coherence
protocol implementations in multiprocessor systems can also
exploit synchronization information, leading to more scalable
protocols. Indeed, with synchronization operations exposed,
coherence need only be enforced lazily at synchronization
boundaries via self-invalidation [6], [7], [8], [9]. Using self-
invalidation, instead of relying on eager invalidations, is
beneficial, as it no longer requires maintaining a sharing
vector and associated data structures for maintaining the list
of sharers. Although there have been numerous approaches
to optimize the cache and directory organization to maintain
the list of sharers more efficiently [10], [11], [12], [13], [14],
[15], for coherence protocols that exploit synchronization
information, the sharing vector can be completely eliminated.
Motivation: Conveying data/synchronization information
from the language level to the hardware level, however,
requires a compatible hardware memory consistency model
that also clearly distinguishes between data and synchro-
nization operations. One such model, enabling an efficient
mapping from the language to the hardware level, is Release
Consistency (RC) [16]. In fact, a number of recent lazy
coherence protocols [17], [18], [19], [20], [21], [22] target
variants of RC.

Unfortunately, some existing architectures such as x86
only support stricter memory consistency models, e.g.
x86-TSO [23], which cannot directly exploit the explicit
data/synchronization information available at the language
level. As there exists a well established ecosystem of software
around these architectures, moving to a weaker RC variant
is not an option as legacy code must continue to work.
Therefore, most lazy coherence protocols cannot be applied
to these architectures. One exception to this is the recently
proposed TSO-CC protocol [24], which implements a lazy
coherence protocol for Total Store Order (TSO). Although
TSO-CC enables lazy coherence for x86 systems, there is still
no way to exploit the synchronization information available
at the language level.

Therefore, our research question is the following: how
can architectures (such as x86) benefit from the explicit
synchronization information available from language level
memory consistency models? At the same time, legacy code
which assumes the original hardware memory model (x86-
TSO), must continue to work. We attack this problem for
the widely deployed x86-64 architecture.
Approach: In x86-TSO, reads and writes already provide



acquire and release semantics respectively. Therefore, instead
of adding additional acquire/release instructions to the ISA,
we propose adding ordinary (relaxed) reads and writes to
represent data operations (§III). This is realized via unused
(null) prefixes which have become available in x86-64; the
semantics of one unused prefix is changed to denote ordinary
memory operations. The reads and writes from older legacy
codes (that are not labeled with the extension) simply cause
fewer instruction reorderings as the reads and writes are
treated as acquires and releases, just as is the case in x86-
TSO. The resulting memory consistency model is RCtso
(x86-RCtso). While variants of RC, such as RCsc and RCpc
can be found in the literature [16], RCtso is not explicitly
mentioned. RCtso is similar to RCpc in that it relaxes the
wR→ rA

1 ordering, but unlike RCpc, requires multi-copy
atomicity among synchronization operations.

To take advantage of RCtso, we propose the RC3 coherence
protocol (§IV): a lazy cache coherence protocol that targets
RCtso. We base RC3 on the recently proposed TSO-CC
protocol, as it provides an efficient lazy coherence protocol
implementation for TSO. In RC3, however, we additionally
exploit the exposed ordinary/synchronization information
to optimize the protocol. In TSO, since synchronization
information is unavailable, every read can potentially be
an acquire. TSO-CC employs transitive reduction using
timestamps to limit self-invalidation: upon a L1 miss, self-
invalidation is only performed if the response’s timestamp
is larger than the last-seen timestamp of the writer. There is
however a significant cost to performing this optimization: to
achieve good performance, each cache line in both L1s and
L22, needs to hold a timestamp due to absence of explicit
synchronization information. In RC3, with data and synchro-
nization information directly available, we no longer need to
self-invalidate on ordinary reads. We observe, however, that
there are performance gains to be realized when applying
a limited form of transitive reduction optimization only to
synchronization accesses, thereby reducing self-invalidations
on redundant acquires, compared to a conventional RC
lazy coherence protocol. Since synchronization accesses are
relatively infrequent, we can perform this limited form of
transitive reduction with only per-L1 timestamps, eliminating
per cache line timestamps in both L1s and L2.
Contributions: Our key contribution is RC3, a lazy cache
coherence protocol for RCtso, and a seamless approach to
adopt the protocol in the x86-64 architecture – thereby allow-
ing the architecture to exploit the explicit synchronization
information present in many recent language level memory
consistency models. We achieve this by showing how to
convey explicit ordinary and synchronization information to

1rA denotes a read acquire, wR a write release; r, w and m denote ordinary
(relaxed) reads, writes or any ordinary operations respectively; → is the
happens before ordering relation between memory operations.

2We assume a local L1 cache per core and a NUCA architecture for the
shared L2 cache.

the hardware via an ISA extension, and in doing so propose
to change the consistency model from x86-TSO to x86-RCtso.
The RC3 protocol then targets the RCtso consistency model
lazily, without the need for a sharing vector nor per cache
line timestamps.

In comparison to a conventional lazy RC coherence
protocol, RC3 achieves a 12% performance improvement on
average owing to transitive reduction of redundant acquires
using timestamps. In comparison to TSO-CC, RC3 reduces
coherence storage requirements by 45% by eliminating per
cache line L1 and L2 timestamps. Furthermore, eliminating
per cache line timestamps also simplifies cache accesses as
timestamps do not need to be tagged.

II. BACKGROUND

This section provides an overview of various approaches
to memory consistency, and how the choice of the memory
consistency model impacts the cache coherence protocol.
For a more detailed discussion, we refer the reader to [16],
[25], [26], [27]. This is followed by an overview of the
recently proposed TSO-CC protocol (§II-B), which we base
our protocol on.

A. Approaches to memory consistency models

While there are various options for deciding upon a
memory consistency model in a multiprocessor system, it is
essential to find the right balance between programmability
and performance.
System-centric approach: In the system-centric approach,
the memory consistency model is the direct interface with the
hardware. In more relaxed consistency models, it becomes
more difficult for programmers to reason about parallel
programs, and as such, stricter models are preferred when
programmers are expected to reason at the hardware level.
Memory consistency models such as Sequential Consistency
(SC) [28] and Total Store Order (TSO) [23] make it intuitive
for a programmer to reason about parallel programs.

Unfortunately, implementations for these stricter consis-
tency models typically result in fewer allowable optimizations
by the hardware, and in the context of cache coherence,
require eager coherence protocols. In eager coherence
protocols, writes are propagated eagerly by invalidating or
updating shared data in other caches [9].
Programmer-centric approach: While many commercial
multiprocessor systems adopt very relaxed memory consis-
tency models, giving architects fewer restrictions on opti-
mizations, this usually complicates reasoning about parallel
programs at the hardware level. This problem, however, can
be solved if we assume that the programmer does not need to
reason about programs using the system-centric consistency
models, and instead is exposed to a higher level abstraction
at the programming language level [5].

The only requirement of the hardware level consistency
model then is that, any language level consistency model can



be mapped to the hardware level. The formal basis for this
approach can be found in Adve et al.’s data-race-free [25],
[26], [29] and Gharachorloo et al.’s properly labelled [27],
[16] models. In essence, the programmer explicitly labels
synchronization and data operations correctly; in return the
system (compiler and hardware) guarantees SC.

Modern programming languages are converging towards
clearly defined memory consistency models, and as such, the
programmer only needs to reason in terms of the language
level consistency model. For instance, C++11 is an adaptation
of data-race-free-0 [3]. However, for hardware to be able
to benefit from the explicit synchronization information, the
hardware’s consistency model should be able to distinguish
between synchronization and data operations. A straightfor-
ward implementation of data-race-free-0 is using RC [16]
(without nsync) [25], where data operations are mapped
to ordinary loads (r) and stores (w), and synchronization
operations are mapped to acquires (rA) and releases (wR).
RC requires maintaining m→wR and rA→m, and depending
on the RC-variant imposes restrictions on ordering between
synchronization, e.g. RCsc requires that all possible orderings
between synchronization are maintained.

As a result, the hardware benefits from additional oppor-
tunity for optimization, and in particular, coherence protocol
implementations can be lazy. Propagation of ordinary memory
operations can be delayed until an order can be re-established
at synchronization boundaries [6], [7], [9]. This permits the
protocol to remove the costly data structures to maintain a
list of sharers, i.e. the sharing vector, and instead rely on self-
invalidation upon synchronization boundaries as demonstrated
by numerous prior works [7], [18], [21], [22], [30].

B. TSO-CC: Lazy coherence for TSO

Memory consistency models such as TSO, however, do
not explicitly expose synchronization operations. In TSO,
regular reads and writes have acquire and release semantics,
respectively. Then, at what point should a lazy coherence
protocol self-invalidate? Naïvely assuming every read or
write to be synchronization can cause significant performance
degradation. Despite this limitation, by exploiting the fact
that TSO relaxes the w→ r ordering, TSO does give rise to
an efficient self-invalidation based lazy coherence protocol
(without sharer tracking), as demonstrated by the recent TSO-
CC protocol [24].

TSO-CC’s first insight is that it is legal for a read to return
a stale (locally cached) value, as long as the following hold.
1 Periodic reads to a location eventually return the up-to-
date copy of the value; TSO-CC accomplishes this by forcing
a miss after a fixed number of hits – this effectively ensures
the write propagation requirement of TSO. 2 TSO’s ordering
requirements are not violated even though stale accesses are
permitted; this is achieved by treating read misses (i.e. upon
returning an up-to-date value) as acquires, which are followed
by self-invalidation – this effectively ensures that the r→ r

Figure 1. Message-passing example.

ordering requirement is not violated. All other remaining
ordering requirements (m→ w) are satisfied by propagating
writes to the shared cache in order, and committing writes
only after reads.

Considering every such read miss to be an acquire,
however, causes excessive self-invalidations and degrades
performance. Which reads should be treated as acquires? The
second important insight concerns how to reduce excessive
self-invalidations in the absence of explicit synchronization.
To avoid redundant self-invalidations, TSO-CC proposes to
use transitive reduction of acquires. Every L1 maintains a
monotonically increasing timestamp source, and these scalar
timestamps are then associated with writes. This information
can then be used to answer the question “is there potentially
stale data in my cache?”, and decide if self-invalidation of
shared data is required. TSO-CC needs to apply transitive
reduction at cache line granularity (writer timestamp per
cache line), because TSO-CC cannot distinguish between
synchronization and non-synchronization. If synchronization
and non-synchronization data writes (that map to distinct
cache lines) would share the same timestamp, timestamp
false sharing would limit the effectiveness of the transitive
reduction optimization.

Using the example in Fig. 1, TSO-CC ensures TSO as
follows. 1 w→ w is ensured by with a shared directory
as an arbitration point only permitting one writer at a time.
Furthermore, increasing timestamps are assigned to the cache
lines of data1, data2 and flag. 2 Reading flag at event b1 in
processor B hits up to a maximum threshold, after which a
miss is forced; this miss ensures that the most up-to-date value
of flag is eventually read, and also causes self-invalidation
of all other shared lines (in particular those containing
data1 and data2). This miss also observes flag’s timestamp,
and processor B now associates this latest timestamp with
processor A. Subsequent reads to data1 and data2 miss and
obtain the (correct) up-to-date values, thereby ensuring r→ r;
if self-invalidation had not taken place, processor B would
have observed stale copies of data1 and data2, violating r→ r.
Due to transitive reduction, the misses at b2 and b3 do not
cause self-invalidation, as the timestamps of the received



data1 and data2 are both less than the timestamp of the
already observed flag. Therefore, after the final event b3,
all of data1, data2 and flag are cached in B. To illustrate
why maintaining timestamps at fine granularity is necessary,
assume that processor A writes to several other locations
following a3, and these additional writes’ timestamps are
shared with data1 and data2, but B has not yet observed flag.
In this case, the timestamp associated with the write of flag
may be lower than that of data1 or data2, and these misses
would in fact cause self-invalidation – this should be avoided
by using timestamps at cache line granularity.

A major strength of TSO-CC’s approach is that backwards
compatibility is maintained with legacy TSO program codes.
While TSO-CC is successful at limiting self-invalidations
without explicit synchronization information, any additional
information at the language level is still lost. Because of
this, TSO-CC requires per cache line writer timestamps to
achieve good performance. However, avoiding per cache
line timestamps is highly desirable due to incurring storage
overheads proportional to the number of lines. With RC3,
we show that per cache line timestamps are unnecessary if
synchronization operations are explicitly exposed.

III. X86-RCTSO: RELEASE CONSISTENCY FOR X86-64

With the extra data/synchronization information available
at the language level, how to expose this information
to existing architectures with stricter consistency models?
We propose a solution for the widely deployed x86-64
architecture, via extending the memory model from TSO
to RCtso, a memory model which differentiates data and
synchronization. In extending the memory consistency model
of an architecture, a major objective is to retain backwards
compatibility with existing legacy codes as well as legacy mi-
croarchitectures (run new code on old systems). Specifically,
in TSO [23] reads and writes already provide acquire and
release semantics respectively. Therefore, reads and writes
from legacy TSO codes must retain their original semantics.

Accordingly, we ensure that existing reads and writes retain
acquire and release semantics, but add support for the missing
relaxed ordinary memory reads and writes. The resulting
memory consistency model is RCtso, which is similar to
RCpc [16] in that it relaxes the wR → rA ordering, but
unlike RCpc, requires multi-copy atomicity of read acquires
and write releases, which it inherits from the original TSO
implementation. Table I provides an overview of the ordering
constraints enforced by RCtso.

Note that our variant of RCtso does not distinguish between
special sync (acquire, release) and nsync operations [16].
Therefore, for ensuring correctness the compiler will have
to treat nsync reads and nsync writes conservatively as
sync acquires and sync releases respectively. This primarily
concerns racy programs: these continue to work in RCtso,
as long as racy accesses are marked as synchronization.
In programmer-centric models, such as C11/C++11, such

accesses require special annotation (e.g. C11/C++11 atomics)
irrespective of the hardware level model, and correctness of
such codes is not affected as long as the compiler provides
a conservative mapping to acquires/releases.

A. ISA extension details

This section describes the details of an ISA extension for
the x86-64 architecture, effectively changing the supported
memory consistency model from x86-TSO to x86-RCtso.
In order to add the proposed relaxed ordinary memory
operations, we have to label them explicitly. We can do
so using instruction prefixes for memory operations. In x86-
64 a group of prefixes, which were previously used for 32-bit
mode to denote segment register overrides (CS, DS, ES, SS),
have become unused and their meaning was changed to null
prefixes [31] (§B.7).

Any one of these prefixes can be reused and their
semantics changed from null to denote relaxed ordinary
memory operations. In doing so, the ISA would not break
compatibility with existing legacy codes, as unprefixed loads
and stores retain their acquire and release semantics; these
programs would merely impose a stricter program ordering
among instructions. This also means that existing legacy
synchronization libraries are compatible with new codes
that make use of the extension to RCtso. Finally, this
approach also ensures that new codes targeting RCtso are
compatible with legacy microarchitectures, as in this case the
prefix would revert to a null prefix. Therefore, the imposed
program ordering will only be stricter than required, ensuring
correctness [5].

IV. RC3: PROTOCOL DESIGN

Our primary technical contribution is the RC3 protocol
which takes advantage of the explicit labelling. This section
describes the detailed protocol design: first we give an
overview of the protocol (§IV-A); this is followed by a
detailed description of the basic RC3 protocol without
optimizations (§IV-B), and continue extending the basic
protocol with the transitive reduction (§IV-C) and shared read-
only optimizations (§IV-E). Throughout, the organization
chosen assumes private L1 caches per core, and a tiled
(NUCA) shared L2 with an embedded directory (§IV-G).

A. Overview

We base the protocol on TSO-CC, as outlined in §II-B, and
modify the protocol to exploit the fact that RCtso conveys
synchronization and ordinary operations to the hardware
explicitly. By exploiting this additional information, our goal
is to further reduce the storage overheads of the resulting RC3
protocol, but retain comparable performance characteristics.

As the protocol is already aware of acquires and releases,
we add support for the new ordinary memory operations.
Upon acquires, where the last writer is not the requester, the
protocol self-invalidates all shared cache lines in the local



Table I
RCTSO ORDERING REQUIREMENTS

happens-before � Read-Acquire (rA) Write-Release (wR) Read-Ordinary (r) Write-Ordinary (w)
Read-Acquire (rA) X X X X
Write-Release (wR) X
Read-Ordinary (r) X
Write-Ordinary (w) X

cache. It is worth noting, however, that self-invalidation is
not required upon ordinary reads. Furthermore, shared lines
fetched by ordinary memory operations can hit indefinitely
in the local caches. In addition, we retain the TSO-CC
optimization which permits acquires to hit shared cache
lines up to a maximum number of accesses, as this ensures
adequate performance for legacy codes.

In order to achieve good performance, TSO-CC proposes
the transitive reduction optimization at cache line granularity.
This is necessary, as newer writes (to different cache lines)
after a write release will be assigned increasing timestamps,
but each write retaining a distinct timestamp value (until
another write to the same line) due to using timestamps at
cache line granularity. As timestamps assigned to older write
releases on different cache lines are unaffected until another
release, unnecessary self-invalidations are rare. TSO-CC is
effectively sharing timestamps at cache line granularity; at
this granularity timestamp false sharing can only happen for
all addresses mapped to a single cache line.

With RCtso, however, the protocol is explicitly conveyed
information about synchronization and data accesses, and be-
cause data accesses dominate, self-invalidation is suppressed
for these accesses regardless. In the earlier example (§II-B)
illustrated with Fig. 1, using RCtso allows the read in B
of flag to be marked as an acquire, and data1/data2 marked
as ordinary reads. In this case, self-invalidation can only
take place at b1, but not b2 or b3 even if the timestamps
of data1/data2 were higher than of flag – assuming shared
timestamps and continued writes after the release of flag in A.
Therefore, maintaining timestamps at cache line granularity is
overkill, as explicit synchronization is infrequent and limited
to relatively few addresses for which timestamps can be
shared. Our hypothesis is, that applying timestamps at entire
address-space granularity with RCtso optimized workloads is
sufficient to realize the same performance benefits of transi-
tive reduction as TSO-CC (validated in §VI-B). Consequently,
we can eliminate per cache line timestamps from L1s and
L2 tiles, and only require maintaining per-L1 timestamps. In
particular, per-L1 timestamps are still effective at reducing
redundant acquires, e.g. due to conservative synchronization
and acquiring mostly shared read-only data.

Furthermore, the protocol requires changes to the shared
read-only optimization, as per cache line timestamps were
previously used to decay lines from shared-written back to
shared read-only. Our approach here is to reuse data structures
already present in TSO-CC, but used for timestamp resets;

specifically, we reuse the epoch-id, and only maintain epoch-
ids per L2 cache lines to identify that a period of time
has elapsed since the last write. As the epoch-ids require
substantially less space then timestamps, this optimization,
given its performance benefits, can be justified.

B. Basic protocol
The following outlines the stable states, actions and

transitions of the protocol.
Stable states: The protocol distinguishes between invalid,
private and shared states. Cache lines in the L1 can be
in invalid (Invalid), private (Exclusive, Modified, Exclusive_L,
Modified_L) and shared (Shared, Shared_L) states. In the L2,
private (Exclusive) cache lines only require a pointer b.owner to
the current owner; shared (Shared) cache lines are untracked
in the L2, and do not require tracking a list of sharers. The
L2 maintains an additional state Uncached for cache lines
not present in any L1, but valid in the L2.

We must introduce pairs of states in the L1: the base
state, and a state (∗_L) denoting the line was fetched due
to a reLaxed ordinary memory operation. This distinction
is required to deal with cases where an ordinary memory
operation caused a miss, but followed by a synchronization
hit. In the following we refer to the set of states with a
common label prefix as Prefix∗, e.g. the set of states Exclusive
and Exclusive_L are referred to as Exclusive∗. A transition
from Exclusive∗ to Modified∗ means the transition is to the
state with the same suffix (if any).
Read-Ordinary: Read requests (GetS) to cache lines invalid
in the L2 cause an Exclusive response to the requesting L1,
which must then acknowledge the response and transitions to
Exclusive_L. If the cache line is in state Exclusive in the L2, the
GetS request is forwarded to the current owner. The owner
will then downgrade its copy from Exclusive∗ or Modified∗ to
Shared∗. The owner responds to the initial requester with the
data, which transitions to Shared_L; the owner additionally
sends acknowledgement (if Exclusive∗) or data (if Modified∗)
to the L2, which transitions the cache line to the Shared state.
On subsequent read requests to the L2, the L2 responds with
Shared data. Ordinary read accesses to Exclusive∗, Modified∗,
and Shared∗ cache lines always hit in the L1.
Read-Acquire: Similarly to an ordinary read operation, a
GetS request is sent to the L2. Upon receipt of a response,
the L1 transitions to the respective base state, Exclusive or
Shared.

As shared lines are untracked in the L2, all shared lines in
the L1 must eventually be self-invalidated. To maintain the



rA→ r and rA→ rA ordering, L1s self-invalidate all Shared∗
cache lines after every L1 synchronization miss, where the
transition is to a base state, and the response’s last writer
is not the requesting L1.

Read acquire accesses hit to private lines (Exclusive_L,
Modified_L) fetched due to an ordinary memory accesses, but
are forced to perform self-invalidation of shared cache lines,
as ordinary reads do not cause self-invalidation. This is, as
outlined above, to address the corner case where an ordinary
memory operation fetched a cache line, but the same cache
line is subsequently accessed by a synchronization operation.
After self-invalidation, the cache line is transitioned to the
base state (e.g. from Exclusive_L to Exclusive). A read acquire
accessing a cache line in Shared_L causes a miss, as the
cache line is most likely stale.

Read acquire accesses to Shared cache lines are allowed to
hit, but only up to a predefined maximum number of accesses,
at which point a miss is forced. This requires extra storage
for the access counter b.acnt. We reuse this optimization
from TSO-CC, as firstly it provides adequate performance
for legacy codes optimized for TSO. Secondly, this is the
reason why the wR → rA ordering is relaxed in RC3, and
thus targets RCtso.
Write-Ordinary: An ordinary write operation can only hit
in the L1 if the line is held in the Exclusive∗ or Modified∗
states. Transitions from Exclusive∗ to Modified∗ are silent. An
ordinary write misses in the L1 in any other state, causing
a GetX request sent to the L2. Upon receipt of a response,
the local cache line’s state changes to Modified_L, the data
is written to the L1, and an acknowledgement is sent to the
L2. The L2 cache updates the cache line’s state to Exclusive
and updates b.owner with the requester’s id.

If another L1 requests write access to a private line, the L2
forwards the request to the owner stored in b.owner, which
then invalidates the line and passes ownership to the requester.
Since the L2 only responds to write requests if it is in a stable
state, i.e. it has received the acknowledgement of the last
writer, there can only be one writer at a time. This serializes
all writes to the same address at the L2 cache.

Upon a write request to a Shared line, the L2 immediately
responds with a data response message and transitions the
line to Exclusive. Note that even if the cache line is in Shared,
the L2 must send the entire line, as the requesting core may
have a stale copy. On receiving the data message, the L1
transitions to Modified_L either from Invalid or Shared∗. Note
that there may still be other copies of the line in Shared∗
states in other L1 caches, but since they will eventually miss
due to self-invalidation, and also cause self-invalidation of
shared lines on synchronization misses, RCtso is satisfied.
Write-Release: Write releases hit in the same states as
ordinary writes. Given wR → rA is relaxed, hits in the
Exclusive_L or Modified_L states do not cause self-invalidation,
and are treated as in the ordinary write case. Upon a write
release miss, the final state upon receipt of a response is

Modified; as per the rules outline above, such a miss would
also cause self-invalidation.
Evictions: Inclusivity must be maintained for cache lines
which are tracked by the L2: on evictions from the L2,
evictions from Exclusive (and later SharedRO, see §IV-E)
require invalidation requests to the owner. Shared lines
are untracked, and therefore evicted silently from the L2.
Evictions from the L1 in states Exclusive∗ and Modified∗
require updating the L2 accordingly, which then transitions
the line to Uncached; Shared∗ lines are evicted silently.

C. Opt. 1: reducing self-invalidations of redundant acquires

In order to satisfy the rA→ r ordering, the basic protocol
applies self-invalidation of Shared∗ lines at L1 misses.
However, subsequent acquires would always cause self-
invalidation. If a release has already been observed, and
all memory operations before it have previously been made
visible via self-invalidation, self-invalidating again – upon
acquiring the same, or any release that happened before it
– is not required. To reduce unnecessary invalidations, we
apply a variant of transitive reduction [32] like TSO-CC, but
limited to synchronization misses.

Each L1 maintains a local current timestamp cur_ts of
fixed size. The size of the timestamp depends on the storage
requirements, but also affects the frequency of the timestamp
resets, which is discussed in more detail in §IV-D. The L1
local timestamp must be incremented on every release.

Upon propagating a cache line to the L2 cache, the L1’s
current timestamp cur_ts is propagated. The L2 then updates
its respective entry for the sender in a last-seen timestamp
table ts_L1. Note that, if we have multiple L2 tiles, the
protocol requires a timestamp table per L2 tile. Each L1 also
maintains a last-seen timestamp table ts_L1. The maximum
possible entries per timestamp table can be less than the
total number of cores, but will require an eviction policy to
deal with limited capacity. The L2 responds to requests with
the data, the writer b.owner and the last writer’s most recent
timestamp ts_L1[b.owner].

Thus, to reduce invalidations, only where the L2’s last-
seen timestamp is larger than the L1’s last-seen timestamp
of the writer of the requested line, treat the event as a true
acquire and self-invalidate all Shared∗ lines.

For those data responses where the timestamp is invalid
(never written to since the L2 obtained a copy) or there does
not exist an entry in the L1’s timestamp-table (never read
from the writer before), a self-invalidation is necessary. This
is because timestamps are not propagated to main-memory
and it may be possible for the line to have been modified
and then evicted from the L2.

In case of an ordinary access miss followed by a read
acquire hit to the same line, transitive reduction cannot be
directly applied (since the second access being a hit does
not involve a response with a timestamp). However, we can
still apply the transitive reduction as follows: on an ordinary



access response, we check for true acquire, and if the check
would have caused self-invalidation, we proceed to transition
to the relaxed state, otherwise to the corresponding base state.
This may still cause unnecessary self-invalidations where a
synchronization miss (timestamp larger than last seen, causes
self-invalidation) to a different line happens between the
ordinary miss and the acquire hit (timestamp would have
been less than or equal to last seen). Fortunately, this case
is infrequent according to our evaluation.

D. Timestamp resets

Because timestamps are finite, we have to deal with times-
tamp resets. Given the maximum timestamp size is chosen
appropriately, and as they are only incremented on releases,
resets should occur infrequently. If the current timestamp
cur_ts is exhausted, L1s must broadcast a timestamp reset
message to all L1s and L2 tiles. Upon receiving a timestamp
reset message, a L1 invalidates the sender’s entry in the
timestamp table ts_L1; similarly for each L2 tile.
Handling races: It is possible for timestamp reset messages
to race with data request and response messages: the case
where a data response with a timestamp from a previous
epoch arrives at a L1 which already received a timestamp
reset message needs to be accounted for. The protocol
requires maintaining epoch-ids per L1. The epoch-id of a
L1 is incremented on every timestamp reset and the new
epoch-id is sent along with the timestamp reset message.
It is not a problem if the epoch-id overflows, as the only
requirement for the epoch-id is to be distinct from its previous
value. However, we assume a bound on the time it takes for
a message to be propagated, and it is not possible for the
epoch-id to overflow and reach the same epoch-id value of
a message in transit.

Each L1 and L2 tile maintains a table of epoch-ids for
every other L1. Every data message that contains a timestamp,
must now also contain the epoch-id of the source of the
timestamp. Upon receipt of a data message, the L1 compares
the expected epoch-id with the data message’s epoch-id: if
they do not match, the same action as on a timestamp reset
has to be performed, and can proceed as usual if they match.
Epoch optimization: As the current epoch is known to L2
tiles via the epoch-id table they maintain, we can make use of
the epoch-id information to convey a more precise ordering
than simply responding with the last-seen timestamp. This
optimization requires addition of a small amount of extra
storage for the written epoch-id to each L2 cache line.

If we know that the last writer’s current epoch-id is
different from the L2 cache line’s epoch-id, the write must
have happened before the last timestamp reset. In this case,
the cache line’s window for assigning the last-seen timestamp
has expired. Upon cache line expiry, it is sufficient to assign
the smallest valid timestamp to the response, so that we
can avoid self-invalidation where the release has happened
before the most recent release – under the assumption that

the requesting L1 has already seen a more recent timestamp
from the last writer.

One additional case must be dealt with: if the smallest
valid timestamp is used in case of cache line expiry, it should
not possible for a L1 to skip self-invalidation due to the line’s
timestamp being equal to the smallest valid timestamp. To
address this case, the next timestamp assigned to a request
response after a reset must always be larger than the smallest
valid timestamp.

E. Opt. 2: shared read-only with epoch based decay

The basic protocol suffers from a pathological case, where
shared cache lines which are written to very infrequently
but read frequently are self-invalidated unnecessarily. TSO-
CC greatly benefits from introducing the shared read-only
optimization to avoid this, but makes use of per cache
line timestamps in deciding when a shared line should be
classified read-only. This section describes an alternative
policy without full timestamps.

We add another state SharedRO for shared read-only cache
lines, which are excluded from self-invalidation. A line
transitions to SharedRO instead of Shared if the line is
not modified by the previous Exclusive owner. Additionally,
cache lines in the Shared state are transitioned (decay) to
SharedRO upon expiry: if the cache line’s written epoch does
not equal the last writer’s current epoch (see §IV-D). The
L1s maintain SharedRO and SharedRO_L states, where the
request was either due to synchronization or an ordinary
operation respectively. On an acquire to a SharedRO_L line,
the L1 must self-invalidate shared lines, followed by the line
transitioning to SharedRO – as described above, the prior
ordinary access does not cause self-invalidation.

In the case of a synchronization access to a SharedRO cache
line where the last writer is not known, the L1 would always
have to perform self-invalidation. Similar to TSO-CC, we can
introduce L2 SharedRO timestamps, where each L2 maintains
a current timestamp. As we do not store timestamps in cache
lines, a SharedRO response is assigned the L2’s current
timestamp. On a cache line transitioning from Exclusive
or Shared to SharedRO, the L2 tile increments its current
timestamp. Each L1 must maintain a table ts_L2 of last-
seen timestamps for each L2 tile. On receiving a SharedRO
response from the L2, the following rule determines if self-
invalidation must occur: if the line’s timestamp is larger
than the last-seen timestamp from the L2, self-invalidate
all Shared∗ lines. Furthermore, to reduce the number of
L2 timestamp increments, the L2’s current timestamp is
not incremented if there does not exist a cache line which
transitioned (since the last increment) to a state from which
SharedRO can be reached (for the specific rules, see [24]).

Upon resetting a L2 tile’s timestamp, a broadcast is sent
to every L1, and the L1s remove the entry in ts_L2 for the
sending tile. As outlined in §IV-D, to avoid races, L2s also



Table II
RC3 SPECIFIC STORAGE REQUIREMENTS

L1 Per node:
• Current timestamp cur_ts, Bts bits
• Current epoch-id cur_eid, Bepoch−id bits
• Timestamp-table ts_L1[n], n≤CL1 entries
• Epoch-ids epoch_ids_L1[n], n =CL1 entries
Only required if SharedRO opt. (§IV-E) is used:
• Timestamp-table ts_L2[n], n≤CL2−tiles entries
• Epoch-ids epoch_ids_L2[n], n =CL2−tiles entries

Per line b:
• Number of accesses b.acnt, Bmaxacc bits

L2 Per tile:
• Last-seen timestamp-table ts_L1[n], n =CL1 entries
• Epoch-ids epoch_ids_L1[n], n =CL1 entries
Only required if SharedRO opt. (§IV-E) is used:
• Current timestamp, Bts bits
• Current epoch-id, Bepoch−id bits
• Increment-timestamp-flags, 2 bits

Per line b:
• Epoch-id b.epoch_id, Bepoch−id bits
• Owner (Exclusive), last writer (Shared), coarse vector

(SharedRO) as b.owner, dlog(CL1)e bits

maintain epoch-ids, and every L1 maintains a table of epoch-
ids epoch_ids_L2. To avoid sending larger timestamps than the
current timestamp, we again apply the epoch optimization.
Writes to SharedRO: A write request to a SharedRO line
triggers broadcast invalidate, and subsequent acknowledge-
ments. Network traffic can be reduced by reusing the b.owner
bits as a broadcast filter [24]. SharedRO evictions from L1
are therefore silent, but evictions from L2 requires broadcast
invalidate, followed by acknowledgements.

F. Atomic instructions & fences

Implementing atomic read and write instructions, such as
RMWs, is trivial with the proposed protocol: each atomic in-
struction issues a GetX request. Fences require unconditional
self-invalidation of cache lines in the Shared state. Note that
in our implementation, fences do not invalidate cache lines
fetched by ordinary memory operations (Shared_L), which
implies that fences do not enforce ordering between ordinary
memory operations.

G. Storage requirements & organization

Table II shows a detailed breakdown of storage require-
ments for RC3, referring to literals that have introduced
throughout §IV. We assume a local L1 cache per core and a
NUCA [33] architecture for the shared L2 cache.

While we chose a simple sparse directory embedded
in the L2 cache for all configurations (§VI-A) used in
the evaluation, our protocol is independent of a particular
directory organization. It is possible to further optimize our
overall scheme by using directory organization approaches
such as in [11], [14]; however, this is beyond the scope of this

Table III
SYSTEM PARAMETERS

Core-count & frequency 32 (out-of-order) @ 2GHz
Write buffer entries 32, FIFO
ROB entries 40
L1 I+D -cache (private) 32KB+32KB, 64B lines, 4-way
L1 hit latency 3 cycles
L2 cache (NUCA, shared) 1MB×32 tiles, 64B lines, 16-way
L2 hit latency 30 to 80 cycles
Memory 2GB
Memory hit latency 120 to 230 cycles
On-chip network 2D Mesh, 4 rows, 16B flits
Kernel Linux 2.6.32.61

Table IV
BENCHMARKS AND THEIR INPUT PARAMETERS

PA
R

SE
C blackscholes simmedium

canneal simsmall
dedup simsmall
fluidanimate simsmall
x264 simsmall

SP
L

A
SH

-2 fft 64K points
lu 512×512 matrix, 16×16 blocks
radix 256K, radix 1024
raytrace car
water-nsquared 512 molecules

ST
A

M
P bayes -v32 -r1024 -n2 -p20 -i2 -e2

genome -g512 -s32 -n32768
intruder -a10 -l4 -n2048 -s1
ssca2 -s13 -i1.0 -u1.0 -l3 -p3
vacation -n4 -q60 -u90 -r16384 -t4096

paper. Also note that the protocol does not require inclusivity
for Shared∗ lines, alleviating some of the set conflict issues
associated with the chosen organization.

By eliminating per cache line timestamps, we significantly
simplify cache organization compared to TSO-CC. Notably,
eliminating per cache line timestamps simplifies lookup of
the timestamps as they no longer need to be associated with
a particular address tag. Other structures such as the MSHR
also no longer require a timestamp entry.

V. EVALUATION METHODOLOGY

This section provides an overview of our evaluation
methodology used in obtaining the performance results (§VI).

A. Simulation Environment

We use the Gem5 simulator [34] with Ruby and GAR-
NET [35] in full-system mode. The ISA is x86-64 with RCtso
extensions added (§III). The processor model used for each
core is a simple out-of-order processor. Table III shows the
key-parameters of the system. As the protocols evaluated
explicitly allow accesses to stale data, we added support to
the simulator to functionally reflect cache hits to stale data;
unmodified, the used version of Gem5 in full-system mode
would assume the caches to always be coherent otherwise.



Table V
COHERENCE STATE STORAGE OVERHEADS WITH ALL OPTIMIZATIONS
ENABLED: PRIVATE L1 PER CORE, 1MB PER L2 TILE, AND AS MANY

TILES AS CORES; THE TIMESTAMP-TABLE SIZES MATCH THE NUMBER OF
L1S AND L2 TILES; Bepoch−id = 3 BITS PER EPOCH-ID. NORMALIZED

W.R.T. MESI, COHERENCE STORAGE MB.

Cores 32 64 128
MESI 100% (2.13) 100% (8.27) 100% (32.53)
TSO-CC 62% (1.33) 34% (2.80) 18% (5.91)
RC3 34% (0.73) 19% (1.59) 11% (3.49)
RC-base 24% (0.52) 14% (1.16) 8% (2.56)

B. Workloads

Table IV shows the benchmarks we have selected from the
PARSEC [36], SPLASH-2 [37] and STAMP [38] benchmark
suites. The STAMP benchmark suite has been chosen to
evaluate transactional synchronization compared to the more
traditional approach from PARSEC and SPLASH-2; the STM
algorithm used is NOrec [39] as it is the current default.

In order to optimize the full-system software stack we
use, we modified GCC’s machine description for x86-64,
which adds the chosen prefix (SS prefix) for all ordinary
data operations. As all chosen workloads make clear use
of synchronization libraries, we only had to make sure the
synchronization libraries were unmodified, in effect using
read acquires and write releases. We further optimized as
many system libraries of the distribution as possible.

All selected workloads correctly run to completion with
the evaluated protocol configurations. The program codes are
unmodified, but targeting x86-64 with RC extensions (§III).
The Linux kernel used, however, is unmodified and compiled
without RC extensions, as we ran into limitations of our
ad-hoc conversion from TSO to RCtso. This means that our
results are conservative, and a system with a fully optimized
software stack will yield the same or better performance as
our evaluation shows. A rigorous conversion of x86-TSO
optimized codes to x86-RCtso is beyond the scope of this
paper. With our conversion, the total size of all workload
binaries increases by 7%.

VI. EXPERIMENTAL RESULTS

The goal of our evaluation is to analyze the storage
(§VI-A) and performance characteristics (§VI-B) of RC3
in comparison with MESI, a conventional RC baseline and
TSO-CC.

A. Protocol configurations & storage

We have chosen the MESI directory protocol implemen-
tation part of Gem5 as the baseline; this implementation
provides a fair baseline as it is used by several related works,
also as part of the original Wisconsin GEMS simulation
toolset [40]. With regard to TSO-CC, we have chosen the
same parameters as the ones determined optimal in the limited
design space exploration of [24].

We include the shared read-only optimization as described
in §IV-E in all configurations (except MESI, which is
unmodified). Note that, we do not include a version of RC3
with infinite timestamps, as this renders the SharedRO decay
optimization ineffective due to non-resetting timestamps
(epoch-id never changes). Our evaluation showed that a
version of RC3 with infinite timestamps performs worse than
or equal to a configuration of RC3 with finite timestamps –
as such, we exclude this configuration. Below we consider
the following configurations: RC-base, TSO-CC, RC3.
RC-base: A conventional RC protocol that removes the
sharer list, and relies on self-invalidation of shared cache
lines on acquires. Ordinary read misses do not cause self-
invalidation. We derive RC-base’s implementation from
RC3, effectively a version without timestamps. This is to
provide a fairer comparison, in particular so that RC-base’s
implementation includes the shared read-only optimization
(however, lacking timestamps, without the ability to decay
Shared lines). In this protocol, acquires always miss if the
cache line is in Shared state. With the evaluated system
configuration as seen in Table III, RC-base reduces coherence
storage requirements by 76% compared to MESI for 32 cores.
TSO-CC: This version is the overall best performing TSO-
CC configuration as found in [24]. This configuration uses
4 bits for the accesses counter, 12 bits for the timestamps
and a 3 bit write-group counter. TSO-CC reduces storage
requirements by 38% compared to MESI for 32 cores.
RC3: This is the RC3 protocol with all optimizations en-
abled. This configuration uses 4 bits for the accesses counter
and 12 bit timestamps. Compared to MESI for 32 cores,
this configuration of the RC3 protocol saves 66% on-chip
storage, and 45% compared to TSO-CC. In addition to purely
saving storage overheads, RC3 simplifies cache organization
compared to TSO-CC, thereby saving power consumption;
however, a detailed study of power consumption is beyond the
scope of this paper and reserved for future work. We include
RC3-legacy to show the performance of legacy codes with
the RC3 protocol. In this configuration, the ISA extension is
not used for the workloads.

Table V shows a comparison of the extra coherence storage
requirements between MESI, TSO-CC, RC3 and RC-base (in
order of decreasing storage requirements). With the chosen
configurations, RC3 reduces on-chip storage requirements
by 89% (41%) over MESI (TSO-CC) for 128 cores.

B. Performance Results

Our initial hypotheses are as follows. Firstly, we expect that
RC3, with the help of the transitive reduction optimization
(albeit with per-L1 timestamps), will perform significantly
better than RC-base. Secondly, despite using only per-L1
timestamps, we expect RC3 to perform as well as TSO-
CC (which uses per cache line timestamps), as it can
additionally leverage explicit synchronization information. In
the following, we will validate our hypotheses by comparing
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Figure 4. L1 cache misses, normalized against MESI.

the performance and network overhead of RC3 with that
of RC-base and TSO-CC (and MESI). In order to isolate
the contribution of synchronization information in RC3, we
will also compare against RC3-legacy, which is identical
to RC3 in all respects, except that it is not conveyed
explicit synchronization information. The analysis focuses
on performance results in Fig. 2 showing execution times,
and Fig. 3 showing network traffic; we use supporting data
from Figures 4 and 5 which show cache hit/miss rates, and
Fig. 6 showing total self-invalidations.

With explicit synchronization information, is transitive
reduction using timestamps still required for performance?
In order to answer this question, we compare the performance
of RC-base with that of RC3. As seen in Fig. 2, on average
the baseline RC protocol RC-base causes a slowdown of
12% compared to MESI. Network traffic (Fig. 3) is far
more sensitive, with an average increase of 125% compared
to MESI. Interestingly, the network traffic as well as L1

misses (Fig. 4) are heavily correlated, yet often with much
less noticeable effects on execution times, as the out-of-
order cores can hide miss latencies well. Introducing the
optimizations of RC3 provides an average improvement over
RC-base of 12% in terms of execution times, and 57% in
terms of network traffic. RC3 reduces redundant acquires
via the transitive reduction optimization, and most of the
difference can be attributed to the consequent reduction of
self-invalidations: compared to RC-base we note a reduction
of self-invalidations by 800% on average. However, why does
RC3 perform poorly in the first place with respect to self-
invalidations? We believe this is due to redundant acquires in
RC-base, an artifact of overly conservative synchronization
in parallel codes [41]. RC3 solves this problem via transitive
reduction. This validates our first hypothesis, that RC3
outperforms RC-base, and therefore transitive reduction
improves performance even where explicit synchronization
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information is provided to the protocol.
We note that write misses do not vary much across

configurations, and the biggest difference in performance
is due to read misses. Firstly, this is due to the fraction of
reads (avg. 70%) dominating that of writes (avg. 30%), and
secondly because writes are not in the critical path as they are
entered into a write buffer. Furthermore, write misses due to
downgrades are infrequent because of relatively small number
of communicating accesses, in particular for SPLASH-2 and
PARSEC benchmarks [42].

With explicit synchronization information, how does re-
moving per cache line timestamps (and instead only rely on
per-L1 timestamps) affect performance? In order to answer
this question, we compare the performance of RC3 with
that of TSO-CC (and MESI). RC3 performs as well, in
terms of execution times, as TSO-CC and the MESI baseline
on average. The best case execution time is achieved with
genome, which improves by 16% over the MESI baseline;
in the worst case we observe a slowdown of up to 11% for
ssca2. Fig. 6 shows total self-invalidations normalized against
TSO-CC: on average, RC3 self-invalidates 17% fewer cache
lines compared to TSO-CC. By reducing self-invalidations,
RC3 reduces L1 misses (Fig. 4) by 7% compared to TSO-CC;
thereby RC3 reduces network traffic by 3% over TSO-CC.
This validates our second hypothesis that RC3 performs at
least as well as TSO-CC and MESI; even though RC3 only
uses per-L1 timestamps, it leverages explicit synchronization
information to self-invalidate fewer cache-lines.

Without explicit synchronization information, how does
removing per cache line timestamps (and instead only rely
on per-L1 timestamps) affect performance? To answer this,

we compare the performance of RC3-legacy with that of TSO-
CC and RC3. On average, execution times of RC3-legacy are
very close to TSO-CC and RC3, but network traffic increased
by 5% and 8% respectively. Indeed, self-invalidations (Fig. 6)
appear to be on-par with TSO-CC, but 20% higher than RC3.
However, we see higher variance across benchmarks. In
particular for some STAMP benchmarks, RC3 is significantly
better – in the case of intruder, RC3-legacy increases
execution time by 17% and network traffic by 48%.

From this study we can observe that, for workloads with
relatively frequent synchronization such as intruder and bayes
in STAMP, more precisely identifying synchronization either
via exposing synchronization (RC3) or using fine grained
timestamps (TSO-CC) is important. However, for other
benchmarks (e.g. most from PARSEC and SPLASH-2), where
time spent communicating is relatively low, even with per-L1
timestamps but no explicit synchronization information (RC3-
legacy), performance is good. In these cases, the protocol is
efficient at properly classifying (see Fig. 5) private and shared
read-only data which are excluded from self-invalidation.

VII. RELATED WORK

RCtso has not been explicitly mentioned in the literature,
although variants of the RC memory model have been
formally defined in the literature [27]. In particular, the
RCpc consistency model, also relaxes the release to acquire
ordering; in contrast to RCtso, however, RCpc but does not
require multi-copy atomicity among releases and acquires.
While not explicitly referred to as RCtso, Intel Itanium
implements what we consider RCtso [43].

The definitions of Adve et al.’s data-race-free [25], [26],
[29] and Gharachorloo et al.’s properly labelled [16], [27]
form the basis for the programmer-centric approach we use in
our discussion to highlight the fact that the programmer does
not need to be exposed to the complexity of the resulting
hardware level consistency model. Our work takes a more
practical approach, proposing a detailed implementation of
the memory consistency model in an existing architecture,
and how the previously stricter (x86-TSO) consistency model
can be extended (x86-RCtso).

Some existing architectures have started to provide support
for achieving a mapping from a language level model to the
hardware memory model, that lets it retain synchronization



information. For example, the ARMv8 architecture [44] has
introduced releases and acquires into the ISA. In contrast
with ARM, where the resulting extended model (via adding
releases and acquires) is stronger than the original model,
the case for x86 is more challenging as the extended model
RCtso is weaker than the original model; legacy issues arise
in the latter but not the former.

Note also that recent Intel processors have introduced
hardware transaction extensions (including XACQUIRE,
XRELEASE) [45]. However, these are for a different purpose,
namely lock elision [41]. Our problem is orthogonal, as
we are interested in weakening the memory consistency
model; in this instance we argue that since TSO reads and
writes already have acquire and release semantics respectively,
exposing relaxed memory operations is the right approach. It
is worth noting that in the same way as hardware transaction
extensions were introduced in a backwards compatible way,
we propose reuse of a null prefix on memory operations to
introduce more relaxed ordinary memory operations.
Consistency directed coherence: Several recent works [17],
[18], [19], [20], [21], [22] target relaxed memory consistency
models, typically RC or Weak Ordering [5]; DeNovo [18]
and DeNovoND [22] follow a programmer-centric approach
(SC for DRF). These works introduce a number of optimiza-
tions for enhancing the performance of relaxed consistency
protocols. Notably, optimizing higher-level synchronization
primitives (locks, barriers, etc.) [18], [22], [46] would help im-
prove latencies and reduce misses, as polling behaviour could
be avoided. These optimizations, however, are orthogonal to
our proposal, as we stuck with implementations of current
operating system and standard library vendors. Unfortunately,
none of these approaches can directly be applied to existing
architectures with stricter models.

SPEL [47] is a dual-consistency protocol, which can
guarantee SC, and provide performance improvements given
explicit code annotations denoting DRF. Although legacy
compatible, the protocol does not reduce storage overheads.

Coherence for GPUs has become a recent topic of interest,
to more efficiently support wider ranges of workloads. GPUs
are typically programmed using higher level languages (e.g.
OpenCL), and the vendor is responsible for a correct mapping
to the hardware level. As such, the system-centric memory
consistency model of GPUs has not been readily exposed.
However, recent proposals for coherent memory systems on
GPUs propose RC [48], [49].

As referred to in previous sections, TSO-CC [24] is the
most closely related protocol; however, we eliminate the
per cache line timestamp requirement by relying on RCtso
explicitly distinguishing synchronization and data operations.
Data structures in eager protocols: Numerous works
attack the cache coherence problem by optimizing the data
structures and cache & directory organization to maintain
coherence state – in particular the list of sharers more
efficiently via: hierarchical directory organizations [13], [15];

sharing vector compression [12], [50]; variable size sharing
vectors [14]; or optimizing directory utilization [11], [14].

While most of these approaches are not directly applicable
in protocols without a list of sharers, some can also be
applied to different protocols (such as the proposed RC3)
– in particular those that optimize directory utilization (e.g.
Cuckoo [11]). None of these approaches consider the memory
consistency model explicitly. Unlike these approaches, we
propose changing the protocol, and by optimizing for the
memory consistency model, to only require less costly
data structures in the first place. By combining directory
optimization approaches and the RC3 protocol, the potential
on-chip storage savings can be even greater.

VIII. CONCLUSION

In recent years we have seen widespread convergence
towards clearly defined programming language level memory
consistency models. Each of these models requires the
programmer to explicitly distinguish between synchronization
and data memory operations. If such a language level model
is mapped to a compatible lower level hardware consistency
model that preserves the synchronization information, the
additional information can then be exploited by hardware
for enhanced performance and scalability. In particular, we
have seen a resurgence on the study of lazy cache coherence
protocols that exploit this explicit labelling of synchronization
and data to achieve scalable coherence protocols. Most of
these proposals assume (variants of) RC, which inherently
differentiates between data and synchronizations.

There are however existing architectures, which support
hardware consistency models that do not directly allow for
synchronization information to be conveyed. To make matters
worse, some of these architectures (most notably x86) support
stricter models. It is not possible for such architectures to
transition to RC overnight, as legacy code written assuming
the stricter model should continue to work. This paper has
presented a viable way to achieve this transition for x86-64,
by addressing: 1 how synchronization information from the
language level can be exposed to the hardware; and 2 how
cache coherence can take advantage of this information.

We have shown synchronization information can be con-
veyed relatively easily (and elegantly) by simply conveying
whether or not a memory operation is a relaxed operation
using unused prefixes in the ISA. We have then shown
how the cache coherence protocol can be designed to take
advantage of the relaxations, yet ensure TSO for legacy
codes. All this with significant storage savings in comparison
to not only MESI but also TSO-CC, a lazy coherence
protocol designed to target TSO. Performance of RC3
is significantly better than baseline RC as we eliminate
redundant acquires. Despite using only per-L1 timestamps
(as opposed to per cache line timestamps employed by TSO-
CC), RC3’s performance is comparable to TSO-CC (and
MESI) as we exploit synchronization information.
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